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Abstract. As the demand for electric vehicles continues to surge world-
wide, it becomes increasingly imperative for the government to plan and
anticipate its practical impact on society. In particular, any city/state
needs to guarantee sufficient and proper placement of charging stations
to service all current/future electric vehicle adopters. Furthermore, it
needs to consider the inevitable additional strain these charging stations
put on the existing power grid. In this paper, we use data-driven mod-
els to address these issues by providing an algorithm that finds optimal
placement and connections of electric vehicle charging stations in the
state of Virginia. Specifically, we found it suffices to build 10,733 ad-
ditional charging stations to cover 75% of the population within 0.33
miles (and everyone within 2.5 miles). We also show optimally connect-
ing the stations to the power grid significantly improves the stability of
the network. Additionally, we study 1) the trade-off between the average
distance a driver needs to travel to their nearest charging station versus
the number of stations to build, and 2) the impact on the grid under
various adoption rates. These studies provide further insight into various
tools policymakers can use to prepare for the evolving future.

Keywords: Electric Vehicle · Charging Station Placement · Power Grid.

1 Introduction

The transportation sector is responsible for 17% of the total GHG emissions, of
which 41% of emissions come from passenger cars1. Thus, reducing carbon foot-
print has become a critical goal in the transportation domain. Electric vehicles
(EV) are a robust solution to addressing this problem given their eco-friendly
characteristics. In recent years, the U.S. has witnessed widespread adoption of
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1 https://www.statista.com/statistics/1185535/transport-carbon-dioxide-emissions-breakdown/
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EVs in the residential sector2. Multiple incentives, policy changes, rising fuel
prices, and improvements in the range of EVs are some of the influential fac-
tors for a rapid increase in EV adoption. Thus, many entities such as urban
planners, government, and utilities are increasingly interested in finding optimal
placement of EV charging stations (EVCS). Existing research works have focused
on optimal EVCS placement with the goal of minimizing total construction cost
[20], transportation and substation energy loss [17], or considering driver pref-
erences [21]. Two common goals are (i) supporting consumer charging demand
and, (ii) maintaining power grid reliability.

In general, users prefer to be within a reasonable distance of a charging
station [7]. In reality, however, it might be impossible to accomplish such a
guarantee for everyone, especially in less densely populated areas. Thus, one may
impose a much larger upper bound on the maximum distance while minimizing
the average across all users. To ensure grid reliability, the new charging stations
should be connected to the power network in a way so that the voltages at nodes
across the network are within acceptable engineering standard (e.g. 0.9-1.1 per
unit (p.u.) for rated voltage of 1 p.u. [3] implying a maximum allowable voltage
deviation of 0.1 p.u.). One can accomplish this by connecting new charging
stations directly to the closest substation but this incurs additional costs due to
long connecting lines. Hence, another realistic goal is to minimize the connection
cost (or equivalently, connection distance) of new charging stations to the power
grid while ensuring that the node voltages adhere to engineering standards of a
reliable power grid. Formally, the problem can be stated as follows:

Problem 1. Given the locations of EV users and the associated power grid, let
dmax, davg, ∆v be constants. Find locations to build and connect EVCS to the
grid that minimizes the total connection cost while ensuring that all EV users are
within dmax to some station, the overall average distance for clients are within
davg and, the voltage deviation at any node in the network is within ∆v.

1.1 Our Contributions

1. We present a scalable two-part algorithm that tackles this multi-objective
problem in stages. The first part efficiently computes the best placements of
charging station to cover the population within the shortest distance possible
by iteratively solving an integer program (Section 3.1).

2. The second part aims to ease the potential strain to the power grid after
building new charging stations. We formulate an integer problem (7) to find
the optimal way to connect the stations to the power grid. This provides
essential factors to consider for policymakers when preparing for the surge
in power consumption (Section 3.2).

3. We show that, in the first part of the algorithm, we can efficiently find a
solution, consisting of 10,733 new charging stations, that covers 75% of the
population within 0.33 miles and guarantees everyone is within 2.5 miles

2 https://afdc.energy.gov/data/10962
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of a charging station. We also demonstrate a trade-off between the average
distance of a user to its nearest EVCS and the number of EVCS.

4. For the second part, we consider synthetically created power networks of
Virginia [25] and focus on networks in the Montgomery County to show the
effect of different adoption scenarios. In particular, it reveals the reduced
reliability of the network at high adoption rates. However, an optimal routing
algorithm to connect the newly constructed charging stations to the power
grid can ensure higher level of reliability.

2 Related Work

Existing works in the literature have addressed the problem of optimal placement
of EV charging stations. A detailed review of such works has been done in [2].

In general, flow-capturing models [9,18,33,13] are popular in literature. They
model the charging demand as a directed flow along consumer routes of travel
in the transportation network and optimally place stations along the routes to
cover the demands. Another class of models is the set covering model [31,8].
They model demand locations as polygons or aggregated points and optimally
place EVCS facilities to cover the demand locations (located within a threshold
distance). Vehicle movement simulation models [7,16] develop activity simulation
frameworks. This class of models evaluate the feasibility of daily travel activities
of EV owners, given a selection of EVCS locations in the region.

The impact on the voltage profile, phase imbalance, and power quality due
to residential EV charging on the power distribution network is studied in [26].
In another work, Gupta et al. [21] pose the optimal EVCS location problem
in the context of an oligopolistic market instead of an urban system planner.
The work considers locational marginal prices (LMPs, which are the wholesale
electricity rate) and uses a penalty function for introducing grid instabilities.
A methodology to compute an optimal EV charging network that maximizes
profit and satisfies grid constraints, space limitations, and considers time-varying
charging demand is proposed in [34]. A post-processing algorithm known as
Removing and Merging Possible Locations algorithm is proposed to improve the
total profit by excluding and merging some of the initial choices made. The
problem of simultaneous allocation of EVCS location is considered in [22] from
the perspective of a social or urban planner (minimizing social costs, maximizing
environmental benefits, and minimizing power losses). The distribution of EV
arrivals is estimated from the distribution of vehicle parking times at different
parking lots and on different days of the week. The problem of optimal allocation
of EVCSs in a balanced [11] and unbalanced [27] radial distribution grid is done
where the loss in the power grid and voltage deviation is minimized.

3 Methodology

We tackle the complex Problem 1 by splitting it into two natural components:
(i) placing charging stations to cover existing and future EV users, and (ii)
connecting the charging stations to the power-grid (Section 3.1, 3.2 respectively).
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3.1 EV Charging Station Placement

We formally define the EV charging station placement problem as follows:

Problem 2. Let C be a set of existing and potential EV users, Scur a set of
existing EVCS, Scand a set of candidate locations for placing new EVCS, and
distance thresholds dmax and davg. Find the smallest set Snew ⊆ Scand such that
every user u ∈ C has a charging station within dmax and the average distance
between users and their nearest charging station is at most davg.

Problem 2 is a variation of the classic well-known NP-hard facility location
problem. Even though approximation schemes exist [4,10,19], it is not clear if
they are computationally feasible in practice. Furthermore, constant approxima-
tion might not be desirable either; for example, one may be willing to walk half
a mile but not one mile to charge their car and, the cost of building 10,000 and
20,000 charging stations may differ significantly. Thus, we propose an alterna-
tive problem. Instead of ensuring the average distance is below some threshold,
we introduce multiple thresholds and attempt to cover as much of the pop-
ulation as possible within the lowest threshold possible. For example, due to
geographic and personal preferences, we discover three categories of distances,
< 0.25, < 0.5, < 2.5 miles, the population are willing to travel to charge their car.
First, we attempt to cover as many people as possible within 0.25 miles, then
0.5 mile and lastly 2.5 miles. This in turn also ensures a small average distance.
To formally define our problem, we first introduce the following definition:

Definition 1. Let S denote a set of charging stations, and D = {d1, d2, ..., dk}
be a set of distances. We say, coverage(u, S,D) = di if di ∈ D is the smallest
distance such that there exists a charging station s ∈ S where distance(u, s) ≤ di.

Given these thresholds D, a natural constraint to impose is to ensure that if
an user can be covered within distance di, it must be covered within distance di
by the final solution as well. Then, our problem is the following:

Problem 3 (EV Charging Station Placement Problem (EVCSPP)). Let C denote
a set of existing and potential EV users, Scur a set of existing charging stations,
Scand a set of candidate locations for placing new charging stations, and D =
{d1, d2, ..., dk} a set of distances where d1 < d2 < ... < dk. Find the smallest set
Snew ⊆ Scand so that coverage(u, Scur∪Snew, D) = coverage(u, Scur∪Scand, D)
for every EV user u ∈ C.

A special case of Problem 3 is when we have a single threshold value dth
within D, i.e. D = {dth}. To ensure a feasible solution exists in this special
case, we may assume that for every EV user u ∈ C, there exists a station
s ∈ Scur ∪ Scand such that distance(u, s) ≤ dth. This problem is known to be
NP-hard to approximate to a small factor ( 1.46) [10]. We formulate it as an
Integer Program (IP) and use known solvers to obtain a good solution. Consider
the following IP (notations within the program are described in Table 1).
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min
x,y

∑
j∈S

yj (1)

s.t.
∑
j∈Si

xi,j ≥ 1 ∀i ∈ C (2)

xi,j ≤ yj ∀i, j (3)

Table 1: IP (1–3) notations and descriptions of the objective and constraints.
Notation Description

S Scur ∪ Scand

Si Set of existing/candidate charging stations within distance dth of user i
yj 1 if charging station j is built.
xi,j 1 if user i will be serviced by charging station j.
Objective 1 Minimize the number of charging stations constructed.
Constraint 2 Every user must be serviced by at least one charging station that is

within dth distance of the user.
Constraint 3 User i can use charging station j, only if station j is built.

Algorithm 1: Single Threshold Placement: STP(C, Scur, Scand, dth)

Input: C, Scur, Scand, dth
1 Construct IP (1–3) from the inputs.
2 Set yj = 1, ∀j ∈ Scur.
3 Solve the IP. Let, Snew be the set of newly built stations.
4 return Snew

Before solving this IP, we set yj = 1,∀j ∈ Scur. The IP can be solved by
existing solvers such as Gurobi [12]. The entire process for solving the special
case problem is shown in Algorithm 1, we call this method Single Threshold
Placement (STP).

Algorithm 2 describes our method Multi-Threshold Placement (MTP) for
solving Problem 3. The main idea here is that, we go in increasing order of the
distance thresholds in D, and cover all the users who can be covered within
the current distance threshold. We ensure that at each distance threshold the
number of newly built stations is minimized by applying STP (line 5). Note
that, stations that are built at threshold di are considered as already built when
processing the threshold di+1 (line 6). Also, some users in C might not have any
location s ∈ Scur ∪Scand within the largest distance threshold dk. To cover such
users within distance dk, we consider each of these user locations as candidate
locations to build charging stations. We then use STP to determine the minimum
number of stations required to cover them with threshold dk (line 11).
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Algorithm 2: Multi-threshold Placement: MTP(C, Scur, Scand, D)

Input: C, Scur, Scand, D = {d1, d2, ..., dk}
1 Set of newly built stations: Snew ← {}
2 Ccovered ← {}
3 for i = 1 to k do
4 Ci ← set of users u ∈ C who have a station s ∈ Scur ∪ Scand within

distance di.
5 Si

new ← STP(Ci, Scur, Scand, di)

6 Scur ← Scur ∪ Si
new

7 Snew ← Snew ∪ Si
new

8 Ccovered ← Ccovered ∪ Ci

9 C′ ← C \ Ccovered

10 if C′ is not empty then
11 Sc

new ← STP(C′, {}, C′, dk)
12 return Snew ∪ Sc

new

3.2 Connecting EV Charging Stations

The existing power distribution network is a tree G (V,E) comprising of N + 1
nodes (also called buses) collected in the set V := {0, 1, 2, · · · , N}. The tree is
rooted at substation node {0} and consists of primary and secondary distribu-
tion lines collected in the edge set E. Secondary distribution lines connect resi-
dences to local pole top transformers, which are fed by the distribution substa-
tion through the primary distribution lines. We denote the branch bus incidence
matrix E ∈ RN×(N+1) with its element along row l and column k

E(l, k) := 1 if k = i, − 1 if k = j, 0 otherwise, ∀l = (i, j) ∈ E (4)

We define E =
[
e0 Ered

]
, where Ered is the reduced branch bus matrix

obtained after removing the column corresponding to the substation (root) node.
In this section, we consider the problem of identifying the optimal connection

points for the new EVCSs contained in set P to the existing distribution network
G (V,E). Albeit routing power delivery to these new nodes by connecting them
to the nearest distribution network node can result in reduced investment for
construction, it can lead to power grid reliability issues where node voltages and
edge power flows violate prescribed engineering standards. We can formalize this
problem as follows.

Problem 4 (Optimal Routing Problem). Given a set of EVCS locations P, find
the set of connecting edges Enew = {(p, v)| p ∈ P, v ∈ V} to the existing power
distribution network G (V,E) such that each new node is connected to exactly
one node in the network and the power grid reliability is maintained.

To this end, we start by considering a set of candidate edges for each EVCS
location p ∈ P. In this paper, we consider all nodes v ∈ V within ϵ-radius of p
and define ED = {(p, v)∀p ∈ P | v ∈ V, dist (p, v) ≤ ϵ} as the candidate set of
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edges. Then we define a integer optimization program to identify the optimal
set of edges Enew ⊆ ED from these candidate edges which minimizes the cost of
constructing new distribution line connection to the EVCSs as well as adhere to
the power grid reliability standards. Table 2 lists the vectors and matrices used
in the optimization problem. A bold character denotes vector/matrix and scalar
values are denoted by non-bold subscripted symbols.

Table 2: Vectors and matrices for optimization problem
Var. Description Var. Description

E branch bus incidence matrix Ered reduced branch bus incidence matrix
p vector of power demand at all nodes v vector of node voltage magnitudes
f vector of power flow through all edges c vector of cost of edges
R diagonal matrix of edge resistances v, v lower and upper voltage limits

S diagonal matrix of edge thermal limits

Node variables. Each node i ∈ V∪P has associated voltage magnitude vi which
can be stacked into a (|V|+ |P|)-length vector v. Each node in the network has
an associated power demand consumption denoted by pi. The residential load
demands are obtained from [30] and the EVCS loads are estimated by considering
average number of customers arriving at the location. The power demands can
be stacked to vector p.
Edge variables. We define binary variable xe for each edge e ∈ E∪ ED. xe = 1
denotes that edge e is included in the optimal network, while xe = 0 implies
otherwise. Note that xe = 1 for e ∈ E since the existing distribution network
topology is not altered. We also define fe to be the power flowing through edge e
and cost of each edge to be ce. The edge variables xe, fe and ce can be respectively
stacked to (|E|+ |ED|)-length vectors x, f and c.
Radiality constraints. The resulting power distribution network after new
edges are added has to maintain a radial or tree structure. This is ensured by
ensuring that the number of edges is equal to number of non-root nodes. After
the EVCSs in P are connected, the number of non-root nodes is given by N+ |P|.
We use the following linear equality constraint:

∑
e∈E∪ED

xe = N + |P|.
Power flow constraints. The power flowing through the edges f is linearly
related to power consumption p at nodes in the network through the branch
bus incidence matrix E. The power flow equations for a network relate node
voltages to the power flowing through edges in the network. The standard power
flow constraints are quadratic equality constraints which make them non-convex.
However, following assumptions of small line impedance values, we arrive at
an approximate linear relation between node voltages at edge terminals and
power flowing through the edge. This approximation is also known as Linearized
Distribution Flow (LDF) model [6]. Note that such approximation holds true for
edges where xe = 1. Therefore, the LDF model for our case is given as:

xe (vi − vj − refe) = 0 ∀e := (i, j) (5)
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where re is resistance of edge e. (5) is non-convex because it has bi-linear terms in
the equality. In order to deal with this non-convexity, McCormick relaxation has
been used widely in several previous works [28,29]. In general, McCormick relax-
ation replaces the non-convex equality constraint with its convex envelope [24].
However, in the case of bi-linear variables with at least one binary variable, this
relaxation becomes exact. The convex relaxed version of (5) is:

− (1− xe)M ≤ vi − vj − refe ≤ (1− xe)M ∀e := (i, j) ∈ E ∪ ED (6)

Here M is a sufficiently large number such that the inequality turns into a strict
equality for xe = 1, while it remains irrelevant when xe = 0. We can construct
the diagonal matrix R with resistance of edges as the entries. An important
aspect of the optimization problem is the consideration of power grid reliability
constraints. This includes constraints which force node voltages to remain within
engineering standards v, v and edge power flows to be limited by the respective
thermal constraints se. We can diagonalize the edge thermal constraints to the
diagonal matrix S.

The optimization problem aims to minimize overall investment of construct-
ing new power lines required to connect the EVCSs to existing power network.
Meanwhile, the voltage at all nodes need to be as close to the rated voltage as
possible. This ensures that all consumers have high quality of power delivered to
them. In engineering practice, voltage is expressed in per unit (p.u.) which is the
ratio of actual voltage to the rated value. Thus, we can minimize the deviation
of node voltages to voltage of 1 p.u. We use hyperparameter λ to scale these two
separate expressions in the objective function and obtain the following:

min
x,v,f

cTx+ λ||v − 1||2 (7a)

s. to. ET
redf = −p, Sx ≥ f ≥ −Sx (7b)

(1− x)M ≥ Ev −Rf ≥ − (1− x)M, v1 ≤ v ≤ v1 (7c)

xe = 1, ∀e ∈ E; xe ∈ {0, 1} ∀e ∈ ED, 1Tx = N + |P| (7d)

4 Experimental Results

For our experiments, we use the state of Virginia as our study area. To construct
a problem instance for this area, we first collected the home locations within the
state from a synthetic population data [1], and existing EV charging station loca-
tions from US Department of Energy3. We also collected locations of 16 different
types of POIs (e.g. gas station, train station, airport) from HERE maps [15].
We consider these as candidate locations for building new charging stations. We
have collected ∼ 3.1 million home locations, 1090 existing EV charging stations,
and ∼ 1.47 million POIs. Finally, we use the synthetically created power distri-
bution networks [25] for Montgomery County of Virginia, USA to consider the
implications on the power grid.

3 https://afdc.energy.gov/fuels/electricity locations.html#/analyze?fuel=ELEC
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4.1 EV Charging Station Placement

As mentioned earlier, the number of homes to be covered and the number of
candidate locations to build charging stations are quite large. To make the prob-
lem more tractable, we do the following: we construct a road network of our
study area (using data from HERE maps) and then map each home location,
existing EV charging station, and POI to the nearest node in the road network.
By doing this, the home locations were mapped to 161,324; the POIs to 25,044;
and the existing EV stations to 863 unique nodes. We denote the set of these
nodes by C, Scand, Scur respectively. For the set of distance threshold values D,
we have chosen D = {0.25, 0.5, 2.5} where the unit is miles (experiment with
different values of D performed later). C, Scand, Scur, and D together represents
our problem instance for Virginia. A visualization of C and Scur is provided in
left plot of Figure 1.

Fig. 1: Plots showing uneven distribution of existing charging stations in Virginia,
USA (left) and an equitable solution provided by the proposed algorithm for
city of Charlottesville (right). New stations are built to ensure availability of
charging options for all residences.

We applied MTP on our problem instance to find a solution. We ran this
experiment on a high-performance computing cluster, with 256GB RAM and
24 CPU cores allocated to our task. MTP terminated with a runtime of ∼
15 minutes. Our solution suggests 10,733 new charging stations needs to be
built (11, 596 stations including the existing ones). Following are some of our
observations from this experiment:
(i) Within MTP, STP solves the special case single threshold problem to opti-
mality in every iteration (Algorithm 2 line 5).
(ii) Figure 2 (left) shows the distribution of the distances between homes and
their nearest charging station, in MTP solution, and when considering only the
existing charging stations. Note that, the vertical scale of the two plots are
different. With only existing stations, the average distance is 3.64 miles. In MTP
solution, 75% of the homes have a charging station within 0.33 miles; the average
distance is 0.31 miles.
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(iii) The right plot in Figure 1 shows a visualization of the MTP solution in
Charlottesville city, Virginia. We see that new charging stations are built to
ensure that homes that are not covered by existing charging stations, are now
covered by the new ones.

Fig. 2: (left) Box-plots showing the distribution of distances between homes and
their nearest charging stations, in MTP solution, and when considering only the
existing charging stations (scales of the two box-plots are different, outliers are
not shown). In MTP solution, 75% of the homes have a charging station within
0.33 miles. (right) Scatter plot showing average distance between homes and
their nearest charging station (davg) vs number of charging stations (N). The
average distance decreases when we build more stations.

Trade-off between number of charging stations and Average distance
between homes and their nearest charging stations In our previous ex-
periment, we have used the distance threshold valuesD = {0.25, 0.5, 2.5} (miles).
Intuitively, if we choose smaller threshold values then we will need more charging
stations to cover the homes within the smaller distance. On the other hand, if
we choose, larger threshold values, then we can cover more homes with fewer
number of charging stations. Therefore, we expect a trade-off between the num-
ber of charging stations (N) and the average distance between homes and their
nearest charging stations (davg). Now, we investigate this experimentally.

We select 10 different distance threshold sets D. Each set has three threshold
values d1, d2, d3, all of which are sampled uniformly at random from the interval
[0.25, 2.5]. We then solve Problem 3 for our study area with each of these sets,
using MTP. This provided us 10 different solutions. Figure 2 (right) shows a
scatter plot of davg vs N for each of these solutions. A data point corresponding
to our original solution is also shown in the plot (bottom-rightmost data point).
We readily see from this scatter plot that there is a trade-off between davg and
N . We can use this plot to choose a suitable solution for our study area. For
instance, if there is a budget on the number of stations that can be build, we can
filter out the solutions where we go over budget and then choose the solution
with the minimum average distance.
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Fig. 3: Plots comparing two different routing algorithms for connecting EV charg-
ing stations to existing power distribution network: connecting charging station
to the nearest node requires smaller lines as opposed to optimally routing sta-
tions. Connecting to nearest available power network node can reduce the addi-
tional investment of constructing new power lines (left), while it hampers the
power grid reliability since we observe multiple undervoltage nodes (right) for
higher EV adoption rates.

4.2 Optimal Routing Problem

In this section we compare the proposed optimal routing algorithm to the sce-
nario where each EVCS is connected to the nearest available node in the power
distribution network. We term this alternate algorithm as the nearest routing
algorithm. Since EVCSs are connected to the nearest possible node, the new
distribution line connections are minimum length edges, which ensures less in-
vestment on upgrading existing power infrastructure. However, this comes at a
cost of reduced reliability. A reliable power grid is considered to be one, which
has adequate generation to support the consumer load demand and is operated
without violating standard power engineering constraints [5]. In our case, we
assume that adequate generation is available to supply the increased demand
of EVCSs. We consider the power network to be reliable when the line flows
(edge flows) are within their rated capacities and the node voltages are within
acceptable engineering standards of 0.9 − 1.1p.u. [3]. Fig. 3 compares the two
routing algorithms for different levels of EV adoption. The nearest routing al-
gorithm requires minimum investment to be made on installing new lines, while
we observe a significant fraction of the nodes in the network having undervolt-
age issues (less than 0.9 pu) for higher levels of EV adoption. The undervoltage
problem disappears when we implement the optimal routing algorithm which
strictly imposes the voltage limit constraints, but the investment on new line
construction increases. We performed our experiments on one of the synthetic
networks from Montgomery County in Virginia, USA and identify the region as
‘Area 6’ in the plots.

The optimal routing algorithm ensures that EVCSs are connected to the
power distribution network in a way such that all node voltages are within the
accepted engineering standards (greater than 0.9 p.u.). However, this does not
ensure that the node voltages are close to the rated voltage (1 p.u.). To this end,
we have used the parameter λ in the optimization problem in (7). A higher value
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Fig. 4: Plots showing trade off between investment on additional distribution
lines and reliability of the power network (vertical scales differ across the three
panels). With an increased investment in longer lines, the EVCSs are connected
to optimal nodes in the distribution network such that less number of nodes ex-
perience undervoltage. For smaller investment, the node voltages are acceptable
by standard engineering practices (> 0.9 pu), yet they are far from the rated
voltage of 1 pu, making the power grid unreliable.

of λ ensures that the node voltages are closer to rated voltage of 1 p.u. Note
that λ has been used as a weight in the objective function – this means that for
high values of λ, the aspect of having node voltages closer to the rated voltage is
given more importance than minimizing investment on new lines. This trade off
is shown in Fig. 4 (vertical scales differ across panels). We plot the investment
on new line construction and the number of undervoltage nodes for different
values of parameter λ. Since voltages above 0.9 p.u cannot be considered as
‘undervoltage’ as per engineering standards, we define the voltage limits as 0.92
p.u., 0.95 p.u. and 0.97 p.u. for the three plots and consider node voltages less
than this limit as ‘undervoltage’.

5 Discussions and Conclusion

Comparison to Related Works: Many current works separately study the
optimal placement of EVCS and the effect of EVCS on the power grid. To the
best of our knowledge, this work is the first to provide a methodology that
combines both into consideration. Individually, our experiment also provides
similar findings as some of the previous works.

To build EVCS in order to cover the need of a population, authors in [14]
uses the maximum coverage problem (equivalent to our Problem 3 with a single
threshold value within D) on the city of Beijing, China. Their paper also includes
a similar trade-off between coverage distance and amount of facilities built. The
authors also include two other variations on the original problem, one with bud-
geted constraint and another called p-median. It definitely will be interesting

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36027-5_6

https://dx.doi.org/10.1007/978-3-031-36027-5_6
https://dx.doi.org/10.1007/978-3-031-36027-5_6


Data driven model for optimal installation of EV charging stations 13

to study them with our multi-threshold model; although, due to our large size,
certain additional techniques may be needed to make the methodology scalable.

In the context of power reliability, authors in [23] concluded that EVCS
that are further away from the power source experiences more fluctuation. This
is in line with our finding that spending more budget, often connecting them
closer to the substation, increases the overall power grid reliability (Figure 3).
Our experiment further shows that not only it reduces the voltage drop of the
reconnected nodes, but it also significantly helps other nodes in the network as
well. In [32], the authors used simulations to show a drastic increase in power
consumption (109%) even at 60% EV penetration. This is consistent with our
findings that even at a 40% adoption rate, the number of nodes experiencing
undervoltage exceeds double the number observed for 10% adoption rate. Even
with optimal connection (Figure 4), across different undervoltage thresholds,
similar trends exist where higher adoption with a limiting budget necessarily
induces more number of undervoltage nodes (decreased reliability). Although our
demand at each charging station is based on the population data and directly
correlated with the size and density of the region, unlike [32], we do not propose
methods for smoothing the charging demand (e.g. via tariffs). Further studies
can be done with these considerations.
Policy Suggestions: By combining real population data and synthetic models
of the power grid, we provide a useful analytical tool for policymakers when
planning for EVCS. For example, given the chosen threshold of 0.25, 0.5, and
2.5 miles, we see that 10,733 additional EVCS are required. Furthermore, greed-
ily connecting them to the closest point in the existing power grid, even with
a 40% adoption rate, imposes a significant decrease in power grid reliability.
However, by connecting intelligently, the strain on power grid can be almost en-
tirely eliminated. Policymakers may assess each region independently and decide
if optimal connections are warranted. From our experiment, for example, there
does not seem to be much difference between the cost in a scenario with 40%
adoption versus a 100% adoption, suggesting that if sufficient budget exists, it
is worthwhile to prepare for the worst-case scenario.
Future Directions: There are many directions to further extend our model.
For example, we may impose limits on how many users may access a particular
station due to capacity/space constraints. Our estimation of the demand can
also be refined. By using traffic flows or migration data, one may be able to
better predict when and where a person will use an EVCS. This time-refined
analysis will provide a better estimate of fluctuation since electricity usage varies
throughout the day. We can also generalize our optimal connection to allow
the rerouting of existing power lines. It is conceivable that altering existing
infrastructure might improve the grid reliability regardless of adoption rates.
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