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Abstract. We study the problem of comparing a pair of geometric net-
works that may not be similarly defined, i.e., when they do not have
one-to-one correspondences between their nodes and edges. Our moti-
vating application is to compare power distribution networks of a region.
Due to the lack of openly available power network datasets, researchers
synthesize realistic networks resembling their actual counterparts. But
the synthetic digital twins may vary significantly from one another and
from actual networks due to varying underlying assumptions and ap-
proaches. Hence the user wants to evaluate the quality of networks in
terms of their structural similarity to actual power networks. But the
lack of correspondence between the networks renders most standard ap-
proaches, e.g., subgraph isomorphism and edit distance, unsuitable.
We propose an approach based on the multiscale flat norm, a notion of
distance between objects defined in the field of geometric measure theory,
to compute the distance between a pair of planar geometric networks. Us-
ing a triangulation of the domain containing the input networks, the flat
norm distance between two networks at a given scale can be computed
by solving a linear program. In addition, this computation automatically
identifies the 2D regions (patches) that capture where the two networks
are different. We demonstrate our approach on a set of actual power
networks from a county in the USA. Our approach can be extended to
validate synthetic networks created for multiple infrastructures such as
transportation, communication, water, and gas networks.

Keywords: synthetic networks · multiscale flat norm · network validation

1 Introduction

The power grid is the most vital infrastructure that provides crucial support
for the delivery of basic services to most segments of society. Once considered
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a passive entity in power grid planning and operation, the power distribution
system poses significant challenges in the present day. The increased adoption
of rooftop solar photovoltaics (PVs) and electric vehicles (EVs) augmented with
residential charging units has altered the energy consumption profile of an av-
erage consumer. Access to extensive datasets pertaining to power distribution
networks and residential consumer demand is vital for public policy researchers
and power system engineers alike. However, the proprietary nature of power dis-
tribution system data hinders their public availability. This has led researchers
to develop frameworks that synthesize realistic datasets pertaining to the power
distribution system [4,13,16,17,27,28]. These frameworks create digital replicates
similar to the actual power distribution networks in terms of their structure and
function. Hence the created networks can be used as digital duplicates in simu-
lation studies of policies and methods before implementation in real systems.

The algorithms associated with these frameworks vary widely—ranging from
first principles based approaches [17,27] to learning statistical distributions of
network attributes [28] to using deep learning models such as generative adver-
sarial neural networks [14]. Validating the synthetic power distribution networks
with respect to their physical counterpart is vital for assessing the suitability of
their use as effective digital duplicates. Since the underlying assumptions and
algorithms of each framework are distinct from each other, some of them may ex-
cel compared to others in reproducing digital replicates with better precision for
selective regions. To this end, we require well-defined metrics to rank the frame-
works and judge their strengths and weaknesses in generating digital duplicates
of power distribution networks for a particular geographic region.

The literature pertaining to frameworks for synthetic distribution network
creation include certain validation results that compare the generated networks
to the actual counterpart [4,12,28]. But the validation results are mostly lim-
ited to comparing the statistical network attributes such as degree and hop dis-
tributions and power engineering operational attributes such as node voltages
and edge power flows. Since power distribution networks represent real physical
systems, the created digital replicates have associated geographic embedding.
Therefore, a structural comparison of synthetic network graphs to their actual
counterpart becomes pertinent for power distribution networks with geographic
embedding. Consider an example where a digital twin is used to analyze impact
of a weather event [26]. Severe weather events such as hurricanes, earthquakes
and wild fires occur in specific geographic trajectories, affecting only portions of
societal infrastructures. In order to correctly identify them during simulations,
the digital twin should structurally resemble the actual infrastructure.

Problem Statement. In recent years, the problem of evaluating quality of re-
constructed networks has been studied for street maps. Certain metrics were
defined to compare outputs of frameworks that use GPS trajectory data to re-
construct street map graphs [1,2]. The abstract problem can be stated as follows:
compute the similarity between a given pair of embedded planar graphs. This is
similar to the well known subgraph isomorphism problem [7] wherein we look
for isomorphic subgraphs in a pair of given graphs. A major precursor to this
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problem is that we require a one-to-one mapping between nodes and edges of
the two graphs. While such mappings are well-defined for street networks, the
same cannot be inferred for power distribution networks. Since power network
datasets are proprietary, the node and edge labels are redacted from the network
before it is shared. The actual network is obtained as a set of “drawings” with
associated geographic embeddings. Each drawing can be considered as a collec-
tion of line segments termed a geometry. Hence the problem of comparing a set
of power distribution networks with geographic embedding can be stated as the
following: compute the similarity between a given pair of geometries lying on a
geographic plane.

Our Contributions. We propose a new distance measure to compare a pair of
geometries using the flat norm, a notion of distance between generalized objects
studied in geometric measure theory [9,20]. This distance combines the difference
in length of the geometries with the area of the patches contained between them.
The area of patches in between the pair of geometries accounts for the lateral
displacement between them. We employ a multiscale version of the flat norm [21]
that uses a scale parameter λ ≥ 0 to combine the length and area components
(for the sake of brevity, we refer to the multiscale flat norm simply as the flat
norm). Intuitively, a smaller value of λ captures larger patches of area between
the geometries while a large value of λ captures more of the (differences in)
lengths of the geometries. Computing the flat norm over a range of values of λ
allows us to compare the geometries at multiple scales. For computation, we use
a discretized version of the flat norm defined on simplicial complexes [10], which
are triangulations in our case. A lack of one-to-one correspondence between
edges and nodes in the pair of networks prevents us from performing one-to-
one comparison of edges. Instead we can sample random regions in the area of
interest and compare the pair of geometries within each region. For performing
such local comparisons, we define a normalized flat norm where we normalize
the flat norm distance between the parts of the two geometries by the sum
of the lengths of the two parts in the region. Such comparison enables us to
characterize the quality of the digital duplicate for the sampled region. Further,
such comparisons over a sequence of sampled regions allows us to characterize
the suitability of using the entire synthetic network as a duplicate of the actual
network.

Our main contributions are the following: (i) we propose a distance measure
for comparing a pair of geometries embedded in the same plane using the flat
norm that accounts for deviation in length and lateral displacement between
the geometries; and (ii) we perform a region-based characterization of synthetic
networks by sampling random regions and comparing the pair of geometries
contained within the sampled region. The proposed distance allows us to perform
a global as well as local comparison between a pair of network geometries.

Related Work. Several well defined graph structure comparison metrics such
as subgraph isomorphism and edit distance have been proposed in the literature
along with algorithms to compute them efficiently. Tantardini et al. [30] com-
pare graph network structures for the entire graph (global comparison) as well
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as for small portions of the graph known as motifs (local comparison). Other
researchers have proposed methodologies to identify structural similarities in
embedded graphs [3,22]. However, all these methods depend on one-to-one cor-
respondence of graph nodes and edges rather than considering the node and edge
geometries of the graphs. The edit distance, i.e., the minimum number of edit
operations to transform one network to the other, has been widely used to com-
pare networks having structural properties [24,25,31]. Riba et al. [25] used the
Hausdorff distance between nodes in the network to compare network geome-
tries. Majhi et al. [15] modified the traditional definition of graph edit distance
to be applicable in the context of “geometric graphs” embedded in a Euclidean
space. Along with the usual insertion and deletion operations, the authors have
proposed a cost for translation in computing the geometric edit distance between
the graphs. However, the authors also show that the problem of computing this
metric is NP-hard.

Meyur et al. [18] compared network geometries using the Hausdorff distance
after partitioning the geographic region into small rectangular grids and com-
paring the geometries for each grid. However, the Hausdorff metric is sensitive
to outliers as it focuses only on the maximum possible distance between the
pair of geometries. When the geometries coincide almost entirely except in a few
small portions, the Hausdorff metric still records the discrepancy in those small
portions without accounting for the similarity over the majority of portions.
The similar approach used by Brovelli et al. [5] to compare a pair of road net-
works in a geographic region suffers from the same drawback. This necessitates
a well-defined distance metric between networks with geographic embedding [2].

Several comparison methods have been proposed in the context of planar
graphs embedded in a Euclidean space [6,19]. They include local and global
metrics to compare road networks. The local metrics characterize the networks
based on cliques and motifs, while the global metrics involve computing the
efficiency of constructing the infrastructure network. The most efficient network
is assumed to be the one with only straight line geometries connecting node
pairs. Albeit useful to characterize network structures, these methods are not
suitable for a numeric comparison of network geometries.

2 Methods

Following Mahji and Wenk [15], we use the term geometric graph to define net-
work graphs embedded in a Euclidean space. Next, we define what we mean by
structurally similar geometric graphs.

Definition 1 (Geometric graph). A graph G (V,E) with node set V and edge
set E is said to be a geometric graph of Rd if the set of nodes V ⊂ Rd and the
edges are Euclidean straight line segments {uv | e := (u, v) ∈ E} which intersect
(possibly) at their endpoints.

Definition 2 (Structurally similar geometric graphs). Two geometric
graphs G0 (V0,E0) and G1 (V1,E1) are said to be structurally similar at the level
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of δ ≥ 0, termed δ-similar, if dist (G0,G1) ≤ δ for the distance function dist
between the two graphs.

We could consider a given network as a set of edge geometries. Hence we could
consider the problem of comparing geometric graphs G0 and G1 as that of com-
paring the set of edge geometries E0 and E1. In this paper, we propose a suitable
distance that allows us to compare between a pair of geometric graphs or a pair
of geometries. We use the multiscale flat norm, which has been well explored
in the field of geometric measure theory, to define such a distance between the
geometries.

The other aspect of this paper is to identify a suitable threshold δ for in-
ferring the structural similarity of a pair of geometric graphs. But there is no
general method to choose the threshold. Here, we perform a statistical analysis
for our particular case of comparing power distribution networks. We validate the
comparison results with visual inspection to conclude that the proposed metric
serves its purpose to identify structurally similar geometric graphs.

2.1 Multiscale Flat Norm

We use the multiscale simplicial flat norm proposed by Ibrahim et al. [10] to
compute the distance between two networks. We now introduce some background
for this computation. A d-dimensional current T (referred to as a d-current) is a
generalized d-dimensional geometric object with orientations (or direction) and
multiplicities (or magnitude). An example of a 2-current is a surface with finite
area (multiplicity) and a specific orientation (clockwise or counterclockwise).
The boundary of T , denoted by ∂T , is a (d − 1)-current. The multiscale flat
norm of a d-current T at scale λ ≥ 0 is defined as

Fλ (T ) = min
S

{Vd (T − ∂S) + λVd+1 (S)} , (1)

where the minimum is taken over all (d + 1)-currents S, and Vd denotes the
d-dimensional volume, e.g., length in 1D or area in 2D. Computing the flat norm
of a 1-current (curve) T identifies the optimal 2-current (area patches) S that
minimizes the sum of the length of current T − ∂S and the area of patch(es) S.
Fig. 1 shows the flat norm computation for a generic 1D current T (blue). The
2D area patches S (magenta) are computed such that the expression in Eq. (1)
is minimized for the chosen value of λ that ends up using most of the patch
under the sharper spike on the left but only a small portion of the patch under
the wider bump to the right.

The scale parameter λ can be intuitively understood as follows. Rolling a
ball of radius 1/λ on the 1-current T traces the output current T − ∂S and the
untraced regions constitute the patches S. Hence we observe that for a large
λ, the radius of the ball is very small and hence it traces major features while
smoothing out (i.e., missing) only minor features (wiggles) of the input current.
But for a small λ, the ball with a large radius smoothes out larger scale features
(bumps) in the current. Note that for smaller λ, the cost of area patches is smaller
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6 R. Meyur et al.

Fig. 1. Multiscale flat norm of a 1D current T (blue). The flat norm is the sum of length
of the resulting 1D current T − ∂S (green) and the area of 2D patches S (magenta).
We show T − ∂S slightly separated for easy visualization.

in the minimization function and hence more patches are used for computing the
flat norm. We can use the flat norm to define a natural distance between a pair
of 1-currents T1 and T2 as follows [10].

Fλ (T1, T2) = Fλ (T1 − T2) (2)

We compute the flat norm distance between a pair of input geometries (syn-
thetic and actual) as the flat norm of the current T = T1 − T2 where T1 and T2

are the currents corresponding to individual geometries. Let Σ denote the set
of all line segments in the input current T . We perform a constrained triangu-
lation of Σ to obtain a 2-dimensional finite oriented simplicial complex K. A
constrained triangulation ensures that each line segment σi ∈ Σ is an edge in
K, and that T is an oriented 1-dimensional subcomplex of K.

Let m and n denote the numbers of edges and triangles in K. We can denote
the input current T as a 1-chain

∑m
i=1 tiσi where σi denotes an edge in K and

ti is the corresponding multiplicity. Note that ti = −1 indicates that orientation
of σi and T are opposite, ti = 0 denotes that σi is not contained in T , and ti = 1
implies that σi is oriented the same way as T . Similarly, we define the set S to
be the 2-chain of K and denote it by

∑m
i=1 siωi where ωi denotes a 2-simplex in

K and si is the corresponding multiplicity.
The boundary matrix [∂] ∈ Zm×n captures the intersection of the 1 and 2-

simplices of K. The entries of the boundary matrix [∂]ij ∈ {−1, 0, 1}. If edge σi

is a face of triangle ωj , then [∂]ij is nonzero and it is zero otherwise. The entry
is −1 if the orientations of σi and ωj are opposite and it is +1 if the orientations
agree.

We can respectively stack the ti’s and si’s in m and n-length vectors t ∈ Zm

and s ∈ Zn. The 1-chain representing T − ∂S is denoted by x ∈ Zm and is given
asx = t− [∂] s. The multiscale flat norm defined in Eq. (1) can be computed by
solving the following optimization problem:

Fλ (T ) = min
s∈Zn

m∑
i=1

wi |xi|+ λ

 n∑
j=1

vj |sj |


s.t. x = t− [∂] s, x ∈ Zm,

(3)
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where Vd (τ) in Eq. (1) denotes the volume of the d-dimensional simplex τ . We
denote volume of the edge σi as V1(σi) = wi and set it to be the Euclidean
length, and volume of a triangle τj as V2(τj) = vj and set it to be the area of
the triangle.

In this work, we consider geometric graphs embedded on the geographic plane
and are associated with longitude and latitude coordinates. We compute the
Euclidean length of edge σi as wi = R∆ϕi where ∆ϕi is the Euclidean normed
distance between the geographic coordinates of the terminals of σi and R is the
radius of the earth. Similarly, the area of triangle τj is computed as vj = R2∆Ωj

where ∆Ωj is the solid angle subtended by the geographic coordinates of the
vertices of τj .

Using the fact that the objective function is piecewise linear in x and s, the
minimization problem can be reformulated as an integer linear program (ILP)
as follows:

Fλ (T ) = min

m∑
i=1

wi

(
x+
i + x−

i

)
+ λ

 n∑
j=1

vj
(
s+j + s−j

) (4a)

s.t. x+ − x− = t− [∂]
(
s+ − s−

)
(4b)

x+,x− ≥ 0, s+, s− ≥ 0 (4c)

x+,x− ∈ Zm, s+, s− ∈ Zn (4d)

The linear programming relaxation of the ILP in Eq. (4) is obtained by ignoring
the integer constraints Eq. (4d). We refer to this relaxed linear program (LP)
as the flat norm LP. Ibrahim et al. [10] showed that the boundary matrix [∂]
is totally unimodular for our application setting. Hence the flat norm LP will
solve the ILP, and hence the flat norm can be computed in polynomial time.

2.2 Proposed Algorithm

Algorithm 1 describes how we compute the distance between a pair of geometries
with the associated embedding on a metric space M. We assume that the ge-
ometries (networks) G1 (V1,E1) and G2 (V2,E2) with respective node sets V1,V2

and edge sets E1,E2 have no one-to-one correspondence between the Vi’s or Ei’s.
Note that each vertex v ∈ V1,V2 is a point and each edge e ∈ E1,E2 is a straight
line segment in M. We consider the collection of edges E1,E2 as input to our
algorithm. First, we orient the edge geometries in a particular direction (left to
right in our case) to define the currents T1 and T2, which have both magnitude
and direction. Next, we consider the bounding rectangle Ebound for the edge ge-
ometries and define the set Σ to be triangulated as the set of all edges in either
geometry and the bounding rectangle. We perform a constrained Delaunay tri-
angulation [29] on the set Σ to construct the 2-dimensional simplicial complex
K. The constrained triangulation ensures that the set of edges in Σ is included
in the simplicial complex K. Then we define the currents T1 and T2 correspond-
ing to the respective edge geometries E1 and E2 as 1-chains in K. Finally, the
flat norm LP is solved to compute the simplicial flat norm.
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Algorithm 1: Distance between a pair of geometries

Input: Geometries E1,E2

Parameter: Scale λ
1: Orient each edge in the edge sets from left to right:

Ẽ1 := Orient (E1) ; Ẽ2 := Orient (E2).

2: Find bounding rectangle for the pair of geometries: Ebound = rect
(
Ẽ1, Ẽ2

)
.

3: Define the set of line segments to be triangulated: Σ = Ẽ1 ∪ Ẽ2 ∪ Ebound.
4: Perform constrained triangulation on set Σ to construct 2-dimensional simplicial

complex K.
5: Define the currents T1, T2 as 1-chains of oriented edges

Ẽ1 and Ẽ2 in K.
6: Solve the flat norm LP to compute flat norm Fλ (T1 − T2).

Output: Flat norm distance Fλ (T1 − T2).

2.3 Normalized Flat Norm

Recall that in our context of synthetic power distribution networks, the primary
goal of comparing a synthetic network to its actual counterpart is to infer the
quality of the replica or the digital duplicate synthesized by the framework. The
proposed approach using the flat norm for structural comparison of a pair of
geometries provides us a method to perform global as well as local comparison.
While we can produce a global comparison by computing the flat norm distance
between the two networks, it may not provide us with complete information on
the quality of the synthetic replicate. On the other hand, a local comparison
can provide us details about the framework generating the synthetic networks.
For example, a synthetic network generation framework might produce higher
quality digital replicates of actual power distribution networks for urban regions
as compared to rural areas. A local comparison highlights this attribute and
identifies potential use case scenarios of a given synthetic network generation
framework.

Furthermore, availability of actual power distribution network data is sparse
due to its proprietary nature. We may not be able to produce a global comparison
between two networks due to unavailability of network data from one of the
sources. Hence, we want to restrict our comparison to only the portions in the
region where data from either network is available, which also necessitates a local
comparison between the networks.

For a local comparison, we consider uniform sized regions and compute the
flat norm distance between the pair of geometries within the region. However,
the computed flat norm is dependent on the length of edges present within the
region from either network. Hence we define the normalized multiscale flat norm,
denoted by F̃λ, for a given region as

F̃λ (T1 − T2) =
Fλ (T1 − T2)

|T1|+ |T2|
. (5)
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For a given parameter ϵ, a local region is defined as a square of size 2ϵ× 2ϵ
steradians. Let T1,ϵ and T2,ϵ denote the currents representing the input geome-
tries inside the local region characterized by ϵ. Note that the “amount” or the
total length of network geometries within a square region varies depending on the
location of the local region. In this case, the lengths of the network geometries
are respectively |T1,ϵ| and |T2,ϵ|. Therefore, we use the ratio of the total length
of network geometries inside a square region to the parameter ϵ to characterize
this “amount” and denote it by |T |/ϵ where

|T |/ϵ = |T1,ϵ|+ |T2,ϵ|
ϵ

. (6)

Note that while performing a comparison between a pair of network geometries in
a local region using the multiscale flat norm, we need to ensure that comparison
is performed for similar length of the networks inside similar regions. Therefore,
the ratio |T |/ϵ, which indicates the length of networks inside a region scaled to
the size of the region, becomes an important aspect of characterization while
performing the flat norm based comparison.

3 Results and Discussion

We use the proposed multiscale flat norm to compare a pair of network geome-
tries from power distribution networks for a region in a county in USA. The two
networks considered are the actual power distribution network for the region
and the synthetic network generated using the methodology proposed by Meyur
et al. [17]. We provide a brief overview of these networks.
Actual network. The actual power distribution network was obtained from
the power company serving the location. Due to its proprietary nature, node
and edge labels were redacted from the shared data. Further, the networks were
shared as a set of handmade drawings, many of which had not been drawn to
a well-defined scale. We digitized the drawings by overlaying them on Open-
StreetMaps [23] and georeferencing to particular points of interest [8]. Geome-
tries corresponding to the actual network edges are obtained as shape files.
Synthetic network. The synthetic power distribution network is generated
using a framework with the underlying assumption that the network follows
the road network infrastructure to a significant extent [17]. To this end, the
residences are connected to local pole top transformers located along the road
network to construct the low voltage (LV) secondary distribution network. The
local transformers are then connected to the power substation following the road
network leading to the medium voltage (MV) primary distribution network. That
is, the primary network edges are chosen from the underlying road infrastructure
network such that the structural and power engineering constraints are satisfied.

3.1 Comparing Network Geometries

The primary goal of computing the flat norm is to compare the pair of input
geometries. As mentioned earlier, the flat norm provides an accurate measure of
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Fig. 2. Normalized flat norm (with scale λ = 1000) distances for pairs of regions in the
network of same size (ϵ = 0.001) with similar |T |/ϵ ratios (two pairs each in the top
and bottom rows). The pairs of geometries for the first plot (on left) are quite similar,
which is reflected in the low flat norm distances between them. The network geometries
on the right plots are more dissimilar and hence the flat norm distances are high.

difference between the geometries by considering both the length deviation and
area patches in between the geometries. Further, we normalize the computed flat
norm to the total length of the geometries. In this section, we show examples
where we computed the normalized flat norm for the pair of network geometries
(actual and synthetic) for a few regions.

The top two plots in Fig. 2 show two regions characterized by ϵ = 0.001 and
almost similar |T |/ϵ ratios. This indicates that the length of network scaled to the
region size is almost equal for the two regions. From a mere visual perspective, we
can conclude that the first pair of network geometries resemble each other where
as the second pair are fairly different. This is further validated from the results of
the flat norm distance between the network geometries computed with the scale
λ = 1000, since the first case produces a smaller flat norm distance compared
to the latter. The bottom two plots show another example of two regions with
almost similar |T |/ϵ ratios and enable us to infer similar conclusions. The results
strengthens our case of using flat norm as an appropriate measure to perform a
local comparison of network geometries.

3.2 Comparison of Flat Norm and Hausdorff Distance Metrics

In this section, we compare the proposed flat norm metric for structural com-
parison with the Hausdorff distance metric which has been extensively used in
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the literature for similar purposes. The Hausdorff distance is considered to be a
stable metric since minor perturbations to the geometries do not affect the met-
ric. While this property is advantageous when we are dealing with noisy data,
this fails to capture structural differences unless they are significantly large.

The comparison metric is said to be “stable” if the computed normalized flat
norm for the pair of perturbed network geometries is close to the normalized
flat norm of the unperturbed geometries. A perturbed network is similar to the
original network with only the geographic embeddings of the nodes perturbed.
To this end, we consider a circular region around each node in the network by
defining a perturbation radius (in meters). We then uniformly sample a point in
each circular region and use them as the perturbed embeddings of the nodes. We
compare the stability of the flat norm metric with the Hausdorff metric—both
empirically on our sample networks and using a simple theoretical example.

We consider two simple curves T1, T2 in the plane whose end points are the
same (see Fig. 3). We perturb T1 within a small neighborhood of each point on
it while keeping T2 fixed and the end points of both curves also fixed. Hence we
consider perturbed versions T̃1 that lie within an ε-tube of T1. We could have
cases where T̃1 lies mostly at the upper envelope of this ε-tube, or mostly at the
lower envelope. In both cases, one would expect the distance between T̃1 and
T2 to also change significantly (from that between T1 and T2). The flat norm
distance accurately captures all such changes (to keep the example simple, we
consider the default flat norm distance and not the normalized version). At the
same time, both such variations could have the same Hausdorff distance H from
T2 as T1, which completely misses all the changes to T1 in either case.

Fig. 3. Left: Curves T1 and T2 with shared end points, and their flat norm distance
Fλ(T1, T2) and Hausdorff distance H. Right: Two perturbed versions T̃1 (solid blue) of
T1 (now in dashed blue) that lie within an ε-neighborhood of T1. The Hausdorff distance

between T̃1 and T2 remains same, i.e., H. But the flat norm distance increased in the
first case (Right, top) as captured by the green patch, and it decreased in the second
case (Right, Bottom) by the area shown in pink.
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A modification of this example can illustrate the other extreme case—when
Hausdorff distance changes by a lot but the flat norm distance does not change
much at all. Consider moving only the highest point on T1 further up so that
Hausdorff distance becomes 2H (this is the point on T1 in the left figure in Fig. 3
at the arrow indicating the Hausdorff distance H). We keep T1 still a connected
curve, thus creating a sharp spike in it. While the Hausdorff distance between
the curves has doubled, the flat norm distance sees only a minute increase as
measured by the tiny area under this spike. Once again, the flat norm distance
accurately captures the intuition that the curves have not changed much when
just a single point moves away while the rest of the curve stays the same. Hence
the flat norm is a more robust metric that always captures significant changes
while maintaining stability to small perturbations.

We observe similar behavior to those illustrated by the theoretical example
(Fig. 3) in our computational experiments. Fig. 4 shows scatter plots denoting
empirical distribution of percentage deviation of the two metrics from the original

values
(
%∆DHaus,%∆F̃λ

)
for a local region. The perturbations are considered

for three different radii shown in separate plots. We note that the percentage
deviations in the two metrics are comparable in most cases. In other words, nei-
ther metric behaves abnormally for a small perturbation in one of the networks.

Fig. 4. Scatter plots showing effect of network perturbation on normalized flat norm
and Hausdorff distances for a local region. The percentage deviation in the metrics
for the perturbations are shown along each axis. We do not observe significantly large
deviations in any one metric for a given perturbation.

Next, we compare the sensitivity of the two metrics to outliers. Here, we
consider a single random node in one of the network and perturb it. Fig. 5
shows the sensitivity of the metrics to these outliers. The original normalized
flat norm and Hausdorff distance metrics are shown by the horizontal and vertical
dashed lines respectively. The points along the horizontal dashed line denote the
cases where Hausdorff distance metric is more sensitive to the outliers, while
the normalized flat norm metric remains the same. These cases occur when
the perturbed random node determines the Hausdorff distance, similar to the
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Fig. 5. Scatter plots showing effect of few outliers on normalized flat norm and Haus-
dorff distance for a local region. The original normalized flat norm and Hausdorff
distance are highlighted by the dashed horizontal and vertical lines. We observe mul-
tiple cases where the Hausdorff distance is more sensitive to outliers compared to the
proposed normalized flat norm metric.

theoretical case (where Hausdorff distance went from H to 2H). On the flip
side, the points along the vertical dashed line denote the Hausdorff distance
remaining unchanged while the normalized flat norm metric shows variation.
Just as in the theoretical example (Fig. 3), such variation in the normalized
flat norm metric implies a variation in the network structure. However, such
variation is not captured by the Hausdorff distance metric. Hence, our proposed
metric is capable of identifying structural differences due to perturbations, while
remaining stable when widely separated nodes (which are involved in Hausdorff
distance computation) are perturbed. The other points which are neither on the
horizontal nor on the vertical dashed lines indicate that either metric is able to
identify the structural variation due to the perturbation.

4 Conclusions

We have proposed a fairly general metric to compare a pair of network geometries
embedded on the same plane. Unlike standard approaches that map the geome-
tries to points in a possibly simpler space and then measuring distance between
those points [11], or comparing “signatures” for the geometries, our metric works
directly in the input space and hence allows us to capture all details in the input.
The metric uses the multiscale flat norm from geometric measure theory, and
can be used in more general settings as long as we can triangulate the region con-
taining the two geometries. It is impossible to derive standard stability results
for this distance measure that imply only small changes in the flat norm met-
ric when the inputs change by small amount—there is no alternative metric to
measure the small change in the input. For instance, our theoretical example (in
Fig. 3) shows that the commonly used Hausdorff metric cannot be used for this
purpose. At the same time, we do get natural stability results for our distance
following the properties of the flat norm—small changes in the input geometries
lead to only small changes in the flat norm distance between them [9,20].
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We use the proposed metric to compare a pair of power distribution networks:
(i) actual power distribution networks of two locations in a county of USA ob-
tained from a power company and (ii) synthetically generated digital duplicate
of the network created for the same geographic location. The proposed com-
parison metric is able to perform global as well as local comparison of network
geometries for the two locations. We discuss the effect of different parameters
used in the metric on the comparison. Further, we validate the suitability of
using the flat norm metric for such comparisons using computation as well as
theoretical examples.
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