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Abstract. Recent studies on anthropogenic climate change demonstrate
a disproportionate effect on agriculture in the Global South and North.
Questionnaires have become a common tool to capture the impact of
climatic shocks on household agricultural income and consequently on
farmers’ adaptation strategies. These questionnaires are high-dimensional
and contain data on several aspects of an individual (household) such
as spatial and demographic characteristics, socio-economic conditions,
farming practices, adaptation choices, and constraints. The extraction of
insights from these high-dimensional datasets is far from trivial. Stan-
dard tools such as Principal Component Analysis, Factor Analysis, and
Regression models are routinely used in such analysis, but they either
rely on a pairwise correlation matrix, assume specific (conditional) prob-
ability distributions, or assume that the survey data lies in a linear
subspace. Recent advances in manifold learning techniques have demon-
strated better detection of different behavioural regimes from surveys.
This paper uses Bangladesh Climate Change Adaptation Survey data
to compare three non-linear manifold techniques: Fisher Information
Non-Parametric Embedding (FINE), Diffusion Maps and t-SNE. Us-
ing a simulation framework, we show that FINE appears to consistently
outperform the other methods except for questionnaires with high multi-
partite information. Although not limited by the need to impose a group-
ing scheme on data, t-SNE and Diffusion Maps require hyperparameter
tuning and thus more computational effort, unlike FINE which is non-
parametric. Finally, we demonstrate FINE’s ability to detect adaptation
regimes and corresponding key drivers from high-dimensional data.

Keywords: Survey Analysis · Climate Change Adaptation · Fisher In-
formation · t-SNE · Diffusion Maps

1 Introduction

Climate change is one of the significant global challenges of the 21st century and
floods are the costliest climate-induced hazard. Rapid urbanization and climate
change exacerbate flood risks worldwide, undermining humanity’s aspirations
to achieve sustainable development goals (SDG) [12]. Current global warming
trends and their adverse impacts such as floods represent a complex problem,
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which cannot be understood independently of its socioeconomic, political, and
cultural contexts. In particular, the impact of climate change on farmers and
their livelihoods is at a critical juncture and adaptation is key for embracing
best practices as new technologies and pathways to sustainability emerge. As
the amount of available data pertaining to farmers’ adaptation strategies has in-
creased, so has the need for robust computational methods to improve the facility
with which we can extract insights from high-dimensional survey data. Although
standard methods such as Principal Component Analysis, Factor Analysis or Re-
gression models are routinely used and have been effective to some degree, they
either rely on a pairwise correlation matrix, assume specific (conditional) prob-
ability distributions or that the high-dimensional survey data lies in a linear
subspace [6]. Recent advances in manifold learning techniques have shown great
promise in terms of improved detection of behavioural regimes and other key
non-linear features from survey data [2].

In this paper, we compare three non-linear manifold learning techniques:
t-SNE [14], Diffusion Maps [4], and Fisher Information Non Parametric Embed-
ding (FINE) [1]. We start by extending prior work [8] done with a simulation
framework which allows for the generation of synthetic questionnaires. Because
the underlying one-dimensional statistical manifolds are known, we are able to
quantify how well each algorithm is able to recover the structure of the simulated
data. Next, we apply the various methods to the Bangladesh Climate Change
Adaptation Survey [10], which contains rich data regarding aspects of individ-
ual households such as spatial information, socio-economic and demographic
indicators, farming practices, adaptation choices and constraints to adaptations.
This allows us to investigate whether behavioural regimes of adaptation can be
extracted, and more broadly to better understand each method’s utility and rel-
ative trade-offs for the analysis of high-dimensional, real world questionnaires.
Although all three methods yield comparable results, we uncover key differ-
ences and relative advantages that are important to take into consideration. By
virtue of being non-parametric, FINE benefits from decreased computational
efforts in contrast to t-SNE and Diffusion Maps which require hyperparameter
tuning. Although FINE typically outperforms the other two methods, its perfor-
mance degrades when there is high interdependence between survey items, and
we identify a cutoff point beyond which adding more features does not result
in increasing the differential entropy of pairwise distances between observations
in the resulting embedding. FINE requires the researcher to impose a grouping
scheme on observations, which may not always be intuitive, while t-SNE and
Diffusion Maps allow clusters (groups of similar observations) to emerge more
naturally since no prior structure is assumed. Nonetheless, FINE is shown to be
particularly successful in the extraction of adaptation regimes. Lastly, FINE al-
lows one to use as much data as possible since missing feature values can simply
be ignored, whereas t-SNE and Diffusion Maps can be significantly impacted by
imputed or missing values, which may require removing incomplete observations.

The structure of the rest of the paper is as follows. Section 2 provides an
overview of the algorithms studied in this work, as well as the simulation frame-
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work, climate change adaptation questionnaire, and experiments that are carried
out. Section 3 presents key results obtained for the various experiments. Lastly,
Section 4 discusses our findings as well as future directions of research.

2 Methods

2.1 Dimension Reduction Algorithms

t-SNE t-Distributed Stochastic Neighbour Embedding (t-SNE) was first intro-
duced by Laurens van der Maaten and Geoffrey Hinton [14], and is based on
prior work on Stochastic Neighbour Embedding [9]. Key steps are presented and
summarized in Supporting Information (SI), Algorithm 1. First, a probability
distribution over pairs of data points in the original feature space is constructed
such that the similarity of some data point xj to data point xi is defined as

pj|i =
exp

(
−||xi − xj ||2/2σ2

i

)∑
k ̸=i exp (−||xi − xk||2/2σ2

i )
.

We can interpret this quantity as the conditional probability of selecting xj as
a neighbour of xi. pi|i = 0 since a data point cannot be its own neighbour.
σi denotes the variance of the Gaussian distribution centered around xi. It is
tuned for each xi separately such that the resulting conditional probability dis-
tribution Pi over all other datapoints xj ̸=i yields a perplexity value specified
by the user, calculated as perplexity(Pi) = 2H(Pi), where H(Pi) is the Shan-
non entropy [14]. Because typically pj|i ̸= pi|j , we define the joint distribution

pij =
pj|i+pi|j

2N , where N denotes the total number of observations in the dataset.
The next step is to construct another probability distribution over the data
in a lower-dimensional space with the aim of minimizing the Kullback-Leibler
(KL) divergence between the previous probability distribution and this newly
constructed one, thus preserving similarities between data points in the original
space. The joint probabilities for data points in this lower dimensional map are
given by

qij =

(
1 + ||yi − yj ||2

)−1∑
k ̸=l (1 + ||yk − yl||2)−1 ,

which is a heavy-tailed Student t-distribution [14]. KL divergence is minimized
iteratively using gradient descent by updating vectors yi at each step.

Diffusion Maps Diffusion Maps is a method introduced by Coifman and Lafron
which takes inspiration from the processes of heat diffusion and random walks
[4]. Intuitively, if we were to take a random walk over observations in a dataset,
starting at some random point, we would be more likely to travel to a nearby,
similar point than to one that is much further away. The Diffusion Maps algo-
rithm leverages this idea in order to estimate the connectivity k between pairs

of data points using a Gaussian kernel as follows: k(xi,xj) = exp
(
− ||xi−xj ||2

ϵ

)
,
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where ϵ is some normalization parameter. Subsequently, a diffusion process is
constructed using the transition matrix of a Markov Chain M on the data set,
which allows us to map diffusion distances to a lower-dimensional space. Key pa-
rameters are t, used to construct the t-step transition matrix M t, and additional
normalization parameter α. SI Algorithm 2 summarizes the important steps of
this process.

FINE The Fisher Information Non Parametric Embedding (FINE) algorithm
was developed by Carter et al. and works by constructing a statistical mani-
fold upon which lives a family of probability distributions (estimated from some
dataset) for which we can compute inter-distances [1]. This algorithm was fur-
ther developed and applied to questionnaire data by Har-Shemesh et al. [8].
Algorithm 1 summarizes key steps. First, respondents to the questionnaire are
divided into K groups. For each of these groups, a probability distribution is
constructed over the set of all possible responses I (each element being a string,
e.g. “ABDC”). By considering the square roots of these probabilities, we can
regard each probability distribution as a point on the unit hypersphere and
compute distances between these points using the arc length. With this dis-
tance matrix, non-linear dimension reduction is achieved by applying classical
Multidimensional Scaling (MDS), which is another non-linear technique for vi-
sualizing similarities between observations in a dataset [11]. Questionnaire items
are assumed to be independent such that probabilities may be factorized.

Algorithm 1: FINE (for questionnaire data)

Data: D = (x1,x2, . . . ,xn)
Input: dimension d, choice of grouping scheme
Result: E, a lower-dimensional representation of the data
begin

Divide observations into K groups using some grouping scheme;
for k = 1, 2, . . . ,K do

Estimate (square root) probabilities ξ(k) for responses in kth

group;

end
for j, k = 1, 2, . . . ,K do

Compute Mij = cos−1
(∑

I ξ
(j)
I ξ

(k)
I

)
→ arc length on the unit

hypersphere;

end
Construct embedding E = MDS(M,d);

end

2.2 Simulation Framework

Framework Description The authors of [8] propose a simulation framework
for generating questionnaire responses in a controlled way. This allows us to

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36027-5_3

https://dx.doi.org/10.1007/978-3-031-36027-5_3
https://dx.doi.org/10.1007/978-3-031-36027-5_3


Manifold Analysis for High-Dimensional Socio-Environmental Surveys 5

compare the embeddings generated by the three algorithms to a “ground-truth”
embedding. This is done by parameterising angles ϕi as

ϕκ
i (t) =

{
π
2 sin2 (mπt), i = κ
π
2 t, i ̸= κ

, (1)

where κ allows us to choose which angle is proportional to the squared sine term,
and t ∈ [0, 1] is the unique parameter of this family of probability distributions.
Furthermore, m controls the non-linearity of the family. There are N − 1 angles
for a questionnaire with N possible distinct responses, and we compute the
square root probabilities as follows:

ξ1 = cos (ϕ1)

ξ2 = sin (ϕ1) cos (ϕ2)

ξ3 = sin (ϕ1) sin (ϕ2) cos (ϕ3)

...

ξN−1 = sin (ϕ1) . . . sin (ϕN−2) cos (ϕN−1)

ξN = sin (ϕ1) . . . sin (ϕN−2) sin (ϕN−1)

(2)

For some choice K, which denotes the total number of groups (see Algorithm
1), we draw K values uniformly on the curve given by Equation (1). Then,

we compute probabilities p
(k)
I = (ξ

(k)
I )2 and randomly generate a number of

questionnaire responses for each group k = 1, 2, . . . ,K using these probabilities.

Experiments We wish to compare the embeddings generated by t-SNE, Dif-
fusion Maps, and FINE for various simulated questionnaire responses. Similarly
to [8], we generate responses for κ ∈ {1, 2, N − 1}, and K ∈ {20, 50}. We keep
m = 3 fixed as well as the number of questions (NQ = 8) and the number of
possible answers for each question (NA = 3), yielding N = 38 = 6561. For each
of the 6 possible combinations of parameters κ and K, there is a unique theoret-
ical embedding and 30 questionnaires are simulated. When K = 20 we generate
25 responses per group, and when K = 50 we generate 50 responses per group.
Then, for each set of 30 questionnaires, we apply all three non-linear dimension
reduction algorithms.

In order to evaluate the quality of the generated embeddings, we apply the
Procrustes algorithm [7], which can stretch, rotate or reflect the generated em-
beddings so that they match up with the theoretical embedding as closely as
possible. Once this is done, we compute the Pearson correlation coefficient be-
tween the coordinates of each generated embedding and those of the theoretical
embedding. Note that the theoretical embedding is determined via application
of the MDS algorithm using arc length distances between the exact probability
distributions calculated using Equation (2).
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Parameter Tuning FINE does not require any parameterization, although a
grouping scheme must be provided, which in this case is defined by the simu-
lation framework. On the other hand, both t-SNE and Diffusion Maps require
some parameter tuning. For t-SNE, we perform a grid search over the follow-
ing parameters: perplexity ∈ {1, 2, 5, 10}, learning rate η ∈ {10, 50, 100, 200},
distance metric ∈ {weighted hamming (with/without one-hot encoding), cosine
(with one-hot encoding)}. The maximum number of steps T and momentum α(t)
are fixed at 1000 and 0.8 respectively. For Diffusion Maps, we perform a grid
search over: ϵ ∈ {0.5, 1.0, 1.5, 2.0}, t ∈ {0, 0.5, 1, 5}, distance metric ∈ {weighted
hamming (with/without one-hot encoding), cosine (with one-hot encoding)}. We
fix α = 1

2 . See [3] for a review of one-hot encoding, and note that the weighted
hamming distance is simply the number of positions that two strings differ,
each positional contribution (1 if different, 0 if identical) being weighted by the
reciprocal of the number of possible values at that position.

2.3 Bangladesh Climate Change Adaptation Survey

The non-linear manifold learning algorithms of interest are applied to a ques-
tionnaire dataset pertaining to the economics of adaptation to climate change
in Bangladesh with the aim of identifying different regimes of behaviour and
adaptation in response to climate change.

Dataset Description Data collection was carried out in 2012 amongst 827
households in Bangladesh in 40 different communities [10]. This survey is a
follow-up to a first round of data collection, which was studied in detail in
[5]. Some households have frequently missing response fields, so we retain 805
households having responded to at least 30% of survey questions. Each of the 40
distinct communities has a unique combination of district, “upazila”, and union
codes, where upazilas are sub-units of districts, and unions are even smaller
administrative units. Households additionally possess one of 7 distinct codes
corresponding to different agro-ecological zones.

Handpicked Features We construct a set of handpicked features that we
expect to be important for detecting adaptation strategies based on existing lit-
erature. Specifically, we keep track of household income and expenditure, what
occupations are held by household members, total monetary loss due to climatic
and personal shocks, what actions were taken in response, social capital, collec-
tive action, constraints to adaptations, what adaptations were implemented, and
finally what community groups household members are a part of as well as as-
sociated benefits. This set of 95 features is summarized in SI Table 8. Summary
statistics for various features are also provided in other SI tables. Note that we
discretise continuous features into at most 5 bins using the Bayesian Blocks dy-
namic programming method, first introduced by Scargle [13]. Additional details
regarding this method are available in the SI document.
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Experiments We apply FINE to the set of handpicked features, using com-
munities as our grouping scheme for individual household observations. Addi-
tionally, we examine the impact of how much a particular feature varies across
communities on the embedding produced by FINE as follows. For each hand-
picked feature, we compute the KL divergence of that feature’s values for each
pair of communities. We record the median, and after producing an embedding
using FINE, we compute the differential entropy of the distribution of pairwise
distances between communities. Finally, we apply t-SNE and Diffusion Maps to
the set of handpicked features in order to see if any clusters naturally emerge.

3 Results

3.1 Simulation Framework Results

Table 1 displays the best hyperparameter combinations for t-SNE and Diffu-
sion Maps. For t-SNE, lower perplexity values typically perform better, as does
the weighted hamming distance. For Diffusion Maps, using the cosine distance
metric (with one-hot encoding) yields optimal performance for all (κ,K) pairs.
However, choices for ϵ and t seem to be more delicate and dependent on the κ,K
values. Overall, for both t-SNE and Diffusion Maps, not all hyperparameter com-
binations are found to yield good performance, emphasizing the importance of
hyperparameter tuning.

Table 1: Summary of best hyperparameters for t-SNE and Diffusion Maps
(κ,K) t-SNE Diffusion Maps

(κ = 1,K = 20) perplexity = 2, η = 50 ϵ = 1.5, t = 0.5
(κ = 1,K = 50) perplexity = 5, η = 200 ϵ = 1.5, t = 0.5
(κ = 2,K = 20) perplexity = 2, η = 50 ϵ = 0.5, t = 0.5
(κ = 2,K = 50) perplexity = 10, η = 200 ϵ = 0.5, t = 0.5

(κ = 6560,K = 20) perplexity = 2, η = 50 ϵ = 2.0, t = 0.5
(κ = 6560,K = 50) perplexity = 1, η = 50 ϵ = 2.0, t = 0.0

Figure 1 displays the distribution of performance (correlation with theoretical
embedding) of each algorithm for all 30 questionnaires and each (κ,K) combi-
nation using best-performing hyperparameters. FINE significantly outperforms
the other algorithms in all cases and with lower variance in performance across
the 30 questionnaires, except when κ = 1 and K = 20 where Diffusion Maps
performs similarly. t-SNE consistently performs worse, and is significantly more
sensitive to which of the 30 questionnaires is being analyzed (as evidenced by the
high variance in performance). Overall, all algorithms achieve a mean correlation
with the theoretical embedding of at least 0.87 (at a 95% confidence level).

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36027-5_3

https://dx.doi.org/10.1007/978-3-031-36027-5_3
https://dx.doi.org/10.1007/978-3-031-36027-5_3


8 C. Dupont, D. Roy

FINE Diffusion Maps t-SNE
0.75

0.80

0.85

0.90

0.95
Co

rre
la

tio
n 

W
ith

Th
eo

re
tic

al
 E

m
be

dd
in

g

= 1, K = 20

FINE Diffusion Maps t-SNE

0.75

0.80

0.85

0.90

0.95

= 2, K = 20

FINE Diffusion Maps t-SNE
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98

= 6560, K = 20

FINE Diffusion Maps t-SNE
0.84

0.86

0.88

0.90

0.92

0.94

0.96

Co
rre

la
tio

n 
W

ith
Th

eo
re

tic
al

 E
m

be
dd

in
g

= 1, K = 50

FINE Diffusion Maps t-SNE

0.84

0.86

0.88

0.90

0.92

0.94

0.96

= 2, K = 50

FINE Diffusion Maps t-SNE

0.92

0.94

0.96

0.98

= 6560, K = 50

Fig. 1: Distributions of correlation coefficients with respect to the theoreti-
cal embedding for each algorithm and (κ,K) pair using best hyperparameters.
Dashed lines and whiskers denote the mean, maximum and minimum values.

Figure 2 displays the theoretical embedding for each (κ, K) pair, along with
embeddings obtained using t-SNE, Diffusion Maps, and FINE for one sample
questionnaire. Overall the embeddings produced by FINE most closely resemble
the theoretical embeddings out of all three algorithms. Additionally, the under-
lying structure of the data is better recovered with a larger number of groups
K and responses in all cases except for t-SNE when comparing (κ = 1,K = 20)
and (κ = 1,K = 50). Multi-partite information, which measures the amount
of dependence between the questions of the simulated questionnaires, is also
displayed and is defined as

MI ≡
∑
I

pI(q1, q2, . . . , qNQ
) ln

pI(q1, q2, . . . , qNQ
)

pI(q1)pI(q2) . . . pI(qNQ
)
. (3)

In order to more closely investigate the dependence of the various algorithms’
performance on multi-partite information, we generate an additional 300 ques-
tionnaires (each one with its own theoretical embedding and distribution of
multi-partite information values), using NQ = 7, NA = 3, and 30 uniformly
spaced κ values between 1 and N − 1 as well as m ∈ {1, 2, . . . , 10}. We fix the
number of groups at K = 20, and generate 50 responses per group. As always,
FINE does not require any parameter tuning. For t-SNE, using Table 1 as a
guide, we use perplexity = 2, η = 50 and a weighted hamming distance metric
after one-hot encoding. For Diffusion Maps, relying on Table 1, we select ϵ = 0.5
and t = 0.5, and use the cosine distance metric after one-hot encoding.
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Fig. 2: Comparison of embeddings obtained with t-SNE, Diffusion Maps, and
FINE with respect to the theoretical embedding using the simulation framework.
t-SNE achieves comparable performance to FINE due to hyperparameter tuning,
which is a departure from prior results presented in [8].
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Fig. 3: (Top row) difference between FINE performance and t-SNE (left) as well
as Diffusion Maps (right) as a function of multi-partite information, abbreviated
MI. (Bottom row) FINE’s performance begins to degrade for questionnaires with
higher multi-partite information. t-SNE (left) and Diffusion Map’s (right) per-
formances are overlaid in green and pink respectively.

The top row of Figure 3 displays the differences in correlation with respect to the
theoretical embedding between FINE and t-SNE as well as FINE and Diffusion
Maps for 300 different values of (averaged) multi-partite information. In agree-
ment with Figure 1, the differences are almost always positive, indicating that
FINE typically outperforms the other two algorithms. However, at higher values
of average multi-partite information, FINE’s performance starts to worsen rela-
tive to both t-SNE and Diffusion Maps. Looking at the bottom row of Figure 3,
we can tell from the yellow markers that FINE’s performance decreases around
MI values of 0.075. In contrast, t-SNE’s performance appears to improve, while
Diffusion Map’s performance seems to remain the same on average. The degrada-
tion in FINE’s performance may be attributable to the fact that FINE assumes
independence between questions and therefore does not handle situations where
there is higher interdependence between survey items as well.

3.2 Bangladesh Climate Change Adaptation Survey Results

Figure 4 illustrates the FINE embeddings obtained as we progressively add more
handpicked features, starting with ones with lower median KL divergence. The
top left embedding includes a single feature corresponding to monetary loss
due to sea level rise with median KL divergence close to zero, which signifies
that almost all communities have the same distribution for this feature. This
results in a distribution of pairwise distances with very low differential entropy
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− nearly all communities collapse to the same coordinate, except for community
6 which appears as an outlier due to being the only one containing a household
having suffered damages due to sea level rise. Community 21 also appears as a
clear outlier in subsequent embeddings. Upon investigation, we found that 65.5%
of households in this community reported having to migrate due to suffering
heavy losses as a result of soil and river erosion, which is significantly more than
households in any other community.
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Fig. 4: FINE embeddings using an increasing number of handpicked features,
added in order from lowest to highest median KL divergence.

The bottom right subplot includes all 95 handpicked features. Despite not in-
cluding the agro-ecological zone in the set of handpicked features, we notice the
influence of spatial characteristics on adaptation regimes quite clearly in some
cases. For example, communities 29, 30, 31, and 33 all appear close together in
the embedding and in fact are all located in the same agro-ecological zone. Since
agro-ecological zones are defined as regions with similar climate conditions, it
is perhaps unsurprising that communities in the same geographical areas would
be similarly impacted by climatic shocks as well as respond in a similar fashion.
However, such proximity is certainly not the only driver of adaptation. Commu-
nities 10, 12, 13, and 15 appear close together at the top of the embedding, but
belong to three different agro-ecological zones. In fact, these are the only commu-
nities in which at least two households needed to sell assets in response to salinity
increases. Furthermore, communities 10 and 12 had over 30% of households with
at least one member needing to seek off-farm employment, which could explain
their appearing especially close together. Only communities 21 and 32 also have
this property, and as a result they appear quite isolated in the embedding as well
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(especially 21 for reasons mentioned earlier). As a last example, despite being
spread over four different agro-ecological zones, at least 65% of households in
communities 16-20, 22, 24 and 25 decided to change their planting dates, and
notice that these communities form an elongated vertical cluster in the bottom
left of the embedding. The only other community satisfying this property is
community 15, which differs in other, more pronounced regards (as described
earlier). Additional embeddings were generated using FINE for various feature
sets, which may be found in the SI document.
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Fig. 5: Dependence of the differential entropy of pairwise distances in FINE em-
beddings on median KL divergence between communities for handpicked feature
set. Best fit parameters: A = 0.422, B = 0.014, C = 1.26.

Figure 5 displays how the differential entropy of pairwise distances between
communities behaves as a function of the median KL divergence for embeddings
produced with one handpicked feature at a time. We observe a logarithmic trend,
which seems to imply that past a certain threshold, a feature containing more
information and richer differences between communities does not necessarily
yield a distribution of pairwise distances with higher entropy.

We now turn our attention to the top row of Figure 6, which shows the
embeddings obtained by t-SNE and Diffusion Maps for the set of handpicked
features after one-hot encoding and removing any households with missing val-
ues for any of the features, leaving a total of 256 households. t-SNE uses a
weighted hamming distance while Diffusion Maps relies on a cosine distance
metric. Households appear closely packed together with no discernible clusters,
which we find to be consistent across different runs of t-SNE and Diffusion Maps.
In the bottom row, we plot community barycenters by collapsing households in
the same community to their mean coordinates. The cluster of communities 16-
20, 22, 24 and 25 emerges somewhat for both algorithms. However, the cluster
of communities 10, 12, 13, and 15 is not clear-cut for t-SNE, and Diffusion Maps
does not highlight community 21 as an outlier.
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Fig. 6: (Top left) t-SNE embedding with handpicked features after one-hot en-
coding, using a weighted hamming distance metric. (Top right) Diffusion Maps
embedding for same feature set after one-hot encoding, using cosine distance
metric. (Bottom row) community barycenters for t-SNE and Diffusion maps.

Lastly, we compare pairwise distances between community coordinates for each
pair of algorithms using handpicked features. Overall, we find that there is agree-
ment across all three methods regarding the arrangement of the communities in
relation to one another. Pearson correlation coefficients are found to be: 0.569 (t-
SNE and Diffusion Maps), 0.514 (FINE and Diffusion Maps), and 0.318 (FINE
and t-SNE). Perhaps unsurprisingly, correlation is highest between t-SNE and
Diffusion Maps since the community grouping scheme was not applied to these
two methods and many households were omitted due to missing feature values.
An additional visualization of these correlations may be found in SI Figure 3.

4 Discussion

Experiments carried out with a simulation framework reveal that all three meth-
ods achieve comparable performance in terms of recovering the general structure
of the underlying one-dimensional manifolds. This is a departure from the pre-
vious study using this framework, which underestimated the performance of
t-SNE in particular due to a lack of hyperparameter tuning. FINE appears to
consistently outperform the other two methods except for questionnaires with
high multi-partite information. This reduction in performance may be due to
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the assumption that FINE makes about independence between survey items,
which could potentially be relaxed for strongly-correlated survey questions. It
remains to be seen how FINE responds to a wider range of MI values. Pathways
to simulating questionnaires with higher MI values include investigating the de-
pendence of multi-partite information on the parameters of the framework, or
the injection of dependencies by duplicating feature columns and introducing
noise. Estimating multi-partite information for real-world datasets, such as the
high-dimensional survey studied in this paper, remains challenging since the
product of marginals in Equation (3) quickly tends to zero.

The embeddings obtained with FINE reveal a logarithmic convergence in
terms of how much dispersion of the communities can be observed in the embed-
dings as a function of how much feature values vary between communities. In-
deed, features behaving similarly for many groups yield embeddings with strong
clusters and significant overlap, whereas groups appear much more spread out
for features with more variability between groups. The choice of grouping scheme
is therefore non-trivial since it imposes a certain top-down structure on the data
that can make it more or less difficult to extract insights depending on what
features are used. Nonetheless, we found that the FINE embedding using all
handpicked features contains rich information regarding how different clusters
of communities were affected by and responded to (typically) climate-related
shocks. This enabled us to identify key drivers to explain why certain com-
munities were clustered together and to identify underlying human behavioural
patterns. Applying FINE to other real-world datasets would be highly instruc-
tive regarding its capabilities and limitations. While not being limited by the
need to impose a grouping scheme on data, t-SNE and Diffusion Maps require
hyperparameter tuning and thus more computational effort, unlike FINE which
is non-parametric. Another drawback is that t-SNE and Diffusion Maps do not
seem to handle missing feature values well, which caused us to remove a sig-
nificant portion of households in order to generate the embeddings displayed in
Figure 6. FINE on the other hand can simply use all available values to estimate
group probability mass functions. Nonetheless, t-SNE and Diffusion Maps allow
clusters to emerge in a more bottom-up way, which can be desirable when a
natural grouping of observations is not clear.

The choice of algorithm ultimately depends on the researcher’s goals. t-SNE
and Diffusion Maps may be more suitable for exploratory data analysis and
for discovering whether data contains any intrinsic clusters. On the other hand,
when a grouping scheme is obvious or supported by existing literature, then
FINE seems to be a more suitable and straightforward choice. Of course, using
a combination of these approaches is possible, and in fact can help to extract
greater insight from data, as well as ensure that results are robust across different
methods.
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Data and Code Availability Data from the Bangladesh Climate Change
Adaptation Survey is available at: https://dataverse.harvard.edu/dataset.xhtml?
persistentId=doi:10.7910/DVN/27883. All code used in this paper can be found
at: https://github.com/charlesaugdupont/cca-manifold-learning

Supporting Information Supporting tables and figures can be found at:
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