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Abstract. Recently, efforts have been made in computational criminol-
ogy to study the dynamics of criminal organisations and improve law en-
forcement measures. To understand the evolution of a criminal network,
current literature uses social network analysis and agent-based modelling
as research tools. However, these studies only explain the short-term
adaptation of a criminal network with a simplified mechanism for intro-
ducing new actors. Moreover, most studies do not consider the spatial
factor, i.e. the underlying social network of a criminal network and the
social environment in which it is active. This paper presents a compu-
tational modelling approach to address this literature gap by combining
an agent-based model with an explicit social network to simulate the
long-term evolution of a criminal organisation. To analyse the dynamics
of a criminal organisation in a population, different social networks were
modelled. A comparison of the evolution between the different networks
was carried out, including a topological analysis (secrecy, flow of infor-
mation and size of largest component). This paper demonstrates that
the underlying structure of the network does make a difference in its
development. In particular, with a preferentially structured population,
the prevalence of criminal behaviour is very pronounced. Moreover, the
preferential structure provides criminal organisations a certain efficiency
in terms of secrecy and flow of information.

Keywords: criminal networks · agent-based modelling · social network
analysis · social opportunity

1 Introduction

To adequately respond to a persistent and rampant issue of illicit activities,
such as human trafficking and drug production [26,27], the latest advancements
in mathematics and computational power are used as a decision-driven tool to
increase the effectiveness of the intervention methods against organised crime
[11,12,14]. The objective of this research was to explore and analyse the possible
evolution of any criminal network through an agent-based model while address-
ing the gap in the literature. Based on the data provided by the intelligence
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services or constructed from publicly available data, a network can be recon-
structed upon which a social network analysis is applied to determine its charac-
teristics and define the key players3 [1,4,6,9,10,11,12,34]. Given the covert nature
of criminal networks and the difficulty of updating information about them, cur-
rent literature is often forced to base its research on static portrayals of criminal
ties4 [11,30]. However, criminal organisations have been found to have a fluid
structure where re-structuring is a constant process to adapt to endogenous and
exogenous factors such as gang rivalries or police interventions [35]. Thus, the re-
silience of a network is defined by how well the organisation can mitigate damage
and maintain its illegal activity. It has been found that interventions can have
unintended effects in the long term, such as becoming relatively ineffective or
forcing the dispersion of criminal activities across an area [12,17,24]. To increase
the efficiency of dismantling interventions, it is imperative to understand the
dynamic of the criminal organisation (CO) and the possible repercussions an in-
tervention can have. As noted earlier, most studies focus on static networks and
attempt to provide information about their characteristics when interventions
are simulated. Yet, static snapshots of criminal networks contain only partial
information and thus longitudinal data is preferred5. To tackle the lack of lon-
gitudinal data about criminal networks and provide insights into the criminal
network resilience behaviour, various approaches have been adopted.

On the one hand, there is a large volume of published studies describing the
evolution of a criminal network after introducing a fictitious police intervention
[4,12,14]. In a study investigating the dynamics of a CO, Behzadan et al. [4] sim-
ulated the evolution of a CO from a game-theoretic perspective. To mimic the
dynamics, information about the actors is needed, such as: their nationality, lan-
guages spoken, or function within the organisation. However, most data sets do
not contain an exhaustive list of variables. Duxbury and Haynie [14] performed a
similar study, using a combination of agent-based modelling with social network
analysis to provide some insights into the mechanism behind the resilience by
introducing the concept of trustworthiness: a liaison between actors also depends
on trust. Distinguishing between profit-oriented and security-oriented networks,

3 In this context, key players are regarded as important actors who ensure the proper
functioning of the organisation. In their absence, the organisation would break into
considerably smaller fragments leading to a reduction in productive capacity

4 A static criminal network is defined as a network whose links between nodes are
assumed to be unchanged. Thereby, in social network analysis, nodes (vertices) cor-
respond to actors and links (edges) to relations. The term “relation” depends on the
context of the data in question. It can represent a simple acquaintance between two
persons, defined by work relation, friendship, kingship or membership of the associ-
ation [9], or it can also represent a medium by which resources are shared between
actors [33]. Moreover, a network can be shaped by various types of ties, including
strong ties which denote close and trusted connections, weak ties which refer to more
distant and casual connections with lower intimacy and less frequent interaction, and
latent ties which represent potential connections that are not actively utilised [13].

5 The term longitudinal refers to the succession of consecutive snap-shots of the crim-
inal networks over a certain period, resulting in a time-varying network.
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the formation of new ties will depend on the CO’s motive. In security-oriented
networks, the flow of information is restricted, thus liaisons between actors with
low degree centrality are more likely to be created. In a profit-oriented network,
a high interconnection between actors is the driving force of the simulated dy-
namic. However, the models in [4,14] assume rational behaviour of the actors
and perfect knowledge of the network; the actors know each other’s attributes.
In contrast, access to information in a security-oriented organisation — such
as the terrorist network studied in the aforementioned article — is severely re-
stricted so as not to jeopardise its activities [6,14]. Duijn et al. [12] analysed the
evolution of a CO by introducing the economical concept of the human capital
approach; new liaisons are created between actors holding either a similar role
or interrelated roles. Calderoni et al. [9] tackled the question of the dynamics
of a criminal network from a recruitment point of view using various policies as
an exogenous factor. Amongst the policies tested, insights into the influence of
family members belonging to the mafia and the influence of social support to
families at risk were highlighted. One of the limitations of the model is that the
research was applied to a case study, which does not necessarily have a broader
application. Furthermore, the impact of imprisonment on an agent’s decision to
re-enter the organisation is neglected. Having access to a longitudinal criminal
network, some studies compared various mechanisms such as preferential at-
tachment, triadic closure, or role-similarity to assess their goodness of fit of the
simulated dynamics [6,7]. However, the authors faced the challenge of missing
data. These simulations explain the short-term adaptation of a criminal network.
After an intervention, most COs are able to fill the role of the neutralised crim-
inal and resume their activity after a few days to weeks [19,24]. Additionally,
the emergence of new actors is either not explained or not taken into account
in these models. On the other hand, there are publications that concentrate on
adopting a game-theoretical approach to model the evolution of criminal be-
haviour within a population [5,18,21]. Martinez-Vaquero et al. [18] and Perc et
al. [21] attempted to show a more general analysis of the emergence of criminal
behaviour by considering the effect of policies, such as jurisdiction penalty, social
exclusion, and clerical self-justice. During the simulation, actors decide to act
either as honest citizens or criminals and collect the respective remuneration,
referred to as fitness points. The policies act as control variables influencing
the presence of the different roles within the population. Berenji et al. [5] fur-
ther add to the policy-focused model approach by tackling the line of inquiry
by introducing the aspect of rehabilitation. Despite the promising results, these
studies do not account for the possible influence of a network-like structure on
the model. It is believed that when studying the spread of criminal behaviour
within a population, it is important to consider its underlying social ties. Based
on the aforementioned studies, a literature gap can be asserted concerning the
publications focusing on short-term evolutions of a CO [4,9,12,14] and those
focusing on long-term developments of criminal behaviour in a population but
neglecting the influence of a social network structure in their simulations [18,21].
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To bridge the identified literature gap, this paper aims at formulating a
model that simulates the long-term evolution of a CO by combining a developed
recruitment mechanism with network-explicit configurations. As noted in [9,18],
it is believed that understanding the recruitment mechanism of a CO will add
to the longevity of the dynamic evolution and give an adequate answer to how
new actors emerge in a CO. This is achieved by using a different adaptation of
Martinez-Vaquero et al. [18]’s model, where social ties are taken into account: this
is the network-explicit configuration that is modelled in this paper. By developing
this model, using the network-explicit configuration, the research will provide
(i) social relevance insofar as it could further aid the understanding of criminal
network growth, and (ii) practical relevance in that it could further the ability
of authorities to predict this evolution and develop appropriate interventions.

2 Methodology

2.1 Agent-based modelling

The following agent-based model is extended based on the conceptual framework
proposed by [18]. As stated by Martinez-Vaquero et al. [18], to model the growth
or decline of a criminal network it is important to define the conditions leading
a person to join such an organisation. Consequently, that is most adequately
done using three different types of agents: honest, member of a criminal organi-
sation (MCO), and lone actors. The lone actors are deemed important since they
account for cases where one does not join an organisation but prefers to act in-
dependently. Through a cost-benefit game, the entities interact with each other
and decide to adopt the best strategy, which involves either becoming honest, or
MCO, or a lone actor. The driving force of the model is a punishment/reward
system which influences the decision-making of the agents. For honest citizens,
MCOs and lone actors, the reward reflects the success of their activities. Based
on the theory of social opportunity, an agent’s success can influence his/her en-
tourage to imitate him/her [12,18]. The punishment system is exerted through
the introduction of three meta-agents: the criminal court of justice, social con-
trol, and the pressure exerted by a CO. The meta-agents do not correspond to
a specific node but merely represent an abstract agent which oversees the game.
The mechanism of the agent-based model, including the acting, investigation
and evolutionary stage is based on the original paper [18]. For the purpose of
conciseness, the reader is directed to consult the original paper for further de-
tails. The distinction between this model and the original lies in the fact that the
interactions between agents are governed by an underlying network. Thus, the
groups, as defined in the original literature, are composed of the selected player
and all its immediate neighbours who share a connection. As a result, the com-
putation of reward and damage points can be carried out directly, rather than
using the mean-filed approach. The following pseudo-code gives an overview of
the agentbased model’s (ABM) mechanism. Alternatively, a more detailed expla-
nation including the ODD+ protocol can be studied. The definition and default
values of the parameters are indicated in Table 1. The table serves merely as
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a reference point for subsequent analysis in which one or more parameters are
subject to changes. The default combinations of parameters have been chosen

such that the reward points are the same for MCOs and lone actors, and the
penalty systems are equal. Furthermore, the influence of the CO on lone actors
as well as the penalty share between MCOs was set to a relatively low value.

2.2 Network Initialisation

To introduce a network-explicit agent-based model, [18]’s model has been built
upon by firstly taking an initial criminal network as defined in the literature,
and constructing it with the inclusion of “honest” and “lone actors” nodes using
different attachment methods. The attachments are: random, preferential, and
small-world. These attachment methods have helped explain various networks
observed in nature [3,15,31]. The preferential attachment has proven to be in-
teresting, especially as it can explain the properties of social networks such as
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Table 1. Overview of the parameters used for the Agent-based model. The reward,
damage, and punishment parameters are based on [18].

Parameters Default value Explanation

δ 0.7 Influence factor of an independent actor to act
τ 0.1 Influence factor of an independent actor’s action on CO
γ 0.1 Punishment sharing factor for members of a CO
βs 1 State punishment value
βh 1 Civil punishment value
βc 1 Criminal punishment value
cw 1 Damage caused by a lone actor
cc 1 Damage caused by a member of a CO
rw 1 Reward factor for a lone actor
rc 1 Reward factor for a member of a CO
T 10 Temperature factor for the Fermi function
mutationprob 0.0001 Probability of undergoing random mutation

the scale-free property [2]. The random network, also called Erdos-Rényi net-
work, accounts for the small-world theory where any two persons are separated
by a chain of social acquaintances of a maximum length of six. In contrast, the
small-world network, also referred to as the Watts-Strogatz network, generates
a random network which can predict a precise clustering coefficient and aver-
age path length [2]. In other words, honest citizens and lone actors have been
added to a criminal network using the different attachment methods. Thereby,
the initial links amongst the criminal network were not modified. The intention
was to preserve the structure and thus the properties of a criminal network.
The attachment methods were based on the pseudo-algorithm presented in [22]
which are stochastic. Visualisation of the attachment methods can be accessed
by this link. Thus the rationale behind using these different attachment meth-
ods is to provide different simulations and analyse how the configuration of ties
will influence the outcome of the model. For all the attachment methods, the
ratio of honest, lone actors, and MCOs were set based on the data collected by
the United Nations Office on Drugs and Crime [25] concerning the average ratio
of incarceration within a population. Obtaining accurate data on the number
of criminals within a population is challenging due to, among others, under-
reporting and a lack of standardised reporting across law enforcement agencies
and jurisdictions. Therefore, for simplicity, it was assumed that the number of
convicts reflects approximately the number of criminals within a population. For
this thesis, data on the United States was used, where approximately 1%6 of the
population is unlawful [28]. Yet, it was not possible to define out of those unlaw-
ful individuals within the population how many are part of a CO. Nevertheless,
the triangular phase diagrams presented in [18] indicate that the ratio between

6 The United Nations Office on Drugs and Crime (UNODC) presents the data as per-
sons per 100,000 population, taking into account the entire demographic population.
Thus, the interest is in the active population, defined as persons aged 18-65 years,
who make up 60% of the population according to the U.S. Census Bureau. Thus
on average 600 out of 100000 are incarcerated in the U.S.A., which reduced to the
active population, gives 600/(0.6*100000)=1%.
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lone actors and MCOs does not impact the convergence to the same equilibrium,
merely that the convergence rate is expected to be subject to changes.

Fig. 1. Visualisation of the population created with the small-world algorithm, includ-
ing criminals (red), lone actors (blue) and honest citizens (green).

To achieve a fair comparison of the results between the populations of dif-
ferent structures (preferential/random/small-world), it was important that they
had common characteristics (see Table 2). It was decided that the different struc-
tures should have the same density δ which corresponds to having approximately
the same amount of nodes and edges. This density was set to the one observed
in the initial criminal network7. To make sure that the small-world network does
not become a random network by setting the rewiring probability prob too high,
the proximity-ratio test was performed [29]. Furthermore, the average clustering
coefficient is higher in small-world networks than in random networks despite
having similar average path length, which confirms the literature [22].

2.3 Determine Topological Changes

The focus of this research is on the development of the criminal network within
the population. As a result, only the nodes with a criminal state were retained
for the topological measurements. Throughout each round, some measures were
collected, which gives an indication of the structure of the network and how it
evolves. The measurements include some standard metrics, such as the size of
the largest components, the flow of information, and the density of the network
[10,11,14,34]. [11] defined the size of the largest component as a measure of
interest, based on the reasoning that it represents a “self-organised criminal

7 The density has been chosen to be the same as the initial criminal network in order
to avoid forcing the criminal network to evolve into a less dense network. By doing
so, the criminal network has the option to either keep the same density or evolve
towards a less dense configuration.
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Table 2. Overview of the properties of the different population structures. prob cor-
responds to the probability of rewiring an existing link. δ corresponds to the density.
⟨k⟩ corresponds to the average degree of a node. ⟨p⟩ corresponds to the average degree
path length. ± values represent the standard deviation for continuous distributions,
respective for discrete distributions.

Preferential Random Small-world

percentage of honests 99% 99% 99%
percentage of actors 0.1% 0.1% 0.1%
percentage of MCOs 0.9% 0.9% 0.9%
prob – – 0.2
nodes 10555 ±0 10555 ±0 10555 ±0
edges 1.50e6 ±1066 1.54e6 ±260 1.50e6 ±200
δ 0.027 ±2e-05 0.028 ±4e-06 0.027 ±3e-06
clustering coefficient 0.05 ±8e-04 0.01 ±4e-05 0.4 ±1e-04
⟨k⟩ 285 ±0.2 291 ±0.05 283 ±0.04
⟨p⟩ 2.08 ±3e-03 2.12 ±1e-04 2.47 ±1e-03
# of components 1 ±0 1 ±0 1 ±0

phase”, a threat to national security. The flow of information defines how well
the exchange of information and goods circulates within the largest component G
and is defined by the following equation within the largest component G [11,12]:

η(G) =
1

N(N − 1)

∑
i<j∈G

1

dij
(1)

where N is the total number of nodes in G and dij is the distance between node
i and j. The aim is to reduce the communication flow of a network, which will
lead to a decrease in its efficiency. As a result, the CO will become less successful
and less attractive to be a part of. Additionally, Duijn et al. [12] formulated the
secrecy metric:

Secrecy(G) =
N(N − 1)

2E
(2)

where E is the number of edges and N is the number of nodes in the largest
component G. This corresponds to the inverse of the density metric, which ex-
presses the ratio of actual relations over the number of possible relations. Thus,
the metric indicates how exposed the network is. In other words, the more con-
nections there are in a network, the more direct neighbours are possibly exposed
by an actor questioned by the police. The difference between Equation 1 and
Equation 2 is that the efficiency metric η captures the underlying structure of
the network, while the secrecy metric does not take into account how the nodes
are connected.

2.4 Data

For this research, the data from Cavallaro et al. [10] was selected. These data
represents the social network of the Mistretta family and the Batanesi clan, a
sub-branch of the Sicilian Mafia mainly involved in a cartel of construction com-
panies. The Sicilian Mafia is described as a reactive organisation that efficiently
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adapts to external stimuli to pursue its economic and social goals. In this paper
we have used the data corresponding to the recorded phone calls to construct
the network used in our simulation model. The characteristics of the resulting
network (Table 3) do not show anything exceptional or peculiar.

Table 3. Overview of the criminal network. N corresponds to the number of nodes, E
corresponds to the number of edges, D corresponds to the diameter, ⟨k⟩ corresponds
to the average degree, δ corresponds to the density, η corresponds to the flow of infor-
mation in the network [11,12].

Montagna Phone Calls

N = 95 E = 120 ⟨k⟩ = 2.526 giant comp. = 84
D = 14 η = 0.173 δ = 0.027

2.5 Measurement

To respond to the research question raised, the topological changes were mea-
sured for the different population structures; preferential, random, and small-
world. Thereby, two different scenarios were analysed: growth and steady size
of the criminal network. Due to the stochastic nature of the model and the
structure of the population, the measurements were done multiple times. Each
time, a simulation was done on a newly generated population of the same at-
tachment method. To have a fair comparison between the different attachment
methods, the same parameter values were used for the different case scenarios.
To achieve meaningful results, each node should converge to its local equilib-
rium: each node should undergo approximately 100 evolutionary stages during
the simulation. The following results show the evolution of the criminal network
in the different populations for two scenarios: (i) flat evolution of a CO and (ii)
increase of a CO within the population. For this experiment, the reward rc and
cc values were modified. An extensive analysis of the implications of the other
parameters cited in Table 1 can be found in [32]. Thereby, the evolution of the
CO in different population structures was compared to one-other8.

3 Results and Discussion

Figure 2 (left) shows the evolution of a CO with a slight rise in the size of the CO
at around 0.015%. One can also notice that with the evolution the standard error
increased lightly. In the case of a random structured network, the CO evolved
around 0.01%. For a small-world network, the COs were slightly lower with a
value of approximately 0.0075%. Using the default parameters, it was possible
to trigger an evolution with no particular trend, where the size of the criminal
network is approximately constant. Figure 2 (right) presents the evolution of the

8 The entirety of the code can be found in the following Github repository.
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Fig. 2. Evolution of the CO within a population based on the different attachment
methods (preferential, random and small-world) using the default parameters (left) as
outlined in Table 1. For the simulations on the right, the default parameters from Table
1 were used with rc = cc = 100. The darker line corresponds to the mean value of 50
games and respective lighter colours correspond to the standard error.

criminal network in the case where the reward factor rc and damage factor cc
were set to 100. What stands out in this figure is the rapid increase of the CO in
a preferential structured network with exponential growth. In comparison, the
increase of a CO in a random or small-world network was minimal, despite having
the same initial parameters. It is worth noting that the three curves and their
standard error did not overlap, which is a strong indication that the trends were
significantly different. Criminal behaviour seemed to spread differently across
populations. It is all the more interesting to see that criminal behaviour quickly
proliferated in a preferential network. The aforementioned results showed that
the evolution of the population differed based on its structure. The next step was
to examine how the topological structure of the criminal network differs within
the different population structures. Figure 3 shows the topological properties of
the flat evolution of a criminal network in the different population structures.
The three sub-plots visualise the distribution of the properties (secrecy, flow
of information, and size of largest component) using a kernel density estimate
plot. In the left sub-figure, the secrecy plot shows different distributions between
the social network structures. In the case of a preferential network, a uni-modal
distribution centring around 45 can be noticed. In the case of a small-world
population, a multi-modal distribution with a mean secrecy value of 35 can be
seen. In a random world, the secrecy distribution took a very slim peak with a
mean value of around 33. A pairwise Tukey’s Honestly Significant Differences test
[16] was performed with α = 0.05 on the distributions indicating that the random
and small-world distributions had identical mean. On the other hand, the flow of
information plot shows almost perfectly overlapping distributions. Thereby, the
distributions resembled a Gaussian distribution with a centre of approximately
0.165. With a p-value> 0.05, it can be assumed that three distributions have
the same distribution. The right sub-figure reveals the distribution of the size of
the largest component of a criminal network. With a perfect Gaussian curve, the
mean size of the largest intertwined criminal network in a preferential structured
world was 145. For the small-world network, the distribution was bimodal with a
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peak at 80 and 120. In a random linked network, the size of the largest component
was slightly lower with the data centred around 50. The pairwise Tukey indicated
that only the preferential data was significantly different from the other two
distributions. The results show that despite having the same flow of information,
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Fig. 3. Measurement of the topological evolution of the criminal network in the dif-
ferent populations (preferential/random/small-world). For each simulation, the games
were repeated 50 times with each game played 1e6 rounds. For a fair comparison, the
area under the curve was normalised to 1.

a CO in a preferential attachment could increase its secrecy as well as the size
of its largest component. As noted by [12], the more secret a network is, the less
exposed it will be and the more difficult it would be to shed light on it from
a law enforcement perspective. Thus, the results show that in a preferential
population, a criminal network can take an optimal configuration, allowing for
a high flow of information without compromising its secrecy.

Figure 4 presents the results obtained in case the CO grows within the popu-
lation. Looking at the secrecy plot over the rounds, one notes a rapid increase in
secrecy for the preferential attachment in comparison to the random and small-
world. A slight nadir can be noticed in the case of a small-world population.
However, after that, a slightly linear increase along the simulation can be ob-
served in the three populations. The flow of information in the middle sub-figure
4 illuminated a more complex pattern where the flow rapidly decreased in the
case of the small-world population to stabilise around 0.15. The CO underwent
a quick reduction in the flow of information in a preferential attachment before
having an almost linear increase along the simulation. For a CO evolving in a
random structured network, the flow of information seemed to evolve around the
initial value of 0.17. The right sub-figure demonstrates a clear pattern where the
preferential data increased exponentially from 95 to around 3500 interconnected
MCO in only 1e6 rounds. In contrast, for the random and small-world network,
the evolution of the largest component was minimal. Overall, in each sub-figure,
the curves seemed to follow unique trajectories. Furthermore, there was little to
no overlap in the standard errors in the secrecy and size of the largest compo-
nent, which could be an indication of significant differences between the curves.
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For the flow of information figure, it is more difficult to assume no overlap.
Based on the authoritative reference from [23], a Monte Carlo bootstrapping
test was performed to assess the statistical significance. Since it is assumed that
the points are correlated for each simulation, block bootstrapping was applied.
The hypothesis test stated that for each metric, the distributions statistically
differ. For preferential attachment, the size of the largest component increased
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Fig. 4. Measurement of the topological evolution of the criminal network in the dif-
ferent populations (preferential/random/small-world). The left sub-figure shows the
evolution of secrecy within a CO. The middle figure shows the evolution of the flow
of information in a CO. The right sub-figure depicts the size of the largest connected
component of a CO within a population. For this simulation, the default parameters
(Table 1) were used with rc = cc = 100. The line corresponds to the mean value of 50
games with the respective standard error.

faster than the other structures. A possible explanation for this might be that, as
pointed out by [3], in a preferential configuration the existence of so-called hubs
— highly connected nodes — might ensure the high connectivity between nodes
and so easily create giant components. The giant component is judged as being
a threat to national security [11]. Moreover, contrary to [12] claims, the results
seemed to agree with [8,20] who stated that the presence of hubs increases the
efficiency of the CO. While increasing the size of the largest component, the CO
was able to maintain or even increase the flow of information/efficiency. Thus, if
the preferential configuration is indeed the surrounding structure of a CO, then
particular attention should be brought to its evolution. Also, in comparison, the
small-world exerted a certain degree of local clustering compared to the random
population, which might explain why, in a small-world, the spread of criminal
behaviour was slightly more favoured. However, one needs to account for the
limitation of the used metrics. As pointed out earlier, the secrecy Equation 2
does take into account only the number of edges and vertices but does not cap-
ture the cohesion between these nodes and edges. Therefore a combination of
metrics, including the flow of information, was necessary.
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4 Conclusion

In this paper, we introduce a modelling approach to increase the understanding
of the evolution of criminal networks given the underlying social network and the
social environment. This was accomplished by combining an exogenously given
population and an endogenously emerging criminal network: the constructed
model raises an interesting aspect that is not yet present in the current liter-
ature [4,6,7,12,14,18,33]. The results indicated that the underlying structure of
the social network has a non-negligible influence on how the model behaves.
Furthermore, the findings advise to take into account the influence of social
networks when investigating the spreading of criminal behaviour within a popu-
lation. It has been shown that a preferential structured population facilitates the
dissemination of criminal behaviour while creating an efficient structure in the
context of the flow of information and secrecy. The applicability of this research
in practice can be ensured by calibrating the presented model against longitudi-
nal data and fine-tuning the model’s parameters. The data could correspond, for
example, to the social network of a population collected by a national statistical
office combined with longitudinal data of criminal networks defined by crimi-
nal investigations. The calibration would allow for a close-to-reality simulation,
where specific scenarios can be analysed. In this manner, law enforcement can
use this simulation to mimic police interventions and examine the resilience of
a criminal network and consequently adapt their strategies. The research can
be extended by introducing the concept of strong/weak ties to better model the
evolving social ties of the surroundings of a criminal network. Additionally, as
discussed in Section 3, it is presumed that local clustering in the network could
be a potent force for the spreading of a criminal network. Hence, it might be
interesting to elaborate on this claim. Local clustering is often characterised by
local communities. Thus, an analysis could be conducted on the different com-
munities to ascertain how criminal behaviour spreads within them. This research
is theoretical at the moment and aims to provide a scientific basis for further
research to build on it. One important criterion is the creation of the population.
A limitation of the design is the exogenously imposed ties within the population.
Furthermore, the different parameters used for the simulation add uncertainty to
it. It is important to bear in mind that the presented findings may be somewhat
limited by the huge degree of freedom the simulation entails and the enormous
search space generated. In this research specific cases have been analysed and
thus cannot be easily translated to more general situations. Nonetheless, the
results have shown the importance of taking into account network explicit struc-
tures which were not taken into account in [5,12,14,18,21].
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