
Dynamic Data Replication for Short
Time-to-Completion in a Data Grid

Ralf Vamosi1[0009−0002−8712−6564] and Erich Schikuta1[0000−0002−4126−4243]

University of Vienna, Faculty of Computer Science, Vienna, Austria
{ralf.vamosi,erich.schikuta}@univie.ac.at

Abstract. Science collaborations use computer grids to run expensive
computational tasks on large data sets. Tasks as jobs across the network
demand data and thereby workload management and data allocation
to maintain the computational workflow. Data allocation includes data
placement with different replication factors (multiplicity) of data.
The proposed data replication & allocation model can place multitudes
of subsets of a data population in a distributed system, such as a com-
puter cluster or computer grid. A stochastic simulation with a data and
computing example from the ATLAS Physics Collaboration shows its
potential usability in one of the largest Computing Grids. This paper
showcases data allocation with different replica factors and various num-
bers of subsets to improve the overall situation in a computer network.

Keywords: data replication · data placement · data partitioning · data-
intensive computing

1 Introduction

Data replication is essential for quicker response or time-to-completion in com-
puter clusters and data grids. Replication involves generating copies of data on
different nodes or systems in the network. Data parallelization reduces the time
required to read and complete computations, balances the processing load, and
improves system resilience. The base case has a replication factor of 1, meaning
that only one copy of the data is stored in the system. This is often referred to
as a single-replica or non-replicated setup. Other cases are replication factors of
2 or more. A fraction of an integer means that a data subset is replicated.

The motivating use case for the presented method is the ATLAS physics
collaboration. The scientific collaboration stores data as files across a worldwide
computing grid with 160 geographically distant sites. The data is organized into
labeled data sets or file collections that can change over time, and the files are
the primary units for computational jobs.

Delay or latency in computer networks, especially across wide area networks
(WAN), can cause delays in workflow, and how data replication can improve
the situation by promoting the local processing of data sets. However, jobs must
be allocated to appropriate sites with the necessary resources to support the
required computation. Load balancing ensures that jobs are placed at sites that

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_52

https://dx.doi.org/10.1007/978-3-031-36024-4_52
https://dx.doi.org/10.1007/978-3-031-36024-4_52

2 R.Vamosi, E.Schikuta

can support the necessary computations. The site with input data is preferred
as the target to fully utilize processing resources and reduce delays.

In the same way, data sets cannot be randomly placed on sites or nodes due
to storage limitations leading to two major points: Every time a job needs to
run, it may transfer files as its input and thereby use a system bottleneck, the
interlinking network (WAN) between sites. The network consists of non-uniform
sites providing resources with considerable differences. Furthermore, network
connections vary from site to site due to cost and provision limitations.

2 State of the Art

Data replication has a long history. The technique is referred to with multiple
terms and seen from different points of view. The main reasons for replication
are data backup and data parallelization. It was investigated when distributed
databases were used, so parallelization was to be utilized. Data replication is NP-
complete due to the combinatorial explosion in the selection process. Research
on data replication presents various models and algorithms for file placement and
replication in distributed systems. The models focus on factors such as storage
capacity, network bandwidth constraints, load balance, reliability, and cost trade-
offs. They also use different approaches, including deterministic and stochastic,
and hybrid models that combine both. Many software architectures have been
proposed for parallel systems [2]. Mathematical models like game theoretic and
Markov decision process models also make file placement decisions.

The paper of [3] investigates the mathematical modeling of a network of nodes
with replicated data files, focusing on transactions involving multiple files. The
authors consider two types of transactions, namely, query and update traffic,
and use a linear cost model to illustrate optimal file assignment to nodes. They
present bounds on the number of file copies required in the network based on the
query, update traffic, and derive a test to determine the optimal configuration.

An algorithm for dynamic replication of a data object in distributed database
systems that adapts to changes in the read-write pattern, continuously moving
the replication policy toward an optimal one, is presented in [7]. The algorithm
can be integrated with concurrency control and recovery mechanisms and provide
a lower bound on the performance of any dynamic replication algorithm.

The paper of [4] proposes replication management services and protocols for
efficient and fast access to large and widely distributed data in Data Grids. The
cost model for replication decisions consider factors such as run-time read/write
statistics, response time, bandwidth, and replica size. The system evaluates the
costs and performance gains of creating each replica and organizes them in hi-
erarchical and flat topologies to minimize inter-replica communication costs.

The paper from [5] summarizes research on genetic algorithms (GA) to op-
timize data replication in large distributed systems and reduce network traffic
delays. The authors compare their GA approach to a greedy method in a static
scenario with constant read/write demands and also propose a hybrid GA ap-

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_52

https://dx.doi.org/10.1007/978-3-031-36024-4_52
https://dx.doi.org/10.1007/978-3-031-36024-4_52

Dynamic Data Replication for Short Time-to-Completion in a Data Grid 3

proach to handle changing patterns. The experiments are conducted with up to
25 sites and 90 data objects.

The paper of [1] explores the energy efficiency and bandwidth consumption of
data replication in cloud computing data centers, considering the QoS improve-
ment achieved by reducing communication delays. A mathematical model and
extensive simulations are used to evaluate the performance and the trade-offs.

The paper from [6] proposes an approach based on evolutionary clustering to
improve data allocation in distributed systems. Popularity information allocates
data items to storage nodes, including a stochastic search with a fast clustering
method. The method improves data allocation without changing the number
of replicas in the global file system while considering storage constraints and
improving data access performance.

3 Optimization Method

The proposed heuristic optimization solves data replication and partitioning by
inferring from a large data population into smaller subsets for replication and
placement. Major factors in parallel computing are data available on multiple
nodes, the different types of data, and the read frequencies. Read patterns intro-
duce some degree of unpredictability in the job execution process among sites.
The uncertain nature is modeled as probability mass functions (PMF).

Our model shows how patterns in data are used to fulfill replication for
a distributed workflow. For an overall improvement, average values are taken
from network connections. Dynamic replication is supported because runs can
be repeated as often as necessary for any data share and replication factor. The
method returns a tuple of subsets replication runs. The optimization process
aims to minimize the target cost/loss by conditionally finding subsets in the
data population:

argmin
A

costnetwork(A)

s.t.

AT ×wpoint ≤ wsite

(1)

, where the parameter A defines the objects or points per subset A1, ..., AN .
A is a slim matrix with one row per data point and one column per subset. A
’1’ indicates one replica (row) in a subset (column). Multiples are possible for
higher replication factors. The network cost costnetwork(A) will be introduced
next. wpoint is a column vector representing the sizes for data points, and wsite

is a column vector holding the maximum sizes for the final N subsets.
During search steps, the method keeps the parameters if it results in im-

provement and repeats until no further satisfaction can be achieved. The effort
to improve continuously increases as better data sampling becomes harder on a
higher baseline. Algorithm 1 outlines this process as pseudo-code: The func-
tion setSystemParameters() sets the values for system parameters and variables
before each run, including network variables, site variables, datasets, and job

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_52

https://dx.doi.org/10.1007/978-3-031-36024-4_52
https://dx.doi.org/10.1007/978-3-031-36024-4_52

4 R.Vamosi, E.Schikuta

sets. setupClustering() setups and selects the clustering method. Due to space
limitations, we are unable to provide any discussion. Next-neighbor is the base
method. setSeeds() memorizes the seed positions and partially alternates them.
The cost function calculateCost() depends on its parameters, system variables,
and meta parameters. Its parameters are the data set X and a tuple of data
placement at each site or node denoted as A = (A1, ..., AN). Some Ai may be
empty. The method adds subsets A′ = A′

1, ..., A
′
N for each replication to the

allocated data A = A1, ..., AN . The final data allocation always depends on the
replication case. An optimization yields the initial data placement A merged with
A′, where the tuples are joined element-wise (denoted by operator +), incorpo-
rating constraints for capacities. The free space is w′ ← wi − |Ai| for the subset
with index i depending on the maximum size wi and the data Ai already placed
at the i’th site or node. Depending on the cost, the update process continues
and returns the dominating solution stored as A′′.

Algorithm 1 Data sampling algorithm with clustering for data replication.
Input parameters are data set X, subsets of data placement A = A1 to AN ,
maximum subset sizes w = w1 to wN , and the number of clusters k.

function getSubsets(X, A, w, k)
for i in 1 to N do

w′ ← wi − |Ai|
k′ ← GetNumberOfSeeds(w’, i, k)
setSeeds(X, k′)
A′

i ← getSubsetComplementary(X,Ai, w
′)

end for
return A′ = A′

1, ..., A
′
N

end function
setSystemParameters()
cost← calculateCost(X, A)
counter ← 0
while termination condition not met do

setupClustering(counter)
A′ ← getSubsets(X,A,w, k)
cost′ ← calculateCost(X, A+A′)
if cost′ < cost then

A′′ ← A′

cost← cost′

else
counter ← counter + 1

end if
end while
return A′′, cost

Within processes performing the algorithm, the stochastic search of subsets
results better over time, and the best solution converges to the optimum. How-

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_52

https://dx.doi.org/10.1007/978-3-031-36024-4_52
https://dx.doi.org/10.1007/978-3-031-36024-4_52

Dynamic Data Replication for Short Time-to-Completion in a Data Grid 5

ever, it will generally not reach the global optimum since of the large non-convex
search space. A mechanism intended to prevent a process from getting stuck is
to monitor and count the failures to improve the solution. If stuck in a local
minimum, it cannot proceed, and the parameters are then randomized again
to start over. The data sampling is based on clustering, whose parameters are
type, weights, and number of clusters. Type is, e.g., soft or hard clustering. The
parameters alternate over time. The cluster seeds may sometimes spread if the
solution becomes better this way. An opposite case would be, for example, one
cluster for a subset that stays as one cluster in the final solution.

In the context of data replication and data placement, the primary factor
is the data transfer time, which will be selected as the target cost/loss. The
costnetwork(A) penalizes external data transfers from site to site.

costnetwork(A) =
∑

j∈{jobs}

costnetwork(A, j) (2)

, where A is the allocation parameter as before. j is a job from the job batch
(validation). costnetwork(A, j) denotes an affine approximation dependent on the
non-local files for job j given A. The value per file depends on the file size and
the bandwidth between the source and the target.

4 Justification and Evaluation

Resources, such as computing resources, storage, and network bandwidth, are
randomly chosen for each simulation run. Random selection means for storage,
for instance, that each node gets a random value within a range to store files. At
the end of value sampling for parameters, the situation must be such that the
sites or targets (subsets from the data perspective) provide room for all replicas.
Additionally, there are several job types and several data types to represent the
real-world scenario. This shall represent the essential types or classes if there are
more than that. The simulation runs multiple times to average out uncertainties
on parameters and variables. The results ensure a fair evaluation without picking
random or biased values in the first place. The model of the parallel system
consists of a network with sites, jobs as basic processing units, and data points
representing datasets or collections of files:

Network connections of sites are each sampled before a simulation run rel-
ative to the maximal connection bandwidth:
bandwidthi ∈ [0.1, ..., 1] for all sites 1, ..., N

Sites or nodes hold data and process jobs on the data. Each site has several
different resource types, such as high-mem (high memory) or GPU. A site with
small storage must rely more on others to provide files to be processed. The
model mimics that each node handles different job types differently quickly.
The number of jobs is expressed as a value in the probability mass functions
depending on type and size, such as in Fig. 2.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_52

https://dx.doi.org/10.1007/978-3-031-36024-4_52
https://dx.doi.org/10.1007/978-3-031-36024-4_52

6 R.Vamosi, E.Schikuta

(a) Summed up running jobs per site. (b) Stored data points per site.

Fig. 1: Random sample for 10 sites (ordered by storage capacities) with jobs (left)
and data stored (right).

resourcetypes = {A,B,C,D}: ∀t ∈ resourcetypes : Pr(t) ∈ [0, 1], normalize
such that

∑
i∈resourcetypes Pr(i) = 1 (PMF)

Jobs reads a data point of the same type:
type ∈ {A,B,C,D} The location of a running job depends on its type and the
provided capacities of the same type on sites based on probability mass functions
(PMF) looking like the one in Fig. 2 (left). A job prefers local data since the
workload balancer would rather choose a site with input data. This rate is built
into the model with a 50 percent suppression of the branching factor of N (N
sites). In other words, jobs aim at internal data with double chances.

(a) Job probabilities of one site. (b) Probabilities of global data types.

Fig. 2: A random sample of independent probabilities of local job types (left)
versus global data types (right).

Data points are collections of files called datasets in the ATLAS use case.
Such a data set comprises 1 to 100 files in the model to reflect dynamic dataset

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_52

https://dx.doi.org/10.1007/978-3-031-36024-4_52
https://dx.doi.org/10.1007/978-3-031-36024-4_52

Dynamic Data Replication for Short Time-to-Completion in a Data Grid 7

sizes. Some popularity is assigned to datasets since there are differences in how
likely a data set will be read. Data sets are from 100 users. Those users are in
classes of job types and of activeness.
type ∈ {A,B,C,D}
size ∈ [1, 100] files such that the median is 10 files.
user_id, which indicates the users submitting jobs.

5 Results and Conclusions

For replication factor 1, the method places the single copies of data to sites.
Each data point is placed once. From this situation, for each number of sites in
the network, replication runs are performed.

In the first demonstration, replicated data is added on all sites. Fig. 3
shows replication of different shares of the global data and for a different number
of sites or nodes in the network. A replication factor of, e.g., 1.4 means replication
of 2 on a 40 percent data share. The second demonstration includes the
most extensive five sites providing free space for replicating data. The third
demonstration covers feeding only the variable of user_id as data into the
replication method. As in the section 4 on data described, there are 100 users,
of which about ten are very active. These are like power users submitting lots
of jobs. Users further submit jobs onto one or two data types. The results of the
second and third cases are shown in Fig. 3.

Each run in the evaluation is repeated several times. System parameters for
each run differ significantly, so the fluctuations from run to run are large. Many
more simulation runs (per replication, per number of sites) would be necessary
to obtain smooth curves.

6 Conclusion and Future Work

The method looks for the best cluster parameters on a 10 % sub batch and
then uses the near-optimal solution on the full data. We observe only several
percentage points decrease from a 100k batch to the entire data population
of 1M. On a high-performance computer, applying the optimization would be
feasible on a data batch of 1 million data points from 10 million data points in
total. Complexity also depends on the dimensionality of data and the number
of clustering types besides general model parameters and population size.

It is further shown that even on a weak predictor such as users, the method
finds proper subsets to get closer to a near-optimum data replication and place-
ment.

References

1. Boru, D., Kliazovich, D., Granelli, F., Bouvry, P., Zomaya, A.Y.: Energy-efficient
data replication in cloud computing datacenters. Cluster computing 18, 385–402
(2015)

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_52

https://dx.doi.org/10.1007/978-3-031-36024-4_52
https://dx.doi.org/10.1007/978-3-031-36024-4_52

8 R.Vamosi, E.Schikuta

Fig. 3: Relative improvements on network metric depending on replication factors
and the number of sites in the network.

2. Brezany, P., Mueck, T.A., Schikuta, E.: A software architecture for massively par-
allel input-output. In: Waśniewski, J., Dongarra, J., Madsen, K., Olesen, D. (eds.)
Applied Parallel Computing Industrial Computation and Optimization. pp. 85–96.
Springer Berlin Heidelberg, Berlin, Heidelberg (1996)

3. Casey, R.G.: Allocation of copies of a file in an information network. In: Proceedings
of the May 16-18, 1972, spring joint computer conference. pp. 617–625 (1971)

4. Lamehamedi, H., Szymanski, B., Shentu, Z., Deelman, E.: Data replication strate-
gies in grid environments. In: Fifth International Conference on Algorithms and
Architectures for Parallel Processing, 2002. Proceedings. pp. 378–383. IEEE (2002)

5. Loukopoulos, T., Ahmad, I.: Static and adaptive distributed data replication using
genetic algorithms. Journal of Parallel and Distributed Computing 64(11), 1270–
1285 (2004)

6. Vamosi, R., Lassnig, M., Schikuta, E.: Data allocation based on evolutionary data
popularity clustering. In: Computational Science–ICCS 2018: 18th International
Conference, Wuxi, China, June 11–13, 2018, Proceedings, Part I 18. pp. 153–166.
Springer (2018)

7. Wolfson, O., Jajodia, S., Huang, Y.: An adaptive data replication algorithm. ACM
Transactions on Database Systems (TODS) 22(2), 255–314 (1997)

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_52

https://dx.doi.org/10.1007/978-3-031-36024-4_52
https://dx.doi.org/10.1007/978-3-031-36024-4_52

