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Abstract. Prototyping large circuits on multi-FPGA platforms requires to
partition the circuits into sub-circuits, each to be mapped in a given signle
FPGA. While most existing partitioning algorithms focus on minimizing cut
size, the main issue is not to map long paths across multiple FPGAs, as
it may cause an increase in critical path length. To address this problem,
we propose a new hypergraph model, for which we design algorithms for
initial partitioning and partition refinement. We integrate these algorithm
in a multilevel framework, combined with existing min-cut solvers, to tackle
simultaneously both path length and cut size objectives. We observe a sig-
nificant reduction in critical path degradation, by 12%-40%, at the cost of
a moderate increase in cut size, compared to path-agnostic min-cut methods.

Keywords: hypergraph partitioning · critical path · VLSI · FPGA · fast
prototyping.

1 Introduction

The typical hardware design flow comprises several steps, such as prototyping, ver-
ification, floor planning, placement and routing, possibly on very large logic circuits.
The methods which perform these steps often take advantage of netlist partitioning,
which enables divide-and-conquer approaches to separate circuits into parts of smaller
size that are easier to handle. Thus, reduce as much as possible the work on the global
circuit. This study focuses on netlist partitioning for prototyping on multi-FPGA
platforms, for circuits that do not fit into a single FPGA. In this case, the circuit is
divided into several parts, one for each FPGA. Valid partitions must respect capacity
constraints on each FPGA and their interconnections. In addition, it should mitigate
a possible increase in the signal propagation delay of the longest combinatorial path,
known as the critical path. Indeed, in synchronous circuits, critical path length deter-
mines the maximum frequency at which the circuit may operate.mapping long paths
across several FPGAs is likely to degrade the critical path. During the last 30 years,
several hypergraph partitioning tools have been developed [4,9,14]. These tools use
a multi-level framework, that consists of three phases: coarsening, initial partitioning,
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and refinement. The coarsening phase recursively uses a clustering method to trans-
form the hypergraph into smaller ones, that possess the same topological properties.
Then, an initial partitioning is computed on the smallest coarsened hypergraph.
Finally, for each coarsening level, the solution for the coarser level is prolonged to
the finer level, and then refined using a local refinement algorithm. A survey on
hypergraph partitioning has been recently issued [5]. Common metrics to measure the
quality of hypergraph partitions are fc, which sums the number of cut hyperedges,
and fλ, which sums the number of connected parts, minus one, for each hyperedge,
and which represents the amount of information that needs to be transferred across
parts. However, all of these tools, while commonly used in production chains, have
not been designed to minimize the critical path length, as shown in [2]. This is why
several authors proposed pre- and/or post-processing steps to reduce the degradation
of cut paths [2,12]. However, the main objective addressed by these works is to reduce
the cut along critical paths as much as possible, not considering the critical path’s
degradation resulting from subsequent mapping onto a non-fully connected target
topology. This paper proposes a cost function to minimize path cost degradation
during partitioning, based on a modeling of circuits as red-black hypergraphs. We
also propose a weighting scheme to drive min-cut tools as well as a partitioning
scheme comprising several algorithms. It includes an adaptation of a refinement
algorithm that aims at preventing cuts across the longest paths while still trying
to minimize cut size. The remainder of the paper is organized as follows. Section 2
presents the notations, definitions, and previous work on time-driven partitioning.
Section 3 presents our approach, relying on a new initial partitioning algorithm and
an extension of the well-known Fiduccia–Mattheyses (FM) algorithm [8] to minimize
path cost. Simulation and results are presented in Section 4. We conclude in Section 5.

2 Preliminaries

2.1 Notations and Definitions

Oriented hypergraphs are a generalization of oriented graphs in which the notion of
arc is extended to that of hyperarc, which can connect one or more source vertices to
one or more sink vertices. In our context, we consider only hyperarcs that comprise a
single source vertex. Let H def

= (V,A,Wv,Wa) be a directed hypergraph, defined by a
set of vertices V and a set of hyperarcs A, with a vertex weight functionWv : V→R+

and a hyperarc weight function Wa : A−→R+. Every hyperarc a∈A is a subset of
vertex set V: a⊆V. Let s+(a) be the source vertex set of hyperarc a, and s−(a) its sink
(destination) vertex set. We consider here that each hyperarc has a single source, so
∀a,|s+(a)|=1. As hyperarcs connect vertices, let Γ(v) be the set of neighbor vertices
of vertex v, and Γ−(v)⊆Γ(v) and Γ+(v)⊆Γ(v) the sets of its inbound and outbound
neighbors, respectively. In the model we propose, hypergraphs that model circuits
are represented as sets of interconnected Directed Acyclic Hypergraphs (DAHs),
associated with a red-black vertex coloring scheme. Red vertices correspond to I/O
(Input/Output) ports and registers, and black vertices to combinatorial components.
Let VR⊂V and VB⊂V be the red and black vertex subsets of V, such that VR∩VB=∅
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and VR∪VB=V. A hypergraph or sub-hypergraphH is a DAH iff its red vertices vR∈
VR are either only sources or sinks (i.e., Γ−(vR)=∅ or Γ+(vR)=∅), and no cycle path
connects a vertex to itself. Using this definition, we can represent circuit hypergraphs
as red-black hypergraphs, which are sets of DAHs that share their red vertices. Let
H(V,A)

def
= {Hi,i∈{1...n}} be a red-black hypergraph, such that everyHi is a DAH and

an edge-induced sub-hypergraph of H. In our model, the paths in H to consider when
addressing the objective of minimizing path-cost degradation during partitioning
are only the paths interconnecting red vertices, as these red-red paths represent
register-to-register paths. Since only red vertices are shared between DAHs in H, any
red-red path only exists within a single DAH and can never span across several DAHs.

Let us define P as the set of red-red paths in H. From these paths and
a function dmax(u, v) which computes the maximum distance between vertices
u and v of some DAH H, we can now define the longest path distance for
H as: dmax(H)

def
= max(dmax(u, v)|u, v ∈ H) and, by extension, for H, as:

dmax(H)
def
= max(dmax(H)|H∈H).

A k-partition Π of H is a splitting of V into k vertex subsets π1..πk, called
parts, such that: (i) all parts πi, given a capacity bound Ci, respect the capacity
constraint:

∑
v∈πi
Wv(v)≤Ci; (ii) all parts are pairwise disjoint: ∀i 6= j,πi∩πj = ∅;

(iii) the union of all parts is equal to V:
⋃
iπi=V. For a given partition Π of H,

the connectivity λΠ(a) of some hyperarc a∈A is the number of parts connected by
a. If λΠ(a)>1, then a is said to be cut; otherwise it is entirely contained within a
single part and is not cut. The cut of partition Π is the set ω(Π) of cut hyperarcs,
such as ω(Π)

def
= {a∈A,λΠ(a)>1}. The cut size is defined as fc

def
=

∑
a∈ω(Π)Wa(a).

The connectivity-minus-one cost function fλ of some partitioned hypergraph HΠ

can then be defined as: fλ =
∑
a∈A(λΠ(a)−1). Consequently, in our model, the

distance between two vertices u and v may increase during partitioning due to the
additional cost of routing paths between two (or more) parts. Let Dij be the penalty
associated with parts i and j such that if u is in part i and v is in part j, then:
dΠmax(u,v)≥dmax(u,v)+Dij. The objective function fp can therefore be defined as the
minimization of the longest path of H subject to partition Π: fp = min dmax(H

Π).

2.2 Related Work

Many previous works exploit existing min-cut partitioning tools, used as black boxes,
and try to account for additional constraints. For instance, [2] presents a multi-
objective approach based on hMetis. In [1] is proposed a pre-processing coupled with
a recursive bi-partitioning algorithm using hMetis. They use path length values a
hyperarc weights, to channel the partitioner towards minimizing path cost. Since path
length values can change as the result of a bi-partitioning step, hyperarc weights are
reevaluated after each of them to identify critical hyperarcs. Reference [6] compares
a classic method using hMetis for partitioning, followed by a placement algorithm,
with a derived approach consisting in placing and routing during the partitioning
step. More recently, [10] performs some pre- and post-processing on the hypergraph
to capture the critical path minimization objective within the cut-size metric, using
hMetis as a partitioning tool. However, minimizing cut size is often not the most
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relevant objective, and biasing min-cut cost functions to take path-cost minimization
into account does not allow to handle properly platform topologies.

3 Contributions

Our first contribution consists of two initial partitioning algorithms, called DBFS
and DDFS. They are based on breadth-first-search and depth-first-search methods,
respectively. Both are driven by vertex criticality, i.e., the length of the longest path
traversing a vertex. These algorithms are combined with some cut minimization tools
to achieve both objectives of preserving critical paths and minimizing the cut. Our
second contribution consists of an extension of the FM heuristic [8], called DKFM.
It aims to perform moves that minimize the cost function fp, taking into account the
target topology. The objective is to use DKFM as a post-processing cut minimization
tool, for instance as a refinement method within a multilevel framework.

...

...

DDFS :

...

...

DBFS :

Fig. 1: A hint on DDFS vs. DBFS. All hatched nodes will be placed in the same
part. DBFS avoids multiple cuts along paths within a DAH, while DDFS does not
(see the red circle in the DDFS example). However, if a critical path starts in DAH2

from a sink of DAH1, DBFS can produce a cut along this critical path, while DDFS
cannot (see the red circle in the DBFS example).

3.1 Initial Partitioning Based on Breadth-First Search Driven by
Vertex Criticality (DBFS)

This first initial partitioning algorithm is based on an extended search along the
vertices of H, driven by criticality. It groups neighboring vertices of each vertex v
according to their criticality, to avoid multiple cuts along a long path. In our context,
the multiple-cut constraint is also important because we need to avoid cutting the
same path multiple times. Indeed, the cutting cost Dij is often larger than the path
length. However, many paths can be shorter than the longest path before partitioning.
Therefore, our algorithm considers the criticality of each vertex v in addition to
the criticality of its neighbors. To select vertices to consider, we use their in-degree
value, decremented for all outgoing neighbors of v when visiting v. This gives us a
topology-driven hypergraph traversal, considering vertex criticality. This algorithm
allows us to perform a walk along the topological order in the current DAH, by
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selecting, at each step, a neighbor of maximum criticality. This choice allows us to
favor the grouping, within the same part, of neighboring vertices with high criticality.
As long as the size constraint is respected, each selected vertex will be placed in the
same part. An example can be found in Figure 1.

3.2 Initial Partitioning Based on Depth-First Search and Vertex
Criticality (DDFS)

This second initial partitioning method performs a depth-first traversal driven by the
criticality of the vertices. The main difference with the previous method is that all
vertices will be inserted in the same priority queue, regardless of whether they are red
or black. It enables a more compact visit order concerning the criticality value, but
does not consider the topological structure of DAHs in H. The main idea behind this
method is to be able to pack interconnected critical paths of several DAHs in the traver-
sal order. If the topology allows for it, the most critical neighboring paths will be placed
in the same part, as long as the size constraint is respected. An example can be found in
Figure 1. However, DDFS may induce cuts within the DAHs and a possible path cost
degradation for paths of smaller criticality. The relative efficiency of DBFS and DDFS
is likely to vary, depending on circuit topologies and the distributions of path lengths.

3.3 FM-Based Local Optimization Heuristic (DKFM)

A commonly used heuristic in partitioning tools is the algorithm proposed by Fiduccia
and Mattheyses (FM) [8]. It is based on local search to move vertices across parts
so as to reduce the cut of balanced hypergraph bipartitions. FM computes a move
gain for each vertex and performs a single move at each step.

We propose an extension of this algorithm to minimize critical path degradation
during partitioning. Let Π be a partition of H; the gain function for some vertex v
and some candidate partition Π′ in which v may be moved to part πk is defined as:
gain(Π,Π′,H)

def
= dΠmax(H)−dΠ′

max(H).

4 Experimental Results

4.1 Methdology

The hypergraphs of our benchmark are taken from the Titan23 [11] and ITC99 [7]
benchmarks, and Chipyard [3]. We also defined two target topologies composed of
four elements. Test Architecture 1 connects its four FPGAs as a cycle π0,π1,π2,π3,
while Architecture 2 is a chain π0,π1,π2,π3. In order to evaluate the DBFS and
DDFS algorithms, we first generated an initial partition and then ran kKaHyPar
to refine it, using the objective function fλ. To test the DKFM refinement algorithm,
we first ran PaToH-S, khMetis, and kKaHyPar on the weighted hypergraph
instances xxx_w, with our weighting scheme driven by vertex-hyperarc criticality.
Then, we applied our DKFM algorithm as post-processing to these outputs, to study
the path-cost improvement and possible degradation of the connectivity-minus-one
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metric induced by our refinement pass. We chose khMetis over hMetis, used in
previous works, because we get better results in the majority of cases for both target
topologies. We select PaToH in its "speedy" (S) version to see whether it could
produce acceptable solutions in combination with DKFM, because computation time
is a critical aspect of industrial-size circuit prototyping.

4.2 Initial Partitioning Algorithms

   B14     B17     B18     B19  neuron  segm.  SLAM stereo OneCore des90 Pulsar

    Instances

(a) Comparison of
fp with respect to inf fp on Architecture 1

(b) Comparison of
fp with respect to inf fp on Architecture 2

Fig. 2: Comparison of fp on Architecture 1 (a) and Architecture 2 (b).

Figures 2a and 2b evidence that in many cases, initial partitioning algorithms
DBFS and DDFS, combined with our weighting scheme, can influence a cut min-
imization partitioning tool to improve path cost. However, for some instances (b17,
OneCore), the algorithms perturb the cut minimization tools and produce worse
results. Combined with a cut minimization tool, these two algorithms yield an average
improvement in 18% (DBFS) and 45% (DDFS) of the instances when mapping onto
Architecture 1, and an average improvement in 36% of the instances on Architecture 2,
for both algorithms. Compared to the cut minimization approach, DBFS improves
the path cost metric by 8% and 7% on the two architectures, respectively, while DBFS
improves path cost by 7% and 17%, respectively. Moreover, in many instances, the
produced path cost is equal to the lowest possible cost, and it is impossible to improve
it further. It shows that both algorithms indeed prevented critical paths from being
cut. We already see a gain at this scale, which is encouraging for testing these methods
on more significant cases. The quality of the partitions produced by the two algorithms
varies, depending on the instances. We suppose this somewhat reflects the topological
properties of the instances (e.g., whether the black vertices are heavily interconnected
at each level). Further analysis are required to determine relevant criteria. Our two
algorithms differ in the way vertices are visited: DDFS (depth-first) is more likely to
cluster long paths in the same part, while DBFS (breadth-first) is more likely to cluster
together vertices on the same level with respect to source red vertices. We assume
that these algorithms succeed in preventing the same path from being cut multiple
times, by packing together the neighborhood of black vertices within DAHs. It allows
them to produce results that are topologically compatible with the different hardware
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topologies. Notably, DBFS is adapted to linear (streamlined) hardware topologies,
where vertices belonging to the same levels of computation must be packed together.

4.3 Refinement Algorithm

Figures 3a and 3b display path cost values for the smallest possible value of fp (that
is, the one obtained when no edge is cut).

(a) Comparison of
fp with respect to inf fp on Architecture 1,

with 20% DKFM moves and ρ=0

(b) Comparison of fp
with respect to inf fp on Architecture 2,

with 20% DKFM moves and ρ=0

Fig. 3: Comparison of fp on Architecture 1 (a), and Architecture 2 (b).

Figure 3a and 3b evidence an improvement in maximum path cost on all instances,
ranging between 27% and 54%, depending on the architectures. Interestingly, despite
using the fast mode, PaToH-S +DKFM provides similar results. In some cases,
DKFM does not improve the solutions produced by the cut minimization tools
or can even produce worse solutions (e.g., for stereo_vision). We attribute this
behavior to difficulties experienced by the DKFM algorithm to get out of the local
minima computed by the min-cut algorithms, all the more in the case of weighted cut
minimization. This, already partially addresses the path cost minimization objective.
On the other hand, DKFM can improve a weighted cut minimization solution (e.g.,
for des90) on both architectures. Finally, in instances not already of minimal path
cost, DKFM improves the path cost by 12% to 17% for Architecture 1, and by 12%
to 40% for Architecture 2. At this scale, we already see a gain from a solution close to
a local minimum, which is encouraging to test DKFM on larger target topologies and
with a dedicated cut minimization algorithm that allows more movement. Indeed,
Architecture 2 evidences the drawbacks of plain partitioners when communication costs
vary significantly between different parts. DKFM is more likely to benefit to partitions
in which vertices have been mapped onto remote parts instead of closer ones. In this
case, moving a few vertices to the right parts can make a huge difference. It is especially
true for case SLAM_spheric, for which the improvement is of more than 50% (highly
influencing the computation of the average gain over all instances for Architecture 2).
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5 Conclusion and Future Work

This paper presents the red-black oriented hypergraph model and its associated
red-red path cost metric. Our results show that the DBFS and DDFS algorithms
are relevant and complementary initial partitioning methods, depending on circuit in-
stances and their underlying topologies. DKFM results show an average improvement
in critical path length ranging between 12% and 40%, compared to the initial min-cut
solutions. These algorithms seem to be a good approach to improve performance of
multi-FPGA prototyping. However, these methods can degrade cut size by a factor
from 1.2 up to 5.0. At this stage, only the DKFM refinement algorithm takes into
account the topology of the target hardware and correctly manages outliers. Hence,
it may not be easy to improve incrementally and locally on results provided by the
architecture-unaware algorithms DBFS and DDFS. It would be interesting to work on
the placement of vertices according to the target topology from the initial partitioning
phase, as SCOTCH [13] does for unoriented graphs.
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