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Abstract. We propose a methodology for calibrating a physical system simula-

tor and whose computational model represents its events in time series. The 

methodology reduces the search space of the fit parameters by exploring a data-

base that contains stored historical events and their corresponding simulator fit 

parameters. We carry out the symbolic representation of the time series using 

ordinal patterns to classify the series, which allows us to search and compare by 

similarity on the stored data of the series represented. This classification strate-

gy allows us to speed up the parameter search process, reduce the computation-

al cost of the adjustment process and consequently improve energy cost sav-

ings. The experiences showed a reduction in the computational cost of 29% 

compared with our tuning methodology proposed in previous research. 

Keywords: Parametric simulation, Tuning methodology, Ordinal pattern, Time 

series classification, Data driven. 

1 Introduction 

Computer simulators are software components developed from the implementation of 

a model that represents a real system whose behavior is interesting to study or predict 

future events. As the simulator evolves over time, it tends to lose its calibration, since 

the parameters that define the system depend on physical magnitudes that define the 

real system and these change over time. A simulator is out of calibration when it pro-

duces output data that differs from the observed data, which is the data that is| meas-
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ured in the physical system, and the difference between both data exceeds a predeter-

mined limit of error [10, 11, 12]. 

The calibration of a simulator is the process by which the search for the set of pa-

rameters close to the optimum is carried out through parametric simulations. The 

search for the values of the adjustment parameter is carried out over a very large 

search space given the large number of different values and the number of parameters 

that can be associated with the model that represents the physical system. Conse-

quently, the simulator will be executed with each set of parameters (simulation sce-

nario), generating the simulated data set for each of the scenarios [11, 12]. As can be 

seen, the calibration process takes a large amount of time and requires a high cost of 

computing resources, which consequently results in a process with a high energy cost.  

In our research, we propose a novel methodology to reduce the computational cost of 

the adjustment and calibration process of a physical system simulator. 

In this article we propose a methodology that offers us a more efficient way to find 

the parameters' values that best fit the observed data. We improve the efficiency of the 

search algorithms by reducing the search space of the adjusted set of parameters. 

Consequently, we can achieve considerable savings in computing resources. We use 

the strategy of storing the data defining a particular event in each moment in the past, 

when we had detected a lack of precision in the simulation.  We also store the set of 

adjusted parameters found for tuning the simulation at that moment. In this way, we 

can use the stored events in the future when a disruption event occurs, and we can 

find those similar events that can potentially tune the simulator to the current event 

using a low computational cost method. 

Our methodology fits into the data assimilation paradigm, since it combines observa-

tions of reality data and predictions of the states of the model parameters [8]. It also 

fits into the data driven paradigm in that measurement data is used to improve model 

accuracy and runtime, while the computational output produced by the model helps 

drive the measurement process itself [9]. We implement an ordinal pattern [1, 2, 3, 4] 

approach to efficiently find similar events stored in the past events database.  In this 

work, we use a riverbed computational model that represents its events of interest 

through time series. 

In Fig. 1 you can see the entities that interact with the “Fit Model” component: “ Real 

System” represents the real physical system and it is this which  provides the ob-

served data. “Model Simulator” represents the simulator, which is fed with the simu-

lation scenarios and produces the output data, and “Past Events Store” represents the 

data store where the events that have occurred are recorded. 
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Fig. 1. Fit Model Contextual Diagram. 

 

Carrying out the experiences and using our proposed methodology, we achieved sav-

ings in the use of computational resources of 29% compared to the successive steps 

methodology SSM [12]. Compared to the number of simulation runs we needed with 

the SSM methodology, we saved on average 1044 simulator runs, which leads direct-

ly to energy cost savings. It was also possible to speed up the search process for the 

adjustment parameters. 

This article is organized as follows: In Section 2 we describe the simulation model 

and the simulation domain characterization, and in Section 3 we describe the pro-

posed methodology, which includes, in subsections, the explanation of symbolic rep-

resentation and the search temporal subsequences by similarity. In Section 4 we ex-

plain the experimental environment and the results of this experimentation. The con-

clusions are presented in Section 5. 

2 The simulation model and the simulation domain 

characterization.  

We use a simulation model developed by the National Water Institute of Argentina 

(INA), which calculates the translation of waves in rivers and canals [11]. The simula-

tor output data to be considered in this work are the heights of the river at 15 meas-

urement stations, that is to say, physical points of the riverbed where the height of the 

river is measured. The simulator fit parameters that have the greatest impact on the 

output data are the roughness coefficients, the “Manning coefficient” and the “Man-

ning edge” [10]. The simulation model discretizes the riverbed in 76 sections, and for 

each section, supplying the Manning coefficient values will be required. For a com-

plete run of the simulator, a set of adjustment parameters must be provided, which is 

made up of all the Manning values for both edge and plain for each of the 76 sections. 

For each section, riverbed and plain subsections are considered at both ends of the 

section, and it is necessary to have parameter values in each of these subsections. 
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The simulator provides the simulated time series, which are the outputs it produces in 

each complete run, for each station, for the configured scenario. This series contains 

the daily height of the river for the simulated period. 

There is also a time series set of observed data, which are the real records taken daily 

of the height of the river in 15 monitoring stations for a period of 11 years. With this 

data set, the output of the simulator will be validated at each station. 

3 Proposed methodology. 

We propose a calibration methodology that reduces the search space of the fit parame-

ters by using the exploration of a database that contains stored historical events of the 

real system, the historical events of the simulated system and the history of the best fit 

parameters of the simulator. 

The methodology is centered on a Fit Model, which for its analysis and description is 

divided into the following functional modules (see Fig. 2): 1) Check Simulation - 
Reality (CSR): This checks that the time series output from the simulator has an 

acceptable similarity with respect to the time series of the real data observed. 2) 

Simulations Shoot (SS): This triggers the simulations with new simulator input pa-

rameters to obtain the best-fit outputs. 3) Set / Get Past Events (SGPE): This per-

forms the reading, writing of events in the database and the characterization of events. 

 

 
Fig. 2. Fit Model Detail - Functional Modules. 
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In the following subsections, we carry out a detailed explanation of each of the func-

tional modules including the innovative concepts that are used in the methodology. 

 

3.1 Check Simulation - Reality 

The CSR functional module has the purpose of measuring and controlling the differ-

ence between the output values produced by the simulator for a simulation scenario 

and the actual measured values observed at station 𝑘. 

We define 𝑆 as the set of the complete scenarios of the simulator, 𝑆𝑘 as the set of scenari-

os for station 𝑘 and  𝑠𝐾̂ ⊆ 𝑆𝑘 ⊆  𝑆 as the best fit scenario for measuring station 𝑘. 

Using a divergence index implemented with the mean square error estimator (RMSE), 

we determine the best scenario 𝑠𝐾̂ by comparing the simulated data set 𝑆𝐷 with the 

observed data set 𝑂𝐷. 

 𝐷𝐼𝑘,𝑑
𝑡 =  𝑅𝑆𝑀𝐸𝑘,𝑑

𝑡 = √ ∑  𝑖=𝑑−1 
𝑖=0 (𝐻𝑘

𝑂𝐷,𝑡− 𝐻𝑘
𝑆𝐷,𝑡)

𝑖

2

𝑑

2

 (1) 

The 𝐷𝐼𝑘,𝑑
𝑡  index is the RMSE error of the series of simulated river heights 𝐻𝑘

𝑆𝐷,𝑡  in 

relation to the observed series of river heights 𝐻𝑘
𝑂𝐷,𝑡

, at a measuring station 𝑘, for a 

value in time 𝑡, for a subsequence of the series of size 𝑑.  

We define acceptable difference 𝐴𝐷 as a reference value, provided by the engineers 

who modeled the river and use the simulator selected for this work, and its decimal 

value can be between 0 ≤  𝐴𝐷 ≤  1. 𝐴𝐷 as will be the reference value to determine 

if 𝐷𝐼𝑘,𝑑
𝑡  is acceptable or not. When 𝐴𝐷 is close to 0, it will indicate that the scenario is 

a good fit, otherwise it will indicate that it is a bad scenario. 

If the 𝐷𝐼𝑘,𝑑
𝑡  index is greater than the reference value 𝐴𝐷, then a difference has been 

found between the observed and simulated series. This indicates that an adjustment of 

the simulator must be carried out by requesting Simulations Shoot to execute the sim-

ulator for a new set of parameters.  

If the 𝐷𝐼𝑘,𝑑
𝑡  index is less than or equal to the reference value 𝐴𝐷, then the difference 

between the observed and simulated series is acceptable, therefore a scenario  𝑠𝐾̂ has 

been found. In this case, Set / Get Past Events is requested to store 𝑠𝐾̂ , the observed 

height subsequence 𝐻𝑘,𝑑
𝑂𝐷,𝑡

 of size 𝑑, the simulated subsequence  𝐻𝑘,𝑑
𝑆𝐷,𝑡  of size 𝑑 and 

the time 𝑡. 

 

3.2 Simulations Shoot 

The Simulations Shoot functional module has the purpose of requesting its execution 

to the simulator by supplying the values of the scenario set  𝑆 that is desired to be 

tested in the simulation process. Scenario set 𝑆 is composed of the adjustment parame-

ters 𝑆𝑐𝑚 ⊆ 𝑆, one for each section. 𝑚 is the section number and its value is between 

1  ≤  𝑚 ≤  76 . The scenarios 𝑆𝑐𝑚that are supplied to the simulator contain the 𝑚𝑝𝑚 

that is Manning value of plain and 𝑚𝑐𝑚 that represents the Manning value of the 
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channel. We define a scenario 𝑆𝑐𝑚 for a section 𝑚, subdivided into three subsections, 

like a 3-tupla (2).  

 𝑆𝑐𝑚  =  (𝑚𝑝𝑚 , 𝑚𝑐𝑚 , 𝑚𝑝𝑚) (2) 

Simulator execution is triggered with the set of adjustment parameters 𝑆 provided by 

the CSR module after requesting its execution. 

The simulation response, which is the simulated data series, is sent as a response to 

the CSR module for evaluation. 

 

3.3 Set / Get Past Events 

Functional module Set / Get Past Events performs the management of writing, reading 

the database and it handles characterization and symbolic representation of the subse-

quences of time series that are stored. Receives from RSC requests to retrieve past 

events from the database based on a current event or to update the database with new 

events that are not yet registered.  

For better analysis and description, we divide it into the following functional sub-

modules: Symbolic representation (SR), Look for similarity (LFS) y Read / Write past 

events (RWPE). In the following subsections we explain this in detail. 

 

3.3.1 Symbolic representation  

The SR module has the purpose of mapping the subsequences of time series of the 

observed heights 𝐻𝑘,𝑑
𝑂𝐷,𝑡

 or simulated heights 𝐻𝑘,𝑑
𝑂𝑆,𝑡

 to symbolic representations. It also 

performs the unmapping of symbolic representations to subsequences of time series 

Fig. 3. 

The methods of symbolic representations of time series discretize the series and trans-

form it into a sequence of symbols making, in our case, the search for series of similar 

events from the past, stored in the database, more efficient, thus accelerating the pro-

cess of search by comparison. We will use the symbolic representation methodology 

of Bandt and Pompe (2002) [4], hereinafter BP, to represent a subsequence of values 

of a time series into an array of values belonging to an alphabet 𝛩 which will repre-

sent the characterization of the subsequence, where 𝜑 is a symbol,  𝜑 ∈  𝛩 , and  0 ≤
 𝜑  ≤  𝑑, 𝑑 (𝑑 ∈  ℕ), 𝑑 is the number of values in the subsequence is the number of 

values that make up each subsequence and this is called the embedding dimension, 

which is usually set between  3 ≤ 𝑑 ≤ 7. 

In the BP approach, the concept of ordinal pattern (OP) (also called permutation pat-

tern) is defined [1, 2, 3, 4]. Given a time series 𝑋𝑡, It is divided into subsequences of 

consecutive values  ( 𝑥𝑡, 𝑥𝑡 + 𝜏 , . . . . , 𝑥𝑡 + 𝜏𝑑) ; 𝑑 (𝑑 ∈  ℕ); y 𝜏 (𝜏 ∈  ℕ) the time be-

tween consecutive points and this is called the embedding delay, usually set to 1 [1]. 

An ordinal pattern 𝜋𝑡 is a sequence of symbols 𝜑 of dimension 𝑑 which is associated 

with each of the time series subsequences. The OP is a sequence of symbols 𝜑 ∈  ℕ, 
where each symbol inside the pattern indicates the permutations that must be 
applied to the element of the temporal subsequence in order obtain a set of 𝑑 

dimension, with the increasing order of the values of the temporal subsequence. To 
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broaden any knowledge, we recommend the bibliography where the subject is ex-

plained in detail [1, 2].  

 
Fig. 3. Map / Unmap Ordinal Pattern. 

 

We then use, in our methodology, the BP approach through a mapping function M, 

which transforms a time series subsequence 𝑠𝑋𝑡𝛼  into an ordinal pattern 𝜋𝑡𝛼 , for time 

series 𝑋𝑡 with (𝑠𝑋𝑡𝛼 ⊆  𝑋𝑡), for a moment in time 𝑡𝛼 , for an interval of time be-
tween consecutive points 𝜏 (𝜏 ∈  ℕ) , for a number of values 𝑑 (𝑑 ∈  ℕ) of values 
that make up the subsequence [5, 6]. All the above can be summarized in (3). 

 𝑀 ( 𝑠𝑋𝑡𝛼 , 𝑡𝛼 , 𝜏  , 𝑑)  ↦   𝜋𝑡𝛼 (3) 

To solve the mapping 𝑀, we developed a software program that performs the trans-

formation using “ordpy” [3], which is a software package developed in python that 

implements permutation entropy and several of the main methods related to the Bandt 

and Pompe framework.  

 

To get a subsequence or a list of subsequences that have a certain ordinal pattern 𝜋𝑡𝛼, 

we use the unmapping function 𝑈. To solve the function unmapping 𝑈, we develop a 

software program that searches the database of stored past events and returns a list 𝐿 

of the subsequences which have the same ordinal pattern 𝜋𝑡𝛼. That is, given a𝜋𝑡𝛼 we 

get a list 𝐿  where 𝑠𝑋𝑡𝛼 ⊆  𝐿 (4). 
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 𝑈 (𝜋𝑡𝛼)  ↦  𝐿  (4) 

3.3.2 Look for similarity.  

The LFS functional module has the purpose of searching for subsequences of similar 

time series. 

From the mapping of each subsequence, we can identify its associated ordinal pattern 

and classify the temporal sequences [6, 7]. Therefore, we can relate a set of temporary 

subsequences to an OP that will be the class to which the subsequence belongs. Thus, 

we can indirectly compare two time subsequences by comparing their OP. Two tem-

poral subsequences with the same OP belong to the same class, that is, it indicates a 

certain similarity between the subsequences, but it does not necessarily indicate that 

they are the same. With a similarity index implemented with the root mean square 

error estimator (RMSE), the similarity between two temporal subsequences that have 

the same OP is quantified.  

Let us see how a similarity search develops: 

Given the subsequence 𝑠𝑋𝑡𝛼, from eq. (3), we obtain the ordinal pattern OP 𝜋𝑡𝛼  . 
Then we access the database of past events and look for the temporary subsequences 

that have the same OP.  If we find any 𝜋𝑡ꞵ  equal to 𝜋𝑡𝛼, then we generate a list of 

temporal subsequences that are related to the pattern 𝜋𝑡ꞵ . 

Then, with each of the subsequences found in list L we apply the similarity index 

𝑆𝐼𝛼,ꞵ to determine what the subsequence 𝑠𝑋𝑡ꞵ most similar to subsequence 𝑠𝑋𝑡𝛼 is. 

That is to say, if the index  𝑆𝐼𝛼,ꞵ is closest to the value 1 (5). 

 𝑆𝐼𝛼,ꞵ = 1 − √
 ∑  𝑖=𝑑 

𝑖=0 (𝑥𝛼
 − 𝑥ꞵ

 )𝑖
2

𝑑

2

 (5) 

The similarity index can vary between 0 ≤  𝑆𝐼𝛼,ꞵ  ≤   1 , the closer it is to 1, the 

more similar the subsequences will be. 
As previously explained, the search method generates list 𝐿, which  is obtained 
from the data previously stored in 𝑃𝐸𝑆 (Past Events Store), so that 𝐿 ⊆  𝑃𝐸𝑆. 
The 𝑃𝐸𝑆 module is described below. 
 
3.3.3 Read / Write past events.  

The functional module Read / Write past events is for the purpose of storing and ob-

taining the data in the database 𝑃𝐸S (Past Events Store). Past events are recorded in 

the 𝑃𝐸S , which can then be used in similar current situations. They are stored in a 

table whose record has the following structure:  

𝑡: The time the event occurs. 
𝑠𝑋𝑡: The subsequence of the time series  𝑋𝑡. 
𝜋𝑡 : The ordinal pattern related to the subsequence 𝑠𝑋𝑡 . 
𝑆𝑐: The full set of simulator best fit parameters associated with the moment 𝑡 . 
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4 Experience Environment and Experimental Results 

 The experiments that we present in this article were carried out focusing on a sin-

gle measurement station. The station on which the experiments were carried out has 

the real name of "Itabaite" and its mnemonic in the simulator is "ITAE" and repre-

sents a city located in the domain of the river 𝑂𝐷𝐾. So, for the station 𝑘 = "𝐼𝑇𝐴𝐸" we 

have a series of observed data  𝑆𝐷𝐾 with a quantity of 5533 records of daily meas-

urements of water height 𝐻𝑘
𝑂𝐷  between the dates 09/04/2010 ≤  𝑡  ≤  09/04/

2010 . The 𝑂𝐷𝐾 series has a maximum height of 58.3, a minimum height of 52.3 and 

a standard deviation of 0.93.  

To carry out the experiments, the observed data was partitioned 𝑂𝐷𝐾 at 70% - 30% 

(see Fig. 4). 70% corresponds to the reference series, which are the first records of the 

observed data series that goes from 𝑡1 = 01/08/1994 to 𝑡70 = 31/12/2005. 

These observed data 𝑂𝐷𝑘
 𝑡1, 𝑡70  are stored in the PES database, together with the corre-

sponding simulated data 𝑆𝐷𝑘
 𝑡1, 𝑡70, with their associated ordinal patterns 𝜋𝑘

 𝑡1, 𝑡70 

(see Fig. 5, the histogram of π) and their corresponding best-fit parameters 

𝑆𝑐𝑚
 𝑡1, 𝑡70 . Therefore, with these data we built the database, PES, in a 

startup/initial state, to search for similarities. 
 

Fig. 4. Annualized mean square error between the simulated series with adjusted pa-

rameters and the observed series. 

 

The process of carrying out the experiment consisted of adjusting the simulator every 

5 days, the number of days is 1500 for the period of 𝑡71 to 𝑡100, therefore 300 ad-
justments should be made. If we consider that the SSM methodology has an av-
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erage execution of 12 calls to the simulator for each adjustment, then SSM on 
average would call the simulator 3600 times to perform the 1500-day adjust-
ment.  

 
Fig. 5. Histogram of ordinal patterns. 

 

To determine the efficiency of our methodology, we measured the number of times 

the correct fit parameters were obtained for a current event by accessing the PES da-

tabase and carrying out a similarity search. If the adjustment parameters were not 

found in PES, then we proceeded to obtain it using the SSM methodology, making 

parametric simulations. In Fig. 6 the goodness of the proposed methodology can be 

observed. 
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Fig. 6. Savings obtained with the proposed methodology. 

 

With the methodology that we propose, we found the adjustment parameters in PES 

in 87 (29%) adjustment processes, while in the remaining 213 (71%) adjustment pro-

cesses, we obtained the adjustment parameters with the SSM methodology. This indi-

cates a saving of computing resources of 29%. 

5 Conclusions and future works 

In this article, we have proposed a new simulator tuning methodology that saves the 

use of computational resources by reducing the search space of the adjustment param-

eters set. 

We understand that the strategy of using ordinal patterns to classify the time series in 

a database greatly accelerated the search process for the adjustment parameter regis-

tered in the database through similarity comparison. The experimental results of this 

work are promising and validate our proposal. We obtained a 29% improvement 

compared to the methodology used in our previous work. 

It is good to indicate that the process of loading the events in the database is simple 

and of low computational cost, since the information is stored and expanded as the 

simulator evolves over time in a dynamic way. 

It is noteworthy that we observe that the proposed methodology is scalable in terms of 

the potential ability to process a larger number of events. We attribute this quality to 

the classification approach of the time sub-series using the symbolic representation. 

There are several directions for future research, some of which could be: experiment-

ing with much more stored event information, investigating the relationships between 

ordinal patterns and the probability of occurrence of sequence patterns of ordinal 

patterns over time, and we are working to tune more domain points in the same sys-

tem calibration process. Also, a future direction in which we are focused is to extrapo-

late our methodology to other simulation models of physical systems that need to find 
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behavior patterns and that also need to tune their simulator automatically. The level of 

abstraction achieved with our methodology allows us to infer that extrapolations to 

other physical simulators are highly feasible, thus expanding its field of application. 

The motivation is broad and calls us to continue expanding our knowledge about this 

methodology. 
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