
Minimal Path Delay Leading Zero Counters on
Xilinx FPGAs

Gregory Morse1[0000−0002−0231−6557], Tamás Kozsik1[0000−0003−4484−9172], and
Péter Rakyta2[0000−0002−3506−558X]

1 Department of Programming Languages and Compilers, Eötvös Loránd University
2 Department of Physics of Complex Systems, Eötvös Loránd University, Budapest,

Hungary

Abstract. We present an improved efficiency Leading Zero Counter for
Xilinx FPGAs which improves the path delay while maintaining the re-
source usage, along with generalizing the scheme to variants whose in-
puts are of any size. We also show how the Ultrascale architecture also
allows for better Intellectual Property solutions of certain forms of this
circuit with its newly introduced logic elements. We also present a de-
tailed framework that could be the basis for a methodology to measure
results of small-scale circuit designs synthesized via high-level synthesis
tools. Our result shows that very high frequencies are achievable with our
design, especially at sizes where common applications like floating point
addition would require them. For 16, 32 and 64-bit, our real-world build
results show a 6%, 14% and 19% path delay improvement respectively,
enough of an improvement for large scale designs to have the possibility
to operate close to the maximum FPGA supported frequency.

Keywords: FPGA · MaxCompiler · Leading Zero Counters · High-Level
Synthesis · Vivado

1 Introduction

Leading Zero Counters (LZC [4] are of importance for various bit-level tasks,
most notably floating point addition and subtraction [12, 18, 10] such as in the
IEEE-754 standard. This is due to an effective subtraction when the signs are of
opposite polarity with addition, or identical polarity with subtraction. Rather
than the leading bit being one more, one less or identical to the original mantissa
size (adjusted for its guard and round bits), which are also the three cases where
rounding will occur, there also are all the cases where the result has some number
of less digits up to the mantissa size plus the guard and round bit or be an all
zero result. Since the exponent will need to be adjusted as well as the zero case
handled, all of this information is essential. Detecting the all zero case can be
merged into the logic of the leading zero detect as its intermediate information
must be propagated anyway.

In fact, a traditional clever use of floating point units (FPUs) addition/sub-
traction unit has been using the normalization process post-subtraction with

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_48

https://dx.doi.org/10.1007/978-3-031-36024-4_48
https://dx.doi.org/10.1007/978-3-031-36024-4_48


2 G. Morse et al.

custom byte-packing [2], by inserting an integer in the mantissa m and setting
the exponent to e = b − 1 where b is the mantissa size of the data type (e.g.
b = 24 for float32, b = 53 for float64). The floating point value is m ∗ 2e. There
is always an implied 2e added to the stored mantissa, in the IEEE standard
variants. Then by subtracting the exponent part 2b−1, the exponent becomes
the leading zero count. For more details, see the well known C implementations
of Find the integer log base 2 of an integer with an 64-bit IEEE float which is
a prime use case [2]. As an example, a double-precision number would set the
12-bits representing the exponent to 1023 + 53 − 1 = 0x433 where 1023 is the
exponent bias and the 52-bits of mantissa to the value to determine the LZC.
By subtracting 253−1, it effectively subtracts out the implied one at the 53rd
position, and requires re-normalizing, which places the leading zeros as the ex-
ponent. Merely subtracting the bias or 1023 from the 12-bits of the exponent,
yields the LZC.

More formally, we define the LZC-n for bit-vector Xn..1 as an ordered pair
(V,C) where

V =

1∧
K=n

Xk = Xn ∧Xn−1 ∧ · · · ∧X1 (1)

is the all-zero signal and

z(i, j) =

n−2i+j+1∨
k=n−2i+j

Xk

 ∨

 n−2i+j+2∧
k=n−2i+j+1

Xk ∧ z(i, j + 2)

 (2)

C =

⌈log2 n⌉−1n

i=0

V ∨

n−2i∧
k=n

Xk ∧ z(i, 0)

 (3)

represents the leading zero count as a bit-string (which is built via the concate-
nation operator ∥) in Boolean algebra as an infinite recurring relationship (where
∨ and ∧ are logical OR and logical AND respectively). In our notation, a bar
above represents a logical negation and ⌈x⌉ is the ceiling operation of rounding
x up to the nearest integer. In the special case that X contains all zeros, then
V and all bits of C are set to 1. In some contexts, such as one-hot decoding,
these artifacts may be unnecessary. However as will be seen, their intermediate
computation is convenient regardless.

Although traditionally a focus on power is prevalent, we have chosen to fo-
cus on performance, then area and only minimize power if it does not effect
performance or area. As higher area allows more concurrency and thus more
performance, our justification for high-performance computing (HPC) is due to
work in the area of Quantum simulation. But an investigation into the latest
offerings for HPC in Ultrascale and Vivado is thus forthcoming.

Our contribution is thus a more general framework which uses careful and
precise integration of a more modular framework, which yields a better result.
Expert re-synthesis of integrated units of a modular design, can unsurprisingly
yield a better state-of-the-art result. The exact ideas and optimizations used are
important in a broader range of circuits.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_48

https://dx.doi.org/10.1007/978-3-031-36024-4_48
https://dx.doi.org/10.1007/978-3-031-36024-4_48


Minimal Path Delay Leading Zero Counters on Xilinx FPGAs 3

1.1 Efficient Logic Block Usage on Xilinx FPGAs

This discussion is in part intended to draw attention to the complexity and
multi-layered and even ambiguous approach the tools take to configuring the
more advanced FPGA features. Various settings being utilized at various stages
inclusively or exclusively with in some cases profound effects on the output make
Vivado an expert tool on a per platform or even per module basis. It intends
to draw attention to the reader all attributes and settings which are relevant or
worth of consideration in this specific context.

Xilinx FPGAs have long utilized Look-Up Table (LUT) 6’s with 6 input
signals and one output signal [1] providing a realization of a generic 6 input
binary function f(x0, x1, x2, x3, x4, x5) where xk ∈ {0, 1}∀k ∈ {0, . . . , 5}, thus
appropriate to realize high performance signal processing implementations [8]. 4
LUT-6 appear in a single slice in the architecture. A LUT-6 can also be thought
of as a 4-to-1 multiplexer where 4 inputs are selected from based on the other 2
inputs as

f(x0, x1, x2, x3, x4, x5) =


x0 if x4 ∧ x5

x1 if x4 ∧ x5

x2 if x4 ∧ x5

x3 otherwise

(4)

where the number encoded by the 2 binary inputs can be used to govern one of
the remaining 4 inputs onto the output. However modern Xilinx 7-series and Ul-
trascale FPGAs also offer additional features. The LUT N:M (LUTNM) VHDL
feature allows combining logical LUTs into a single physical LUT with multiple
outputs (explicitly specified by VHDL property LUTNM and its hierarchical
counterpart HLUTNM ). This is ubiquitous as its presence is in both the logic
slices (SLICEL) and the memory slices (SLICEM ) the latter of which can be
repurposed as Shift-Register LUTs (SRLs). It will occur by inference during
synthesis if the no LUT combining option (-no_lc) is absent as well as during
placement when no physical synthesis in placer (-no_psip) is absent [15]. Since
the LUT-6 are actually implemented as an element called a LUT6-2 as seen in
Fig. 1, the flexibility of N ≤ 5 common inputs mapped to M = 2 outputs has
allowed increased efficiency involved with common design patterns. In practice
this means a realization of two 5-input LUTs with common inputs and having 2
separate outputs [13], as the 6-th input is used to multiplex between the 2 out-
puts. Therefore, any LUT-2 and LUT-3 without common inputs can be easily
combined into a single instance of LUT6-2. Likewise two LUT-3 which share a
single common input would also be combine-able. In 1, x5 is the 6th input used
for multiplexing, while x0, . . . , x4 are the 5-common inputs to the two LUT-5s.
As can two LUT-5 with 5 common inputs, etc. Formally we have the two LUT-5s
with outputs f2(x0, . . . , x4), f3(x0, . . . , x4) (see Fig. 1) but the latter output is
replaced with

f1(x0, . . . , x5) =

{
f3(x0, . . . , x4) if x5

f2(x0, . . . , x4) otherwise
. (5)

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_48

https://dx.doi.org/10.1007/978-3-031-36024-4_48
https://dx.doi.org/10.1007/978-3-031-36024-4_48


4 G. Morse et al.

This physical realization turns out to be very convenient for logic circuits like
LZCs. For clarity, notation LUT−k where 2 ≤ k ≤ 6 represents a logical LUT,
while LUT6− 2 represents the physical element. The second feature of modern

LUT-5
x4..0 f3

LUT-5
f2

MUX

x5

f1

Fig. 1. LUT6-2 in Xilinx Ultrascale Configurable Logic Blocks (CLBs).

Xilinx FPGAs is the existence of two extra multiplexing units in all of the slices
called a MUXF7 and MUXF8 as shown in Fig. 2. The figure shows its name
usage context but these elements can also function as a generic multiplexer of
two LUTs or two MUXF7s). On the left, is the optimal CLB arrangement of a
7-bit multiplexer with the MUXF7 preceding the output, while on the right is
the optimal CLB arrangement of an 8-bit multiplexer, from which these units
receive their name. Inputs and outputs are indicated by arrows. These elements
allow further multiplexing of the outputs of the LUT6-2s. Conceptually, MUXF7
and MUXF8 allow 2 LUT-6s to be turned into an 8 to 1 multiplexer or 16 to
1 multiplexer, respectively [3]. However, they need not be strictly used for this
specific purpose. At this point we notice the presence of a MUXF9 unit in the
design, however, it is not inferred during the synthesis process and the direct
utilization of this element might cause undesirable path delays (unless under
specific circumstances), so we do not consider this element in this work. MUXF7
and MUXF8 are explicitly specified via the MUXF_MAPPING VHDL property,
and can be converted to LUT-3s via the -muxf_remap option in the design
optimization phase. (The 3-input MUXF7 can be also considered as a 3-input
LUT having a configuration space of size 23 = 8. [15]) A limitation of the outlined
design is that the LUT6-2 pairs in a slice connect to one of the two multiplexed
inputs of these multiplexer units, but not to the selector signal (see x6/x7 on
the left/right side of Fig.2.). This limitation makes the MUXF7 and MUXF8
units furthermore only optimal in specific contexts, depending upon the routing
intricacies. Xilinx provides the Vivado Design Suite [16] to perform synthesis and
implementation for its various FPGA models. The synthesis translates the VHDL
into an internal model format of LUT, MUXF7, MUXF8 and optionally LUTNM
units. Post-synthesis, the optional optimize design stage is typically invoked
to start the implementation process. It can for example, reduce logic which is
unnecessarily cascaded. The -remap option (and its related -aggressive_remap
and -resynth_remap) could have a significant effect on the final circuit, often
adding additional LUTs which would reduce path delay. Nevertheless, this option

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_48

https://dx.doi.org/10.1007/978-3-031-36024-4_48
https://dx.doi.org/10.1007/978-3-031-36024-4_48


Minimal Path Delay Leading Zero Counters on Xilinx FPGAs 5

LUT-6
x5..0 f1

LUT-6
f2

MUX

x6

f
MUXF7

x6..0 f1

MUXF7
f2

MUX

x7

f

Fig. 2. MUXF7 and MUXF8 in Xilinx CLBs when used as a 7 and 8 bit multiplexer.

for simple measurements can be disabled. The physical optimizations, power
optimizations and routing remain to achieve an implementation whose bitstream
can be utilized.

2 High-Level-Synthesis (HLS) Tools Background

For this project, rather than writing VHSIC Hardware Description Language
(VHDL, where VHSIC is Very High-Speed Integrated Circuit), we used the
MaxCompiler Data-Flow Engine (DFE) framework to provide a high-level Java
description describing the calculations in a high-level extended variant of the
Java programming language.

MaxCompiler uses a kernel design methodology, where each kernel is buffered
by pulling input from a data stream and pushing output onto a data stream.
It provides IP to integrate the PCIExpress subsystem for input and output
seamlessly as data streams which can feed into the various kernels. MaxCompiler
ultimately invokes Vivado to synthesize and implement the design. MaxCompiler
has been used for large-scale research involving trigger algorithms [11], Complex
FIR Filters [14] and even stencil computing [5] and most recently for quantum
computer simulation [9]. But the idea of creating state-of-the-art circuits at a
small scale has not been investigated. Although MaxCompiler supports at a
kernel-level IP integrated solutions, it does not offer such functionality at a
circuit level within a kernel.

The main feature needed to implementation efficient designs is part of the
aptly named optimization library in MaxCompiler. The pipelining register dis-
able and pipelining register enable features which effect a stack of states de-
scribing how operations pipeline which are constructed during any Java code
in the current scope. Manually pipelining a signal s is easily done via explicit
pipelining. By default, high level tools often pipeline every logic at the operator
level which is not efficient for constructing efficient LUT-mapped circuitry. For
example consider a bitwise AND: A & B will be stored in a register by default.
This is equivalent to the behavior in no pipelining mode of pipeine(A & B).

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_48

https://dx.doi.org/10.1007/978-3-031-36024-4_48
https://dx.doi.org/10.1007/978-3-031-36024-4_48


6 G. Morse et al.

There is furthermore far less research into state-of-the-art circuits which are
constructed via high-level synthesis tools as opposed to those based upon hand-
crafted VHDL.

3 Description of the LZC design and implementation

There are two typical design patterns when synthesizing logic circuits, one is the
cascade, sequential arrangement, and the other is a tree, or parallel arrangement.
The timing properties, and amount of resources are very much dependent upon
this choice, and there is usually a point at which performance versus resources
becomes a critical deciding factor. The interesting case, is when one aspect can
be improved without worsening the other.

Several recent LZC designs have been published. The first introduced a
leading-zero anticipation framework to handle carry-lookahead operations [4].
This was improved upon to use complex gates to improve the speed [6]. There
was also a design which focused on modularity rather than efficiency [7]. Vivado
High-Level Synthesis itself also provides a default implementation based on the
C instrinic __builtin_clz which are generic but not optimal, and further leave
the all-zero case as undefined [16].

We offer an improvement over the method which Zahir, et al. introduced [17].
Their method used an LZC-8 consisting of 3 LUTs cascading into a LUT6-2 as
a primitive for larger LZC units. By removing the cascaded LUT structure of
their 8-bit LZC primitive which although necessary for a 7 or 8 bit LZC, turns
out to be logic expandable and reducible into the 16-bit layer, the path delay
can be significantly improved. This in turn allows for meeting timing at higher
frequencies. Furthermore, by careful use of LUT combining, rather than a 3-level
cascade with 10 LUTs, we achieve 6 LUTs cascading into 4 LUTs, preserving the
LUT usage.

Furthermore we generalize the solution to any bit size, and not just even
powers of two. Floating point implementations for various mantissa sizes can be
further optimized to its precise LZC bit-optimized variant. Even at common sizes
of IEEE-754 single and double precision simple implementations require LZC of
26 and 55 while an extended precision x86 long double requires 68, depending on
implementation details regarding rounding strategies. In an FPGA, there is no
native or built-in FPU, so this functionality cannot be replicated via the method
mentioned in the introduction.

Now we note several special base cases of LZCs: (i) LZC for 1-bit is trivial and
requires no LUTs just the constants, the original signal or its inversion (which
count as 1 LUT only if a final signal). (ii) The 2-bit variant is similarly trivial
requiring a 2-LUT but these signals can be merely propagated to the next level
if part of a bigger LZC. (iii) For 3 or 4 bits, it will require 2 LUTs. (iv) For
5 or 6 bits, 3 LUTs. (v) And finally for 7 or 8 bits, 4 LUTs like in the prior
method. (vi) Various occurrences where the formulae simplify down to a single
signal, or even two or in some cases 3 signals may allow merging of signals into

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_48

https://dx.doi.org/10.1007/978-3-031-36024-4_48
https://dx.doi.org/10.1007/978-3-031-36024-4_48


Minimal Path Delay Leading Zero Counters on Xilinx FPGAs 7

later layers, but such fine-tuned optimization should be reserved for Intellectual
Property (IP)-level solutions, and we do not concern ourselves with this.

For convenience, we label a k-bit LZC unit (k >= 2) with LZC−k. The
primary design issue in creating larger LZC units is to solve the odd/even par-
ity computation of the result in a LZC-15/16 unit (i.e LZC with 15 and 16
bits) whose inner intermediate values we refer to as leading-parity-one/two/three
(LP1, LP2, LP3 ) along with one to compute the all-zero indicator V (labeled
by LP4 ) and whose truth table is defined in Table 1. X6-X1 represent the 6
most significant bits in little-Endian order. Note that LP3 is not present for
LZC-4 or less while LP2 is not present for LZC-2 or less. The input value of X
represents “don’t care” or any value. These values are cascaded into a second
stage of LUTs provided in later equations. We also provide the formulae which
are straight-forward derivations from Eqs. (1) and (3), and we have left them in
their form which uses the minimal possible Boolean operations:

LP1 = X6 ∧
(
X5 ∨

(
X4 ∧ (X3 ∨X2)

))
(6)

LP2 = X6 ∧X5 ∧
(
X4 ∨X3 ∨

(
X2 ∧X1

))
(7)

LP3 = X6 ∧X5 ∧X4 ∧X3 (8)

LP4 = X6 ∧X5 ∧X4 ∧X3 ∧X2 ∧X1 (9)

A general 16-bit function takes at least a two-stage LUT cascade on a LUT-
6-based architecture, which turns to be both sufficient and efficient in the case
of LZC-15/16, due to the regularity and evenness of the calculation. A possible
realization of a LZC-15/16 is to cascade two LZC-8 sub-units of Ref. [17]. De-
termining the parity with these LZC-8 sub-units would require 4 intermediate
parity signals, and 3 all-zero signals. Since this approach would not properly
fit the Ultrascale CLB architecture, the solution is to introduce a specialized
strategy by utilizing a special signal splitting along groups of 6, 6 and 5 bit-
slices of the input X for LP1 and the all-zero checks (see Fig.3 for details). In
3, combined LUT6s are colored dark. The high (H) 6 bits of the input X are
elaborated by the upper half of the design, while the LUTs in the bottom row
operates on 5-bit slices of the input X denoted by low (L) and lower low (LL)
labels. The design can be adopted for LZC-9 up to LZC-14 implementations with
signal reductions as described in the text. Note that LP1LL is computed by the
LP1 truth table 1 by setting X6 = 0. The LP1 computation need not consider
the least significant bits (X11, X5, X1) in the presence of the all-zero signal
(reducing the bit-slices effectively to 5, 5 and 4 bits). This observation reduces
the final computation of LP1 to the combinations of 5 signals compared to 7
signals if maintaining the approach of Ref. [17]. To minimize the path delay for
LZC-15/16, we use an LZC-8-Intermediate, i.e. a non-cascaded design of 2 LZC-
8 units. The concept of the improved circuit is outlined in Fig. 3. In contrast to
the LZC-8-Intermediate used by 15 and 16-bit inputs, the 9 to 14-bit input X
is partitioned into two 8-bit segments (high and low) and transferred into LZC-
8-High and LZC-8-Low components. LZC-8-High refer to the top half of Figure
3 while LZC-8-Low indicate the high unit duplicated with X8..1 substituted for

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_48

https://dx.doi.org/10.1007/978-3-031-36024-4_48
https://dx.doi.org/10.1007/978-3-031-36024-4_48


8 G. Morse et al.

X6 X5 X4 X3 X2 X1 LP3 LP2 LP1 LP4
1 X X X X X 0 0 0 0
0 1 X X X X 0 0 1 0
0 0 1 X X X 0 1 0 0
0 0 0 1 X X 0 1 1 0
0 0 0 0 1 X 1 0 0 0
0 0 0 0 0 1 1 0 1 0
0 0 0 0 0 0 1 1 1 1

Table 1. Boolean Logic Mappings used by LZC-8-Intermediate results.

LUT-5/LUT-5

X8:6

LP1L LP4L

LUT-6

X8..3

LP2L

LUT-4/LUT-5

X5..1

LP1LL LP4LL

X5

LUT-5/LUT-4

X16..12

LP1H LP3H

LUT-6

X16..11

LP2H

LUT-6

X16..11

LP4H

X10..9

Fig. 3. Fully Parallel LZC-8-Intermediate circuit for LZC-15/16.

X16..9, having a symmetrical structure in this case. In order to fit the Xilinx CLB
architecture, the LZC-8-High and LZC-8-Low units are utilized in the following
way: 6 signals are received from LZC-8-High (LP1H , LP2H , LP3H , LP4H , X9,
X10 in Fig. 3) and from Low units (LP1H , LP2H , LP3H , LP4H , X9, X10 in
Fig. 3). In case the final LZC unit is less than 2, 4 or 6 bit-wide (corresponding
to LZC-9 up to LZC-14), the lower part of the design returns 1, 2 or 3 signals,
respectively. Now we switch to a more generic notation, as after the base case,
the units can be combined recursively to form larger units. In general, for LZC-k
where k = 8q or k = 8q − 1 (q ≥ 2, q ∈ Z), we have the following equations
which define temporary logic values (signals) VH , Z0H , Z1H , Z2H , Z1L , Z2L to
be used after (where the equations for VL, Z2L , Z1L , Z0L are equivalent to the
high equations for LZC-9 up to LZC-14):

VH = LP4H ∧X10 ∧X9,

Z2H = LP3H ,

Z1H = LP2H ,

Z0H =
(
LP1H ∧ LP4H

)
∨
(
LP4H ∧X10

)
,

Z2L = LP4L ∧X5.

Z1L = LP2L.

(10)

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_48

https://dx.doi.org/10.1007/978-3-031-36024-4_48
https://dx.doi.org/10.1007/978-3-031-36024-4_48


Minimal Path Delay Leading Zero Counters on Xilinx FPGAs 9

Observe that intermediary VH specifically has 3 signals involved in its computa-
tion, which will reduce possibility for LUT combining on the second stage, but
we have compensated for this with an efficient first stage. It will be combined
with at most 2 or 3 further signals to compute the LZC-16 unit signals. This
combined usage can be represented by on-chip multiplexers. VL and Z0H , Z0L

are not needed in further processing as will be described shortly. However, Z0H

is used in each LZC ranging from 9-bits up to 14-bits but not necessary in the
LZC-15/16.

Generalizing this scheme to arbitrary LZC sizes where 8 ≤ (k mod 16) ≤ 14,
one requires a simple fallback strategy where if LP3L is not present, LP2L is used.
If LP2L is not present then LP1L is used while both LP1L and LP4L are always
present. When 1 ≤ (k mod 16) ≤ 7) the same fallback strategy is used for LP3H
and LP2H , and X10 and X9 can be removed or set to zero if they are not present.
Furthermore, in this uneven case when k mod 16 < 8, we can assume when no
low pair is present that:

VL = Z2L = Z1L = Z0L = 1 . (11)

The correct result then just makes substitutions of the prior defined intermediate
values into the standard LZC equations, and this is the point at which the cascade
occurs. It is clear that all signals are functions of at most 6 Boolean signals:

V = VH ∧ VL (12)

Z3 = VH (13)

Z2 =
(
VH ∧ Z2H

)
∨ (VH ∧ Z2L) (14)

Z1 =
(
VH ∧ Z1H

)
∨ (VH ∧ Z1L) (15)

Z0 =
(
VH ∧ Z0H

)
∨ (VH ∧ Z0L) (16)

For LZC-15 and LZC-16, the LUT reduction modifications require the following
substitutions defining signals V and Z0:

V = LP4H ∧ LP4L ∧ LP4LL (17)

Z0 = LP4H ∧ ((LP4L ∧ LP1LL) ∨
(
LP4L ∧ LP1L

)
) ∨

(
LP4H ∧ LP1H

)
(18)

The multiplexer usage possibility is based on the simple relationship e.g.:

(
VH ∧ Z0H

)
∨ (VH ∧ Z0L) ==

{
Z0L if VH

Z0H otherwise
(19)

(while programmers might be more familiar with VH?Z0L : Z0H ).
The same technique as the first set of equations is then generalized and

repeated for the larger building blocks from LZC −k with k > 16 and beyond,
including inferring the low-signals as all true when there is an odd number of
signal groups leaving one without a pairing. Since signals created by Z1 and Z2

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_48

https://dx.doi.org/10.1007/978-3-031-36024-4_48
https://dx.doi.org/10.1007/978-3-031-36024-4_48


10 G. Morse et al.

as well as Z3 and V are candidates for LUT combining into LUT6-2 units or
alternatively into MUXF7 and MUXF8 units, the latter stages also yield an area
minimized solution. The final result can be returned as

(V,C) =

V,

0n

k=log2 n−1

Zk

 . (20)

Direct propagation of 3 signals from the LZC-8 stage to the LZC-16 stage creates
an additional constraint for the routing part of the implementation. To address
this, we can also allow Vivado synthesis flexibility in optimizing the logic as it sees
fit. Since synthesis strategies for performance, area and power exist separately,
this is preferred approach. Otherwise we can use VHDL KEEP directives on
LUT output signals to prevent any sort of combining at synthesis time. This is
as opposed to the VHDL DONT_TOUCH attribute which is similar but also
applied during implementation having the unfortunate side-effect of preventing
LUTNM combining during placement. However, the optimize design step may
no longer preserve the original plan without this attribute.

So the 16-bit LZC achieves the smaller path delay without any additional
LUT cost. At most ⌈ k

16⌉ additional LUTs are used while the theoretical path
delay is reduced by ⌈log2 k

8 ⌉/(⌈log2
k
8 ⌉ + 1) percent. We also indicate that this

design is suitable for older architectures like Virtex 7 or any other which support
the LUT6-2 units.

Finally, we also present a MUXF7/MUXF8 specific IP-level solution for an
LZC-8 which does not cascade LUTs. Although the circuit would not infer from
high-level tools, its existence is noteworthy. Namely LP2, LP3 are computed by
Eqs. (7) and (8). On the other hand, LP1, LP4 and V are computed by:

LP4 =

{
0 if X7

X6 ∧X5 ∧X4 ∧X3 ∧X2 ∧X1 otherwise
,

V =

{
0 if X8

LP4 otherwise
,

LP1 =

{
0 if X8

X7 ∨ LP1(X6..1) otherwise

(21)

This straight-forward method uses 4 LUTs, and for LP1 an additional single
MUXF7, while for V, both a MUXF7 and a MUXF8. All the signals enter and
leave the slice only one time, providing minimal routing delay, and only the delay
of the MUXF7 and MUXF8 units themselves.

3.1 Demonstration of the design on a small-sized example

As an example to show the main computational stages in the outlined proce-
dure, consider the LZC-16 of the number 2 which is “00000000 . 00000010b”.
It is clear that (V,C) = (0, 14). Computing the LZC-8-Intermediate values

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_48

https://dx.doi.org/10.1007/978-3-031-36024-4_48
https://dx.doi.org/10.1007/978-3-031-36024-4_48


Minimal Path Delay Leading Zero Counters on Xilinx FPGAs 11

shows that LP1H ,LP2H ,LP3H ,LP4H ,LP1L,LP2L,LP3L,LP4L will be 1 while
LP1LL, LP4LL are both 0. This implies that V,Z1, Z2, Z3 are 1 while Z0 is 0.
We can calculate C from concatenated binaries Zi as: C = 23Z3+22Z2+21Z1+
20Z0 = 14, as expected.

If we used an LZC-8-High and LZC-8-Low in this example, instead of LZC-
8-Intermediate, then the values turn out to be the same, except X1, X2, X8, X9

along with LP1H ,LP4H ,LP1L are needed to compute Z0 since LP1LL, LP4LL

are not present.

4 Results and discussion

For our experiments and design we target the Ultrascale+ architecture and
specifically Alveo U250 FPGAs. We targeted a 650MHz clock frequency, the
highest that MaxCompiler can synthesize with the Mixed-Mode Clock Manager
(MMCM) oscillators/frequency synthesizers on the FPGA, from the “freerun”
clock which enters the chip through an IO port at 300MHz. We only use the
Super Logic Region (SLR) of SLR1 as the PCIExpress ports are bound there
by MaxCompiler (though the Xilinx floorplan does indicate SLR0 as the true
point of entry). Our MaxCompiler version is 2021.1 which works alongside Vi-
vado 2020.1. The Vivado implementation was based upon the versatile “Perfor-
mance_ExplorePostRoutePhysOpt” strategy. We utilized a global clock buffer
for the clock enable (CE) signal of the kernels which uses a BUFGCE unit on
the Ultrascale device.

Comparing to high-level MaxCompiler provided machinery was determined
to be inappropriate as it would require a combination of a leading one detector
(via the simple two’s complement property leading1detect(x)=−x&x where here
a bitwise AND is used) and a one-hot decoder which generates an O(n2) VHDL
algorithm, giving high area and power, and degraded performance due to pres-
ence of addition (as −x=~x+1), fanout and congestion. However, the one-hot
decoder did not allow disabling pipeline register insertion, so we were unable to
make a meaningful comparison without modifying the VHDL and we thereby
opted not to compare it. However the combination of a leading-one-detector and
a one-hot decoder as an alternative means of computing LZC, is convenient and
perfectly fine in some scenarios.

We chose an synthesis strategy optimized for performance based on Vivado’s
“Flow_PerfOptimized_high”, and hence will have a resulting non-optimal LUT
count, but optimal path delay and ability to synthesize at higher frequencies.
For purpose of comparison, we used sizes the prior algorithm supported rather
than the minor differences of the optimal generalized size variants.

Our results will appear different from those of the referenced paper because
they targeted Virtex 7 with a 28nm process. While here we target Ultrascale+
with a 16nm process. There is a common practical rule that assumes roughly
3 levels of cascaded LUTs can meet timing regardless of the frequency in most
situations. This has been applied for barrel shifters and other various circuits
that require cascading for efficiency. At 16nm, several more layers of cascading

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_48

https://dx.doi.org/10.1007/978-3-031-36024-4_48
https://dx.doi.org/10.1007/978-3-031-36024-4_48


12 G. Morse et al.

seem to be possible, but it will start to place difficult timing constraints on
the signals involved and influence their allowed spatial arrangements. So for
an actual implementation, for very large LZC implementations (such as LZC-
68) some adjustment of lower frequency or inserting pipeline registers into the
algorithm after some number of levels becomes strictly necessary.

We collected the results using a hand designed Tool Command Language
(TCL) script which integrates with Vivado. The input stream registers are eas-
ily found via regular expressions and by traversing output pins, nets and cells,
the circuit can be recursively discovered in a depth-first search (DFS) manner.
The specific slices and Basic ELements (BELs) are tracked during this traver-
sal. Then the “get_timing_paths” command measures the worst timing path
amongst the starting and terminating elements of the realized circuit (from reg-
ister output pin to register input pin). Power was measured hierarchically via
“report_power”. When a build succeeds, this script is automatically run based
on the saved checkpoint preserved by setting MaxCompiler not to clean the build
folder (“clean_build_directory” set to “false”).

The explanation for the LUT counts being high requires a deeper understand-
ing of Vivado synthesis. Although it can merge or split apart Boolean functions,
when it sees a function of more than 6 arguments, how it choose to cascade or
plan them is according to its own algorithms. At the lowest-level, VHDL can de-
scribe individual LUTs, while at the highest level it describes mere logic which
infers some sort of LUT structure. The Vivado design methodology makes it
reasonable to trust their automatic synthesis choices as long as the design is
constrained in appropriate areas. Our area of interest is primarily performance,
though optimization for power is also possible. We do not expect too much
beyond some reasonable heuristics as the circuit satisfiability problem (circuit-
SAT) is NP-complete, only here we have 6-input gates rather than binary gates.
Tools are beginning to incorporate machine learning (ML) for improved heuristic
inference.

LZC LUTs(LUTNMs Slices Power (mW) Delay (ns) Freq. (MHz)
bitwidth /MUXF7/MUXF8)

8 new/old [17] 4 (1) 2 10 0.808 600
16 old[17] 12 (1) 3 13 1.016 650
32 old[17] 29 (1) 7 11 1.226 650
64 old[17] 58 (2) 14 11 1.69 470
16 new 11 (3) 3 10 0.952 500
32 new 27 (5) 10 13 1.142 600
64 new 67 (1) 16 15 1.429 650

8 5 (1) 2 13 0.772 610
16 10 (4) 5 10 0.988 510
32 27 (0) 7 12 1.052 650
64 56 (0/8/0) 15 20 1.363 650

Table 2. Performance Results for various LZC sizes.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_48

https://dx.doi.org/10.1007/978-3-031-36024-4_48
https://dx.doi.org/10.1007/978-3-031-36024-4_48


Minimal Path Delay Leading Zero Counters on Xilinx FPGAs 13

We note several things about the results in Table 2. The number of Logical
LUTs introduced is LUTs plus LUTNMs. The data was gathered by compiling 2
independent but identical circuits so LUTs and slices have been ceiling divided
by 2. The Zahir, et al. [17] scheme is labeled “old”, the proposed scheme syn-
thesized with KEEP to preserve LUT output signals is labeled “new” while the
unlabeled does not use this attribute. We refer interested readers to [17] for com-
parison to the other algorithms from [4], [6], [7], [16]. First, the number of slices
for two identical circuits can have overlap, but slices are not considered a useful
modern metric in large scale designs as the tools are not directly optimizing for
minimal slices. The power measurement in Vivado is likely inaccurate and not
very detailed for specific circuits. We therefore measured the power to the whole
MaxCompiler kernel core in milli-Watts, the finest granularity and resolution
offered by the tool. The kernel has some registers, counters and control mech-
anisms which make this an impure result, however it is a fixed cost across all
kernels of identical input/output sizes.

The results are all for builds at 650MHz which although not the fmax of
725MHz., is the highest frequency at which MaxCompiler can configure an
MMCM unit. Such excellent performance shows that the LZC is unlikely to
be a limiting factor in the designs which utilize it at least through to 64 bits. We
don’t consider overall efficiency metrics such as the power-delay-area product
(PDAP), as our focus was on highest build speed, and path delay while other
metrics requires uniform build speeds or consideration of frequency weighting.
The frequency and power have a simple linear relationship.

Furthermore, at very high frequencies, deeper circuits can in some cases per-
form better as the path delay effects the setup (which balances the clock skew
against the path delay, clock uncertainty and setup time) as well as the hold
(balancing path delay against clock skew, uncertainty and hold time) slacks for
the registers which ultimately latch the result signals. For example at a clock
speed of 650MHz, the clock period is 103

650MHz = 1.538 nanoseconds (while Vivado
timing scores are reported in picoseconds), which although an upper bound on
path delay to achieve a build at this frequency, needs to account for the setup
and hold slack in full.

5 Conclusion

The shortcomings of the proposed technique is less modularity, more complicated
logic, and that certain non-power of two LZC sizes may have further unique
optimizations which require complicated generation algorithms or on a case-by-
case basis analysis to determine or achieve. The ideas presented are enough to
find such simplifications. However, if willing to implement a more complicated
and general framework, our design allows higher frequency builds, and savings in
LUT and routing resources and more optimal IP. Future works can use the ideas
presented to improve circuits beyond the trivially equivalent leading/trailing-
one-counter, but counting bits set (sometimes called popcount), checking for
powers of two, or rounding up to the nearest power of two, etc,

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_48

https://dx.doi.org/10.1007/978-3-031-36024-4_48
https://dx.doi.org/10.1007/978-3-031-36024-4_48


14 G. Morse et al.

We have given a survey of the synthesis features for a specific modern tool
and architectures where it comes to optimizing a small but important circuit as
it relates to HPC. It shows that a generic design with a reasonable signal layout
will synthesize by sophisticated tools with success in likely any optimization
scenario when the logic is minimally constrained. However, due to the various
complications of the physicality and details of setup and hold, trying multiple
options may be necessary as the minimal path delay is not always the build that
ultimately succeeds.

We furthermore carefully provided details towards a research methodology
for designing small-scale circuits with HLS tools, understanding the ways of
constraining the underlying build tool, as well as measuring and collecting data
points. This methodology is geared specifically toward achieving high frequency
and minimal path delay builds.

Although the synthesis and implementation process is complicated and de-
pends on a broad set of constraints and target goals from performance to power
to resource usage and chip area, the design here should from all perspectives
have better versatility and be applicable for maximizing performance and/or
minimizing area and power. The fact that LZC-16 and higher circuits builds
at the highest synthesize-able frequency of 650MHz from high-level language
tools, is indicative of both the flexibility of modern high-level synthesis tools
like MaxCompiler, and the diverse features of modern FPGA architectures like
Ultrascale.

Acknowledgements This research was supported by the Ministry of Culture
and Innovation and the National Research, Development and Innovation Office
within the Quantum Information National Laboratory of Hungary (Grant No.
2022-2.1.1-NL-2022-00004), by the ÚNKP-22-5 New National Excellence Pro-
gram of the Ministry for Culture and Innovation from the source of the Na-
tional Research, Development and Innovation Fund. RP. acknowledge support
from the Hungarian Academy of Sciences through the Bolyai János Stipendium
(BO/00571/22/11) as well.

References

1. Anderson, J.H., Wang, Q.: Area-efficient fpga logic elements: Architecture and
synthesis. In: 16th Asia and South Pacific Design Automation Conference (ASP-
DAC 2011). pp. 369–375 (2011). https://doi.org/10.1109/ASPDAC.2011.5722215

2. Anderson, S.E.: Bit twiddling hacks. URL: http://graphics. stanford. edu/˜ sean-
der/bithacks. html (2005)

3. Chapman, K.: Multiplexer design techniques for datapath performance with min-
imized routing resources. Xilinx All Programmable 1, 1–32 (2014)

4. Dimitrakopoulos, G., Galanopoulos, K., Mavrokefalidis, C., Nikolos,
D.: Low-power leading-zero counting and anticipation logic for high-
speed floating point units. IEEE Trans. Very Large Scale Integr. Syst.
16(7), 837–850 (jul 2008). https://doi.org/10.1109/TVLSI.2008.2000458,
https://doi.org/10.1109/TVLSI.2008.2000458

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_48

https://dx.doi.org/10.1007/978-3-031-36024-4_48
https://dx.doi.org/10.1007/978-3-031-36024-4_48


Minimal Path Delay Leading Zero Counters on Xilinx FPGAs 15

5. Dohi, K., Okina, K., Soejima, R., Shibata, Y., Oguri, K.: Performance modeling
of stencil computing on a stream-based fpga accelerator for efficient design space
exploration. IEICE TRANSACTIONS on Information and Systems 98(2), 298–308
(2015)

6. Miao, J., Li, S.: A design for high speed leading-zero counter. In: 2017 IEEE
International Symposium on Consumer Electronics (ISCE). pp. 22–23 (2017).
https://doi.org/10.1109/ISCE.2017.8355536

7. Milenković, N.Z., Stanković, V.V., Milić, M.L.: Modular design of fast leading
zeros counting circuit. Journal of Electrical Engineering 66(6), 329–333 (2015).
https://doi.org/doi:10.2478/jee-2015-0054, https://doi.org/10.2478/jee-2015-0054

8. Nadjia, A., Mohamed, A.: Efficient implementation of aes s-box in lut-6 fpgas.
In: 2015 4th International Conference on Electrical Engineering (ICEE). pp. 1–4
(2015). https://doi.org/10.1109/INTEE.2015.7416679

9. Rakyta, P., Morse, G., Nádori, J., Majnay-Takács, Z., Mencer, O., Zimborás,
Z.: Highly optimized quantum circuits synthesized via data-flow engines (2022).
https://doi.org/10.48550/ARXIV.2211.07685, https://arxiv.org/abs/2211.07685

10. Srivastava, P., Chung, E., Ozana, S.: Asynchronous floating-point adders
and communication protocols: A survey. Electronics 9(10) (2020).
https://doi.org/10.3390/electronics9101687, https://www.mdpi.com/2079-
9292/9/10/1687

11. Summers, S., Rose, A., Sanders, P.: Using maxcompiler for the high
level synthesis of trigger algorithms. Journal of Instrumentation 12(02),
C02015 (feb 2017). https://doi.org/10.1088/1748-0221/12/02/C02015,
https://dx.doi.org/10.1088/1748-0221/12/02/C02015

12. Suzuki, H., Morinaka, H., Makino, H., Nakase, Y., Mashiko, K., Sumi, T.: Leading-
zero anticipatory logic for high-speed floating point addition. IEEE Journal of
Solid-State Circuits 31(8), 1157–1164 (1996). https://doi.org/10.1109/4.508263

13. Walters, E.G.: Array multipliers for high throughput in xilinx fpgas with 6-
input luts. Computers 5(4) (2016). https://doi.org/10.3390/computers5040020,
https://www.mdpi.com/2073-431X/5/4/20

14. Wang, H., Gante, J., Zhang, M., Falcão, G., Sousa, L., Sinnen, O.: High-level
designs of complex fir filters on fpgas for the ska. In: 2016 IEEE 18th Interna-
tional Conference on High Performance Computing and Communications; IEEE
14th International Conference on Smart City; IEEE 2nd International Confer-
ence on Data Science and Systems (HPCC/SmartCity/DSS). pp. 797–804 (2016).
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0115

15. Xilinx, I.: Ultrascale architecture configurable logic block user guide. URL:
https://docs.xilinx.com/v/u/en-US/ug574-ultrascale-clb (2023)

16. Xilinx, I.: Vivado design suite user guide: High level synthesis ug902 (v2020.1).
URL: https://docs.xilinx.com/v/u/en-US/ug902-vivado-high-level-synthesis
(2023)

17. Zahir, A., Ullah, A., Reviriego, P., Hassnain, S.R.U.: Efficient leading zero count
(lzc) implementations for xilinx fpgas. IEEE Embedded Systems Letters 14(1),
35–38 (2022). https://doi.org/10.1109/LES.2021.3101688

18. Zhang, H., Chen, D., Ko, S.B.: High performance and energy ef-
ficient single-precision and double-precision merged floating-point
adder on fpga. IET Computers & Digital Techniques 12(1), 20–
29 (2018). https://doi.org/https://doi.org/10.1049/iet-cdt.2016.0200,
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/iet-cdt.2016.0200

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_48

https://dx.doi.org/10.1007/978-3-031-36024-4_48
https://dx.doi.org/10.1007/978-3-031-36024-4_48

