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Abstract. Physical field reconstruction from limited real-time data is
a topical inverse problem that attracts substantial research effort, and
complex geometries present a formidable challenge. The paper describes
a reconstruction of the velocity field of a steady fluid flow through a two-
dimensional porous structure from the real-time gauge readings (that
is, velocity values obtained at specific fixed locations). The dataset is
composed of 300 Lattice-Boltzmann simulations of the flow with different
boundary conditions. The number of the gauges and their locations are
varied. Two reconstruction techniques are applied: neural network (NN)
and linear least squares solver. The linear solver outperforms the NN
in terms of both speed and precision. Sensor locations are optimized
by Monte Carlo method. The porous structure is mapped onto a graph
and the optimization is performed by Metropolis type node-to-node trial
displacements of the gauges. With 100 gauges, the linear method enables
reconstruction of the velocity field in a porous structure discretized on
256 x 256 2D grid with the normalized error of 0.57%.

Keywords: physical field reconstruction · fluid flow · porous materials
· neural networks · MCMC

1 Introduction

In engineering computing, there are situations when the laws governing the be-
havior of a system are well known, and its behavior can be predicted with good
accuracy, but the first-principle solution is complicated either by a lack of infor-
mation on the initial/boundary conditions, or by computational expenses (for ex-
ample, the response is needed within seconds, whereas calculations take hours).
At the same time, experimental real-time monitoring using gauges is possible
only in a limited number of locations and/or at select moments in time due
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to equipment-related or economic reasons. Real-time monitoring requires fast
restoration of the values in the locations where direct observations are unavail-
able from the available readings. Modification of this problem is restoration of
properties that are difficult to measure from the properties easy to monitor. An
obvious extension is the optimization of the gauge locations.

Physical field restoration is a classical inverse problem: the direct problem
can be solved using deterministic methods with a reasonable accuracy given the
initial and/or boundary conditions, but condition the current gauge readings
may correspond to are unknown. The problem may or may not be well-posed:
that is, there is no guarantee that similar readings cannot be obtained with
different set of conditions. The reconstruction problem is of a great practical
importance: building monitoring systems, temperature tracking for processors
and chips, water resource monitoring, and industrial processes control require
reconstruction of velocity, pressure, temperature and magnetic fields [1–3]. A
number of data-driven approaches to the physical field restoration problem have
been developed over the last few years, most of them quite recently.

In many applications, field reconstruction tasks are approached using a low
dimensional representation of the field [4–9]. This low-dimensional representa-
tion can be viewed as a tailored basis of the field such as proper orthogonal
decomposition (POD) basis, Fourier basis and wavelet basis. For efficient recon-
struction of thermal field, Li et al. [5] obtained low dimensional representations
of the high dimensional temperature distribution state of the thermal maps via
POD techniques and then implemented a greedy algorithm for optimal sensor
placement. Willcox [8] extended the gappy POD method to handle unsteady
flow reconstruction. Tan et al. [10] demonstrated the application of POD in an
iterative procedure to reconstruct incomplete or inaccurate aerodynamic data.

The main challenge that POD methods face is the sensitivity of the re-
constructions to the location of the sensors. Neural networks (NNs) promise
more stable solutions in physical field reconstruction [11–14], although they are
substantially more computationally expensive to train. Some of the NN-based
schemes for related CFD problems directly take into account the physical laws
that govern the system behaviour [15–17], the others do not [18–21]. Erichson
et al. [11] proposed a simple shallow neural network based learning algorithm
for reconstruction. The shallow neural network learned an end-to-end mapping
between a set of sensor measurements and the high-dimensional fluid flow field
from which the measurements were taken, without requiring special data pre-
processing. More sophisticated NNs were employed to tackle the field reconstruc-
tion problem in [12]; the authors employed reshaping operations to allowed for
the possibility of harnessing the performance of some state of the art convolu-
tional image models as opposed to just the fully connected network architecture.
Two of their models have architectures similar to that of U-Net; with one of them
having Fourier Neural Operator layers. NN-based inversion methods are powerful
for learning and are increasingly used field reconstruction [13, 22, 23].

Reconstruction of physical fields from limited sensor measurements from the
system could be expressed as a map of any form, be it linear or non-linear.
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Clark et al. [24] approached the reconstruction problem with an algorithm based
on linear maps and incorporated this algorithm in a greedy scheme for sensor
placement. Thus, a field reconstruction technique strictly by linear map was
introduced. This technique, even though yet to be explored in many applications,
is advantageous for reconstruction problems in that it allows to simply determine
the stability and optimality of a collection of (sensor) measurements, and also
handy for building effective algorithms for optimal sensors placement. Despite
the linearity constraint, this technique yields good reconstructions even with
measurements from randomly placed sensors [24, 25].

In this study, we consider data-driven techniques for reconstruction of steady
flow in complex porous geometry from limited sensor readings and a dataset of
velocity fields calculated for 300 different sets of boundary conditions. Most lit-
erature considered flow state reconstruction in simple geometries. Systems of
complex morphology are more challenging to work with. The main contribu-
tions of this work are as follows.

– Using a least squares based linear solver and a neural network, we reconstruct
the stationary state of the system from limited sensor measurements, see
Sections 3 and 4.

– We optimize the location of the sensors and determine the minimum num-
ber of sensors sufficient for the reconstruction with a given precision, see
Section 5.

2 Fluid flow in 2D porous medium

As a case study, we selected reconstruction of the velocity field of a 2D flow
in a model porous media. The pore structure is generated using the Porespy
package [26]. The algorithm generates random noise, then applies a gaussian
blur to the noise. Parameter σ controlled by the desired level of sample blobiness
as σ = l̄/(40 · blobiness), where l̄ is mean value (in voxels) of the set width
and height of the sample image. After that, we re-normalizing acquired data to
uniform distribution. The resulting geometry is shown in Figure 1. The binary
structure is discretized on 256 × 256 voxels (each site is either filled or open),
has a 0.72 porosity ratio and the blobiness of 1 in all direction.

On the north and south borders, periodic boundary conditions are applied.
A constant pressure difference of 0.0005 (Lattice units) is maintained between
the west and the east boundaries to establish a steady flow. The relaxation ra-
tio is τ = 1.0. The parameters are chosen so that the value of umax

x < 0.2 in
the resulting velocity profile does not exceed the stability limits of the numer-
ical simulation. In each simulated system, a constant velocity profile is main-
tained at the western boundary. The velocity profile is generated in a ran-
dom fashion using harmonic function as ux(y) =

∑
i Ai sin(kiy + 2πξ),where

Ai = a
(
1 + (kiL0)

2
)−1/2 are the amplitudes of the modes, ξ is random number

with uniform distribution [0, 1], ki = 1
2
2π
L i is the wave number. The parameter

L0 is the characteristic length of the undulations. The sample velocity profiles
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Fig. 1. The pore structure used as a case study for this work.

Fig. 2. The figure shows two examples of the velocity profile at the western boundary
(left panels) and corresponding steady velocity fields in x (center panel) and y (right
panel) dimensions

are shown at Figure 2. The velocity fields for each profile are generated by the
LB simulations with BGK approximation of the Boltzmann equation for 2D, 9
discrete velocity model (D2Q9) [31]. Each simulation is carried out over 5000
iterations on average. The simulations are assumed to converge to the running
average of the standard deviation of the energy over 500 iterative steps, de-
creased to ϵ = 10−4. In total, 300 random profiles are generated, and for each of
them the steady state velocity fields are calculated. This dataset [32] is used for
reconstruction of the velocity field from the gauge readings.

2.1 Mathematical framework for the velocity field reconstruction

The objective of velocity field reconstruction is to learn the relationship between
gauge readings X ∈ Rm×2 and velocity field data Y ∈ Rn×2, with a constrain
of limited gauge number m ≪ n. For this study, each row of X and Y consist
of velocity data in both x and y directions at a certain location (point) in the
velocity field. The sensor measurements xi ∈ X, 1 ≤ i ≤ m are collected from
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Fig. 3. Architecture of Shallow Neural Decoder.

the high-dimensional field Y via a sampling procedure. This procedure can be
described as:

X = Φ(Y ),

where Φ : Rn×2 → Rm×2 denotes a measurement operator. Typically, the mea-
surement operator could be related with a binary matrix used to mask out some
flow data. Therefore, X = MY , where M ∈ Rm×n is a matrix whose m rows
comprise of the j-th standard basis vector of Rn, i.e. vectors ej with j repre-
senting the location index of the measurement in Y .

The task at hand requires the construction of an inverse model, which gener-
ates the state Y from observations X, described as Y = Γ (X), where Γ : Rm×2 →
Rn×2 denotes the forward operator. This problem is frequently ill-posed, and we
cannot invert the measuring operator Φ to get the forward operator Γ imme-
diately. However, a function Ψ to approximate the forward operator Γ can be
derived from a set of available sensor measurement and velocity field data, that
is {Xi, Yi}ki=1, where k is the number of flow snapshot available in the dataset.
In particular, the objective is to learn a function Ψ : X → Y that maps a limited
number of measurements to a predicted state Y ,

Ŷ = Ψ(X), (1)

so that the misfit is minimized, for instance in a Euclidean sense, over all sensor
measurements ∥Ψ(X) − Γ (X)∥2 < ϵ, where ϵ is a very small positive number.
In this study, Ψ is taken to be a regression function: shallow neural network or
linear solver.

3 Shallow neural decoder

We first consider estimating Ψ in equation (1) with neural networks that are
generally labelled as universal estimators. Taking inspiration from the works of
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no. of model hyperparameters training hyperparameters
sensors 1st hidden 2nd hidden output batch scheduler

(m) layer size layer size layer size size lr betas step gamma
10 200 1000 10686 32 0.005 (0.9, 0.95) 50 0.5
50 200 1000 10646 32 0.001 (0.95, 0.95) - -
500 200 500 10196 16 0.05 (0.95, 0.99) 100 0.5
996 200 500 9700 32 0.01 (0.95, 0.95) 100 0.5

Table 1. Hyperparameters for the optimal SNDs. There are no scheduler parameters
for the SND for m = 50 sensors because the model was trained without scheduling the
learning rate.

Erichson et al. [11], we developed a neural network architecture as in Figure 3; a
common architecture for decoders consists of layers of non-decreasing sizes, which
increase the size of the representation from low-dimensional observations to the
high-dimensional field in a continuous manner. Hence, it is named as Shallow
Neural Decoders (SND). The SND consists of three hidden layers, activation
layers to introduce non-linearity, batch normalization layers and drop out. For
the activation function, we found Tanh to to work better in our experiments,
however other choices such as ReLU could produce more efficient result for other
applications. The velocity of the flow in our system is two-dimensional, and for
this reason we considered a separated-decoder architecture, such that the model
learns the components of the target velocities independent of the other. Thus, the
SND consists of x-component and y-component decoders as shown in Figure 3.

Setting the number of sensors, m, to 10, 50, 500, and 996, we experimented
with 3-layered SNDs. Adam optimization technique was used to obtain the model
parameters which minimize the mean squared error loss function. Training the
SNDs heavily depend on the hyperparameters, and to obtain the optimum SND,
we repeatedly trained the SNDs with different combinations from a range (or
set) of each of the hyperparameter: learning rate, betas, batch size, number of
layers in hidden units, scheduler step, and scheduler gamma. The combinations
of hyperparameters, which yield the optimum decoder for each number of sensor
m is presented in Table 1.

Metrics. In this study, three metrics: the normalized error (NE), normalized
fluctuation error (NFE) and coefficient of determination (also known as R2), are
employed to evaluate the performances models and algorithms. The metrics are
defined as follow:

NE(Y, Ŷ ) =
∥Y − Ŷ ∥2

∥Y ∥2
, NFE(Y, Ŷ ) =

∥Y ′ − Ŷ ′∥2
∥Y ′∥2

= NE(Y ′, Ŷ ′),

R2(Y, Ŷ ) = 1−
∑n

i=1(Yi − Ŷi)
2∑n

i=1(Yi − Ȳ )2
= 1− ∥Y ′ − Ŷ ′∥22

∥Y ′∥22
= 1− NFE2(Y, Ŷ ),

where Y is the ground-truth velocity, Ŷ is model prediction, Y ′ = Y − Ȳ ,
Ŷ ′ = Ŷ − Ȳ , and Ȳ is the empirical mean. NE penalizes over-estimations and
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Training set Validation set Testing set
m NE NFE R2 NE NFE R2 NE NFE R2

10 0.326 0.546 0.702 0.303 0.490 0.760 0.274 0.489 0.761
50 0.146 0.243 0.941 0.148 0.240 0.942 0.148 0.264 0.930
500 0.033 0.055 0.997 0.039 0.064 0.996 0.032 0.058 0.997
996 0.051 0.085 0.993 0.054 0.087 0.992 0.057 0.102 0.990

Table 2. Performance of SNDs.

under-estimations in model prediction. NFE eliminates the possible dominating
empirical mean and focuses on the fluctuations in the field. Lastly, the coeffi-
cient of determination (R2) checks how much of the variability in the dataset is
explainable by a model. Using these metrics, the error in the flow state recon-
struction can be quantified, and model performance is evaluate. We sought for
models with the lower NEs, lower NFEs, and higher R2 scores.

Results. The synthesized velocity dataset, as described in Section 2, was split
into three sets such that 70% was used for training, 20% for validation and 10%
for testing the models. As common with other neural networks, the validation
set is to keep the model in check whilst training to prevent overfitting on the
training set. We down-sampled (coarse-grained) each snapshots in the dataset
to 128 × 128 for computational reasons, this resulted in having 10,696 velocity
points in the “porous space”. The performance of the SNDs given the number of
sensors is presented in the Table 2. Although more sensor measurements gener-
ally produced better reconstruction, the results from the SND reconstructions
reflects that reconstruction with 500 sensor measurement is better than that of
996 sensor measurements. This is an indication that for the system, there may be
a sufficient number of sensor required for an efficient field reconstruction. With
500 sensor measurements, the SND produced reconstruction with R2 scores of
0.997 on the testing set. Figure 4 is a sample of reconstruction produced by SND
from the testing set.

4 Least squares linear algorithm

A major concern with the neural decoders for flow state reconstruction tasks
is the need to always retrain the decoders whenever the sensor positions are
altered. Some optimization problems related to physical field reconstruction in-
cludes identification of the optimal positions to place sensors, and having knowl-
edge of the number of sensors sufficient for such reconstructions. Retraining
neural decoders is usually computational expensive. This concern motivated us
to consider algorithms which requires less computation resources for modeling
the relationship between sensor measurements and target velocities.

It is quite easy to spot the important role of least squares solutions in classical
reconstruction methods such as POD. Without the least squares solutions, re-
constructions with tailored basis will become intractable. However, by imposing
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Fig. 4. SND reconstruction from 500 sensors. The green pixels represent the position
of the sensors in the velocity field, the sensors were placed at randomly picked spots
on walls of the porous medium for this experiment.

a linear relationship between sensor measurements and corresponding (missing)
velocity information, the least square method alone can sufficiently reconstruct
the state of the flow field. Hence, the name LS-decoder. The linear relationship
in LS-decoder requires that the velocity data matrices, Y and X, be vectorized
before imposing the linearity assumption. This algorithm is similar to the exact
Dynamic Mode Decomposition where the Koopman operator could be approxi-
mated by least squares technique [27].

Let us consider a snapshot which consists of m + n points such that there
are m sensors which measures the velocity in both x- and y- directions, that
is a total of 2m measurements would be recorded. To reconstruct the velocity
field requires estimating missing 2n point velocities. Mathematically, these tall
vectors are constructed from the velocity data matrices by vectorization:

x = vectorize(X) ∈ R2m, y = vectorize(Y ) ∈ R2n.

The linearity relationship then implies that y ≈ Ãx with Ã ∈ R2n×2m. Typically,
m ≪ n. Matrix Ã is the (rectangular) matrix of importance coefficients aij .
The importance coefficient, aij , is interpreted as the contribution of the sensor
measurement indexed j in x to estimation of velocity at missing point indexed
i in y. Again, this relationship means that each velocity estimate is computed
as a weighted sum of available sensor measurements. Typically, we expect that
the proximity of the points at which velocity is been estimated to the gauges
directly influence the importance of each gauge in the estimation. The coefficient
matrix is computed strictly via data-driven approach. To obtain a linear operator
which best fits the data, we adopt the method of snapshot method from DMD
technique [27]. We structure the data in two snapshot matrices X̃ and Ỹ . That
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Algorithm 1 Velocity reconstruction with LS-decoder
Inputs: Set of sensor measurements {Xi ∈ Rm×2}ki=1 and set of target velocities
{Yi ∈ Rn×2}ki=1 from the training dataset of flow snapshots {S1, S2, · · · , Sk}
Output: Reconstruction operator Ã ∈ R2n×2m.

1. Vectorize sensor measurements: {xi ∈ R2m}ki=1.
2. Vectorize target velocities: {yi ∈ R2n}ki=1.
3. Construct X̃ by stacking the sensor measurements together as columns:

X̃ = [x1 x2 · · · xk] ∈ R2m×k.
4. Construct Ỹ by stacking the target velocities together as columns:

Ỹ = [y1 y2 · · · yk] ∈ R2n×k.
5. Construct the pseudo-inverse of X̃: X̃†.
6. Compute the reconstruction operator: Ã = Ỹ X̃†.

is, given that there are k training snapshots, then Ỹ ∈ R2n×k, k ≪ 2n has k
columns, and each column has a length of 2n since y ∈ Rn.

Considering the training data and the linear relationship between sensor
measurements and the (missing) velocity information, we can write a compact
expression as below:

 | | |
y1 y2 · · · yk

| | |

 ≈ Ã

 | | |
x1 x2 · · · xk

| | |

 , (2)

Ỹ ≈ ÃX̃. (3)

This formulation makes it possible to compute the operator Ã across the training
set, and thus the operator can be used in reconstruction of the velocity field.
Recall that the number of sensors available is very limited, thus the linear map is
under-determined and has many solutions. However, given this new formulation
in equation (3), we are interested in the “best fit” solution of

min
Ã

∥Ỹ − ÃX̃∥F ,

in the Frobenius sense, which has the standard form Ã = Ỹ X̃† where X̃† is
the Moore-Penrose pseudo-inverse of X̃. The steps for implementing LS-decoder
algorithm are highlighted in Algorithm 1.

Results. The dataset was separated into 2 sets: 70% for training and 30% for
testing set. Validation set is not necessary for this algorithm since the model
training is non-iterative. The performance of the reconstruction algorithm on
these sets are recorded in Table 3. With 500 and 996 sensor, R2 scores are al-
most perfect, and the errors are minimal. Figure 5 displays a sample reconstruc-
tion using the LS decoder with 500 sensor measurements. The absolute error in
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Training set Testing set
m NE NFE R2 NE NFE R2

10 0.1124 0.1892 0.964 0.1264 0.2119 0.955
50 0.0371 0.0625 0.996 0.0412 0.0692 0.995
500 0.0017 0.028 1.000 0.0033 0.0055 1.000
996 0.0021 0.0035 1.000 0.0036 0.0060 1.000

Table 3. Performance of LS-decoder
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Fig. 5. LS-decoder reconstruction from 500 sensors. The green pixels represent the
position of the sensors in the velocity field, the sensors were placed at randomly picked
spots on walls of the porous medium for this experiment.

Figure 5 reflects the precision of the reconstruction as the error are very low.
LS-decoder also recorded impressive performances with just 10 and 50 sensors.

As with other deep learning models, back-propagation mechanism is em-
ployed to train the SNDs, that is to minimize the misfit between SNDs predic-
tions and target velocities. Whereas for linear (LS decoder) algorithm, a stan-
dard minimum norm solution which is readily available is adopted. Obtaining
the parameters of SNDs requires an iterative process of gradually approaching a
potential solution which heavily depends on the choice of hyperparameters. The
search for the optimal SNDs is computational expensive. The linear algorithm,
on the other hand, does not involve such iterative process. The velocity field
reconstruction with the linear algorithm requires lesser computation resources
and time.

5 Monte Carlo optimization of gauge placement

The ability to swiftly re-train the LS decoder and calculate the error allows
for the optimization of sensor placement. The number of gauges in the system
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Algorithm 2 Metropolis Monte-Carlo algorithm
Inputs:
Initial gauge distribution.
Number of gauges Ng ∈ [5, 10, 25, 50, 100, 200].
Number of iterations Nit = 10000.
Temperature parameter T ∈ {1e−5, 5e−5, 1e−4, 5e−4, 1e−3, 5e−3, 1e−2, 5e−2, 1e−1}.
Output:
Optimal gauge positions.

Initialize the gauge distribution.
Cycle for Nit iterations:

1. Select a random gauge A.
2. Calculate an error of the approximation of the velocity field EA for current gauge

locations.
3. Shift the gauge to random unoccupied node B near the gauge A.
4. Calculate an error EB for the gauge locations after the shift.
5. Calculate the transition probability pA→B = min

(
1, eB

eA
exp

(
EB−EA

T

))
.

6. Generate a uniform random number u ∈ [0, 1]. Accept the gauge shift if u > pA→B,
reject otherwise.

was varied from 5 to 500, which means up to 1000 independent gauge coordi-
nates. MC methods are known for efficiency with large number of parameters.
To optimize the gauge placement, the Canonical Metropolis MC method [28]
is applied. The pore structure is presented as a graph network which was ex-
tracted via a marker-based segmentation algorithm known as the Sub-Network
of an Over-segmented Watershed (SNOW) algorithm [29]. We implemented the
SNOW algorithm made available in Porespy package [26] to extract the pore
network of our 2D porous structure. In the initial configuration, the gauges are
uniformly placed at the nodes, then the field is reconstructed and the normalized
error (NE) calculated. The gauge locations are modified in a Markov stochastic
process. At each step, we attempt a move of a randomly selected gauge located
at node A to a neighboring node B along a randomly selected edge. The move
is accepted with the probability of

pA→B = min

(
1,

eB
eA

exp

(
EB − EA

T

))
,

where EA is the error of the approximation of the velocity field with the LS
solver (of course, it is a function of coordinated of all gauges in the system),
T is an optimization parameter (temperature), eA and eB are the number of
edges that each node forms. If T = 0 only the moves leading to the improvement
of approximation are accepted and thus the system never escapes any local
minimum, T → ∞ means any random displacement is accepted. The eB/eA
factor compensates for the asymmetry of the transition matrix to make the
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Fig. 6. (a) optimal locations of the gauges obtained in Monte Carlo optimization with
m = 5(red), m = 10(orange), m = 25(yellow), m = 50(green), m = 100(blue)
and m = 200(purple) (b) dependence of the error on time for m = 25 and T ∈
[1e−5, 1e−4, . . . , 1e−1] (c) dependence of the error on m for the optimal gauge place-
ment (d) LS-decoder reconstruction from 25 sensors. The green pixels represent the
position of the sensors in the velocity field, the sensors were placed optimally at the
nodes of the graph network for this experiment.

algorithm ergodic and obey the detailed balance [30]. The steps of the Metropolis
algorithm are highlighted in Algorithm 2.

Figure 6(b) shows the optimization progress for Metropolis stochastic pro-
cesses with m = 25 gauges and different values of T . Starting uniform gauge
distribution is not an optimal one. For high T values (> 0.01) the acceptance
rate is too high and the NE does not seem to decrease. If the T value is too
low (1e−5), acceptance rate is too low and the NE converges to a non-optimal
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Metropolis algorithm Best out of 10000
m NE NFE R2 NE NFE R2

5 0.0311 0.0521 0.99728 0.0431 0.0722 0.99479
10 0.0158 0.0265 0.99930 0.0277 0.0464 0.99785
25 0.0071 0.0120 0.99986 0.0172 0.0288 0.99917
50 0.0072 0.0122 0.99985 0.0124 0.0208 0.99957
100 0.0057 0.0096 0.99991 0.0079 0.0133 0.99982
200 0.0064 0.0107 0.99989 0.0065 0.0109 0.99988
284 0.0080 0.0134 0.99981 0.0080 0.0134 0.99981

Table 4. Performance of LS-decoder for optimal gauge disposition obtained with the
Metropolis algorithm and picking the best gauge locations out of 10000 random ones

Fig. 7. Comparison of the NE distributions for random gauge position selection and
result of MC simulations

local minimum. The optimal T for this algorithm and m value is close to 1e−4,
which corresponds to acceptance probability equal to 56%. The fact that the
system reaches the “equilibrium” and high acceptance ratio for the attempted
displacement moves means there many sets of gauge coordinates that allow ap-
proximately similar reconstruction quality. The coordinates corresponding to the
lowest error are recorded as the optimal sensor locations, which are also shown
in Figure 6(a). The optimal locations are by no means counter-intuitive in this
system: the gauges occupy the key "straights" and mostly located near the west-
ern border where the velocity profiles are set. As expected, the reconstruction
quality improves with the number of gauges. Improvement is very fast when
there are just a few gauges in the system, and slows down as the number of
gauges reaches 25. As the number of gauges grows beyond the optimal number
of 100, the NE rises slowly, which could be seen at Figure 6(c) or in Table 4.

The Metropolis algorithm could be compared to the random selection of
gauge positions. On the Figure 7 it is shown that gauge positioning greatly affects
the NE and the Metropolis algorithm gives better results than just selecting the
best one from the random selection. It is especially reasonable for low number
of gauges with a big variability in gauge positions.
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6 Conclusion

In this work, we applied fast shallow decoders to reconstruction of a velocity field
for complex steady flow through an irregular porous medium using a database of
300 simulated flows with different boundary conditions and gauge readings from
a selected number of locations. Two decoders were applied: shallow nonlinear
neural decoder and linear least square decoder. Despite a non-linearity of the
Navier-Stokes equation that governs the flow, the linear least square solver out-
performed the neural network in both precision and speed. The locations of the
gauges are optimized with the Metropolis Monte-Carlo algorithm. It was found
that 25 gauges are sufficient to reconstruct the velocity field in 256×256 2D grid
with about 99% precision; taking precision with respect to NFE. The strategy
developed here can be applied to the monitoring of water resources, pipe circuits
at chemical plants or applied in anomaly detection.

Individual contributions: E.A.: NN and LS implementation, text; A.O.:
LB simulations; V.A.: MC optimization; M.P.: conceptualization, ML methodol-
ogy, text; A.V.: conceptualization, methodology, text. Authors declare no conflict
of interests.
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