
SPMD-based Neural Network Simulation with
Golang

Daniela Kalwarowskyj and Erich Schikuta[0000−0002−4126−4243]

University of Vienna
Faculty of Computer Science, RG WST

A-1090 Vienna, Währingerstr. 29, Austria
dkalwarowskyj@yahoo.com

erich.schikuta@univie.ac.at

Abstract. This paper describes the design and implementation of paral-
lel neural networks (PNNs) with the novel programming language Golang.
We follow in our approach the classical Single-Program Multiple-Data
(SPMD) model where a PNN is composed of several sequential neural
networks, which are trained with a proportional share of the training
dataset. We used for this purpose the MNIST dataset, which contains
binary images of handwritten digits. Our analysis focusses on different
activation functions and optimizations in the form of stochastic gradients
and initialization of weights and biases. We conduct a thorough perfor-
mance analysis, where network configurations and different performance
factors are analyzed and interpreted. Golang and its inherent paralleliza-
tion support proved very well for parallel neural network simulation by
considerable decreased processing times compared to sequential variants.

Keywords: Backpropagation Neuronal Network Simulation · Parallel
and Sequential Implementation · MNIST · Golang Programming Lan-
guage

1 Introduction

When reading a letter our trained brain rarely has a problem to understand its
meaning. Inspired by the way our nervous system perceives visual input, the
idea emerged to write a mechanism that could “learn” and furthermore use this
“knowledge” on unknown data. Learning is accomplished by repeating exercises
and comparing results with given solutions. The neural network studied in this
paper uses the MNIST dataset to train and test its capabilities. The actual
learning is achieved by using backpropagation. In the course of our research,
we concentrate on a single sequential feed forward neural network (SNN) and
upgrade it into building multiple, parallel learning SNNs. Those parallel networks
are then fused to one parallel neural network (PNN). These two types of networks
are compared on their accuracy, confidence, computational performance and
learning speed, which it takes those networks to learn the given task.

The specific contribution of the paper is twofold: on the one hand, a thor-
ough analysis of sequential and parallel implementations of feed forward neural

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_43

https://dx.doi.org/10.1007/978-3-031-36024-4_43
https://dx.doi.org/10.1007/978-3-031-36024-4_43


2 Daniela Kalwarowskyj and Erich Schikuta

network respective time, accuracy and confidence, and on the other hand, a
feasibility study of Golang [8] and its tools for parallel simulation.

2 Related Work and Baseline Research

In the literature a huge number of papers on parallelizing neural networks can
be found. An excellent source of references is the survey by Tal Ben-Nun and
Torsten Hoefler [1]. However, only few research was done on using Golang in this
endeavour.

In the course of our work on parallel and distributed systems [11,2,9] we
developed several approaches for the parallelization of neural networks. In [6],
two novel parallel training approaches were presented for face recognizing back-
propagation neural networks. Further, we differentiate between topological data
parallelism and structural data parallelism [10], where the latter is focus of the
presented approach here.

3 Parallel Neuronal Networks

Go, often referred to as Golang [8], is a compiled, statically typed, open source
programming language developed by a team at Google and released in Novem-
ber 2009. It is distributed under a BSD-style license, meaning that copying,
modifying and redistributing is allowed under a few conditions.

Built-in support for concurrency is one of the most interesting aspects of Go,
offering a great advantage over older languages like C++ or Java. One major
component of Go’s concurrency model are goroutines, which can be thought of
as lightweight threads with a negligible overhead, as the cost of managing them
is cheap compared to threads. If a goroutine blocks, the runtime automatically
moves any blocking code away from being executed and executes some code that
can run, leading to high-performance concurrency [8]. Communication between
goroutines takes place over channels, which are derived from "Communicating
Sequential Processes" found in [5]. A Channel can be used to send and receive
messages from the type associated with it. Since receiving can only be done when
something is being sent, channels can be used for synchronization, preventing
race conditions by design.

Another difference to common object oriented programming languages can be
found in Go’s object oriented design. Its approach misses classes and type-based
inheritance like subclassing, meaning that there is no type hierarchy. Instead,
Go features polymorphism with interfaces and struct embedding and therefore
encourages the composition over inheritance principle.

For the parallelization of neural network operations we apply the classi-
cal Single-Program Multiple-Data (SPMD) approach well known from high-
performance computing [3]. It is a programming technique, where several tasks
execute the same program but with different input data and the calculated out-
put data is merged to a common result. Thus, based on the fundamentals of

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_43

https://dx.doi.org/10.1007/978-3-031-36024-4_43
https://dx.doi.org/10.1007/978-3-031-36024-4_43


SPMD-based Neural Network Simulation with Golang 3

single feed forward neural network we generate multiple of these networks and
set them up to work together in parallel manner.

Fig. 1. Design of a Parallel Neural Network

The parallel-design is visualized in figure 1. On the bottom it shows the
dataset which is divided into as many slices as there are networks, referred to as
child-networks (CN). Each child-network learns only a slice of the dataset. Ulti-
mately the results of all parallel child-networks are merged to one final parallel
neural network (PNN). The combination of those CNs can be done in various
ways. In the presented network the average of all weights, calculated by each
parallel CN by a set number of epochs, is used for the PNNs weights. For the
biases the same procedure is used, e.g. averaging all biases for the combined
biases value.

4 Performance Evaluation

For our analysis, we use the MNIST dataset which holds handwritten numbers
and allows supervised learning. Using this dataset the network learns to read
handwritten digits. Since learning is achieved by repeating a task, the MNIST
dataset has a “training-set of 60,000 examples, and a test-set of 10,000 exam-
ples” [7] . Each dataset is composed of an image-set and a label-set, which holds

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_43

https://dx.doi.org/10.1007/978-3-031-36024-4_43
https://dx.doi.org/10.1007/978-3-031-36024-4_43


4 Daniela Kalwarowskyj and Erich Schikuta

the information for the desired output and makes it possible to verify the net-
works output. All pictures are centered and uniform by 28x28 pixels. First, we
start the training with the training-set. When the learning phase is over the
network is supposed to be able to fulfill its task . To evaluate it’s efficiency it is
tested by running the neural network with the test-set since the samples of this
set are still unknown. It is important to use foreign data to test a network since
it is more qualified to show the generalization of a network and therefore its true
efficiency. We are aware that MNIST is a rather small data set. However, it was
chosen on purpose, because it is used in many similar parallelization approaches
and allows therefore for relatively easy comparison of results.

4.1 Network Configurations

Number of Neurons. Choosing an efficient number of neurons is important,
but it is hard to identify. There is no calculation which helps to define an ef-
fectively working number or range of neurons for a certain configuration of a
neural network. Varying the number of neurons between 20 to 600 delivered
great accuracy.

Number of Networks. To evaluate the performance of PNNs in terms of
accuracy, PNNs with different amounts of CNs are composed and trained. The
training runs over 20 epochs with a learning rate of 0.1 and a batchsize of 50. All
CNs are built with one hidden layer consisting of 256 neurons. On the hidden
layer the ReLU-function and on the output layer the Softmax-function is used.
After every epoch, the networks are tested with the test-dataset. The results are
visualized in figure 2.

Figure 2 illustrates a clear loss in accuracy of PNNs with a growing number
of CNs. The 94.5% accuracy, for example, is reached by a PNN with 2 CNs after
only one epoch, while a PNN with 30 CNs achieves that after 12 epochs.

Since the provided PNNs are built by using averaging of weights and biases
it also seemed interesting to compare the average accuracy of the CNs with
the resulting PNN, to grade the used combination function. The results are
illustrated in figure 3.

It shows that the efficiency of an average function grows with the number
of CNs. The first graph drawn with 2 CNs shows, that the resulting PNN is
performing worse than the average of the CNs, it has been built from. By growing
the number of CNs to 10, the average of CNs approximates towards the PNN.
The last graph of this figure shows that a PNN composed of 20 CNs outperforms
the average of its CNs after 200 epochs, and after 300 epochs levels with it. It
has to be noted that the differences in accuracy are very small, as it is only a
range of 0.1 to 0.2 percent. Overall it can be said that this combination function
is working efficiently.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_43

https://dx.doi.org/10.1007/978-3-031-36024-4_43
https://dx.doi.org/10.1007/978-3-031-36024-4_43


SPMD-based Neural Network Simulation with Golang 5

Fig. 2. Accuracy of PNNs, built with different amount of CNs, over 20 epochs

4.2 Comparing the Performances

Time. Time is the main reason to have a network working in parallel. To test the
effect of parallelism on the time required to train a PNN, the provided neuronal
network is tested on three systems. The first system is equipped with 4 physical
and 4 logical cores, an Intel i7-3635QM processor working with a basic clock rate
of 2.4GHz, the second system holds 6 physical cores and 6 logical cores working
with 2.9GHz and an Intel i9-8950HK processor and last the third system works
with an AMD Ryzen Threadripper 1950X with 16 physical and 16 logical cores,
which work with a clock rate of 3.4GHz. The first, second and third systems are
referred to as 4 core, 6 core and 16 core in the following.

In figure 4 the benefit in terms of time using parallelism is clearly visible.
The results illustrated show the average time in seconds needed by each system
for training a PNN consisting of one CN per goroutine.

The time in figure 4 starts on a high level and decreases with an increasing
amount of goroutines for all three systems. Especially in the range of 1 to 4
goroutines, a formidable decrease in training time is visible and only starts to
level out when reaching a systems physical core limitation. This means that the
4 core starts to level out after 4 goroutines, the 6 core after 6 goroutines and the
16 core after 16 goroutines, even though all systems support hyper threading.
After reaching a systems core number the average time necessary for training
a neural network decreases further with more goroutines. This should be due
to the ability to work in parallel and in concurrency as one slot finishes and a
waiting thread can start running immediately, without waiting for the rest of
the running threads to be finished. All three systems show high time savings by
parallelizing the neural networks. While time requirements decreased in every
system, the actual time savings differ greatly as the 16 core system decreased

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_43

https://dx.doi.org/10.1007/978-3-031-36024-4_43
https://dx.doi.org/10.1007/978-3-031-36024-4_43


6 Daniela Kalwarowskyj and Erich Schikuta

Fig. 3. Comparison of the average accuracy of all CNs, out of which the final PNN is
formed, with PNNs accuracy

91 percent on average from 1 goroutine to 64 goroutines. In comparison, the 4
core system only took 65 percent less time. As the 16 core system is a lot more
powerful than the 4 core system, it can perform an even greater parallel task
and therefore displays a positive effect of parallelism upon time requirements.

Accuracy and Confidence of Networks. In this section the performance in
terms of accuracy and confidence is compared between a PNNs and an SNN.
For the test, illustrated by figure 5, both types of networks have been provided
with the same random network to start their training. They have the exact same
built, except that one is trained as SNN and the other is cloned 10 times to build
a PNN with 10 CNs.

In figure 5 the SNN performs better than the PNN in both accuracy and
confidence. While the SNNs accuracy and confidence overlap after 8 epochs, the
PNN has a gap between both lines at all times. This concludes that the SNN
is "sure" about its outputs, while the PNN is more volatile. The SNNs curve of
confidence is a lot steeper than the PNNs and quickly approximates towards the
curve of accuracy. Both curves of accuracy start off almost symmetric upwards
the y-axis, but the PNN levels horizontally after about 90 percent while the SNN
still rises until about 94 percent. After those points both accuracy curves run
almost horizontally and in parallel towards the x-axis. The gap stays constantly
until the end of the test. Even small changes within the range of 90 to 100 percent
are to be interpreted as significant.

5 Findings and Conclusion

This paper presents and analyses PNNs composed of several sequential neural
networks. The PNNs are tested upon time and accuracy and compared to an

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_43

https://dx.doi.org/10.1007/978-3-031-36024-4_43
https://dx.doi.org/10.1007/978-3-031-36024-4_43


SPMD-based Neural Network Simulation with Golang 7

Fig. 4. Time in seconds, that was needed to train a PNN with a limited amount of one
Goroutine per composed CN.

SNN. Summing up, PNNs proved to be very time efficient but are still lacking
in terms of accuracy. As there are plenty of other optimizations, e.g. adjusting
learning rates [4], a PNN proved to be more time efficient than an SNN. However,
until the issue of accuracy has been taken care of, the SNN surpasses the PNN
in practice.

We close the paper with a final word on the feasibility of Golang for parallel
neural network simulation: Data parallelism proved to be an efficient paralleliza-
tion strategy. In combination with the programming language Go, a parallel
neural network implementation is coded as fast as a sequential one, as no special
efforts are necessary for concurrent programming thanks to Go’s concurrency
primitives, which offer a simple solution for multithreading.

References

1. Ben-Nun, T., Hoefler, T.: Demystifying parallel and distributed deep learning:
An in-depth concurrency analysis. ACM Computing Surveys (CSUR) 52(4), 1–43
(2019)

2. Brezany, P., Mueck, T.A., Schikuta, E.: A software architecture for massively par-
allel input-output. In: Waśniewski, J., Dongarra, J., Madsen, K., Olesen, D. (eds.)
Applied Parallel Computing Industrial Computation and Optimization. pp. 85–96.
Springer Berlin Heidelberg, Berlin, Heidelberg (1996)

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_43

https://dx.doi.org/10.1007/978-3-031-36024-4_43
https://dx.doi.org/10.1007/978-3-031-36024-4_43


8 Daniela Kalwarowskyj and Erich Schikuta

Fig. 5. Compare Accuracy and Confidence of a PNN composed of 10 CNs and an SNN
with one Hidden Layer which holds 256 Neurons

3. Darema, F.: The spmd model: Past, present and future. In: European Parallel Vir-
tual Machine/Message Passing Interface Users’ Group Meeting. pp. 1–1. Springer
(2001)

4. Goyal, P., Dollár, P., Girshick, R., Noordhuis, P., Wesolowski, L., Kyrola, A., Tul-
loch, A., Jia, Y., He, K.: Accurate, large minibatch sgd: Training imagenet in 1
hour. arXiv preprint arXiv:1706.02677 (2017)

5. Hoare, C.A.R.: Communicating sequential processes. In: The origin of concurrent
programming, pp. 413–443. Springer (1978)

6. Huqqani, A.A., Schikuta, E., Ye, S., Chen, P.: Multicore and gpu parallelization of
neural networks for face recognition. Procedia Computer Science 18(Supplement
C), 349 – 358 (2013), 2013 International Conference on Computational Science

7. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

8. Meyerson, J.: The go programming language. IEEE Software 31(5), 104–104 (Sept
2014)

9. Schikuta, E., Weishaupl, T.: N2grid: neural networks in the grid. In: 2004 IEEE
International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541).
vol. 2, pp. 1409–1414 vol.2 (2004)

10. Schikuta, E.: Structural data parallel neural network simulation. In: Proceedings of
11th Annual International Symposium on High Performance Computing Systems
(HPCS’97), Winnipeg, Canada (1997)

11. Schikuta, E., Fuerle, T., Wanek, H.: Vipios: The vienna parallel input/output sys-
tem. In: Pritchard, D., Reeve, J. (eds.) Euro-Par’98 Parallel Processing. pp. 953–
958. Springer Berlin Heidelberg, Berlin, Heidelberg (1998)

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_43

https://dx.doi.org/10.1007/978-3-031-36024-4_43
https://dx.doi.org/10.1007/978-3-031-36024-4_43

