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Abstract. The neural network-based approach to solving partial dif-
ferential equations has attracted considerable attention. In training a
neural network, the network learns global features corresponding to low-
frequency components while high-frequency components are approxi-
mated at a much slower rate. For a class of equations in which the solution
contains a wide range of scales, the network training process can suffer
from slow convergence and low accuracy due to its inability to capture
the high-frequency components. In this work, we propose a sequential
training based on a hierarchy of networks to improve the convergence
rate and accuracy of the neural network solution to partial differential
equations. The proposed method comprises multi-training levels in which
a newly introduced neural network is guided to learn the residual of the
previous level approximation. We validate the efficiency and robustness
of the proposed hierarchical approach through a suite of partial differen-
tial equations.

Keywords: hierarchical learning · scientific machine learning · physics-
informed neural networks

1 Introduction

Many research efforts have focused on well-designed objective or loss functions
to guide a neural network to approximate the solution of a PDE. An objective
function measures how well a neural network satisfies the PDE, typically defined
as the empirical mean of the residual by a neural network. Physics-informed
neural networks (PINN) [10], and DGM [11] consider the direct PDE residual
as the loss function so that the neural network satisfies the PDE in the domain.

In particular, PINN has flexibility in informing physical laws described in
differential equations, and thus it has been employed in solving a wide range
of PDEs. Despite its successful results in many applications, PINN suffers from
a slow convergence rate and accuracy degradation for a certain class of PDEs.
Such computational challenges are often inherent from the characteristics of the
solution of a PDE, in particular when the solution involves a wide range of scales.
The multiscale PDE problems arise in various scientific domains, such as fluid
dynamics, quantum mechanics, or molecular dynamics. Standard methods, such
as finite difference methods (FDM) or finite element methods (FEM), encounter
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an intractable computational complexity in resolving all relevant scales, numer-
ical instabilities, or slow convergence in general. There have been significant
efforts in developing efficient discretization methods for multiscale problems. As
a representative example, the multigrid (MG) method [2] addresses the disparate
convergence rates of different scale components through a hierarchical design of
discretizations. The MG method captures the diverse target scale components of
the solution from the collaboration of scale-corresponding grid approximations.
The MG method achieves fast convergence as the method approximates all scale
components corresponding to the grids. A hierarchical approach for multiscale
problems has also been discussed in [6] for turbulent diffusion. Instead of using
a fine resolution grid for whole domain at each level, the approach in [6] uses a
local spatiotemporal domain. By designing a hierarchy that captures all possible
scale ranges of the solution, the approach can capture the effective macroscopic
behavior by a significant computational gain.

Neural network-based methods also face hurdles in approximating the mul-
tiscale solution of a PDE in that a neural network prefers low frequencies (F-
Principle) [17]. Therefore, a standard network design can be ineffective in learn-
ing the high-frequency components. There are several recent research efforts to
address the limitation in training high-frequencies by modifying the architecture
or the ingredients of neural networks [3, 12, 15]. In particular, [15] proposed a neu-
ral network structure with Fourier feature embeddings to learn the multiscale
solution efficiently. The embedding allows one to specify target characteristic fre-
quencies of the neural network. The authors consider the multiple embeddings
of inputs to simultaneously learn the diverse range of frequencies in the solution.

This work proposes hierarchical learning for solving PDEs to expedite the
convergence through a sequential training of neural networks based on a hier-
archy of networks. Using a set of networks of different target scales, where it
is assumed that the sum of the networks can represent the solution of a PDE
solution, we separate the training process so that each network can learn its cor-
responding scales without the training interruption from other networks. Once
the training for a network finished, the training switches to the next network
to correct the residual of the approximation up to the previous level. Among
other methods to impose different target scales for networks, we test 1) stan-
dard MLPs of different complexity (number of layers and neurons) and 2) Fourier
feature embedding. We emphasize that our proposed approach differs from other
network design-based methods, such as [3, 15, 7], in that the focus of the hierar-
chical learning is the sequential training process. In our numerical experiments,
it is shown that a sequential training process of networks with different target
scales performs better than the training of the complex network that combines
all networks of different levels at once. Thus, separating the training process
for different target scales becomes a key ingredient of the proposed hierarchical
learning. We believe the proposed hierarchical learning can apply to many neural
network-based methods. In this study, we investigate the efficacy of the proposed
hierarchical learning method in the framework of PINN along with other tech-
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niques to improve the convergence of PINN, such as the aforementioned adaptive
weighting algorithms.

The rest of the paper is organized as follows. Section 2 reviews the PINN
method and discusses the previous efforts to overcome the spectral barriers in
training neural networks to solve PDEs. In section 3, we propose the hierarchical
learning methodology, while section 4 provides numerical experiments validating
the efficacy of the proposed method. We conclude this paper with discussions
about the limitation and future directions of the current study in section 5.

2 Physics-informed neural networks

In this section, we summarize the standard Physics-informed Neural Networks
(PINN) for a boundary value problem and discuss its variants to address the
limitations of PINN. We consider the partial differential equation of unknown
real-valued function u in a bounded domain Ω ⊂ Rn

N [u](x) = f(x), and B[u](x) = g(x), x ∈ ∂Ω, (1)

where N is a differential operator and B represents a boundary condition op-
erator. General deep learning-based methods to solve Eq. (1) employ a neural
network, u(x;θ), to approximate the solution, and train the parameters θ under
the guidance of a loss function leading the neural network to satisfy Eq. (1). The
PINN measures the direct PDE residuals in the loss function

L(θ) = λΩLΩ(θ) + λ∂ΩL∂Ω(θ), (2)

which consists of the interior and boundary loss terms

LΩ(θ) =

Nr∑
i=1

∣∣N [u(·;θ)](xi
r)− f(xi

r)
∣∣2

Nr
, L∂Ω(θ) =

Nb∑
i=1

∣∣B[u(·;θ)](xi
b)− g(xi

b)
∣∣2

Nb

(3)

respectively. Here
{
xi
r

}Nr

i=1
and

{
xi
b

}Nb

i=1
are sampling points in the interior, and

the boundary of the domain, respectively.
Despite the remarkable achievement in many applications, the PINN often

struggles to learn the solutions of PDEs with either slow convergence or degraded
accuracy. Recent works have endeavored to understand unfavorable training sce-
narios of neural networks and proposed alternative methodologies to overcome
the limitations. One of the methods includes balancing different terms of the
loss function in the context of multi-objective optimization discussed in section
1 [14, 16, 8]. Another direction addresses the intrinsic behavior of training neu-
ral networks, which is specifically disadvantageous to learn functions involving
diverse frequency spectrum [1, 9, 17, 18].

The general learning process of neural networks has been studied from spec-
tral analysis [1, 9, 17, 18]. The F-principle [17] shows that the gradient-based
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training process has spectral bias as the neural networks tend to learn low fre-
quencies while it requires a longer time to fit high frequencies. This phenomenon
is a challenge in neural network-based methods to solve multiscale PDE problems
that suffer from slow convergence or low accuracy. The networks miss the high-
frequency components unless the training process is sufficiently long to learn
high-frequency components. [3] proposed a neural network architecture with an
input scaling treatment for converting the high-frequency components to low-
frequency ones preferable to learning. The network is installed with a compact
supported activation function and is effectively applied to multiscale applications
[13, 7].

Another work in [12] showed that a simple random Fourier feature embedding
of inputs enables a standard MLP to learn high-frequency components more effi-
ciently in applications of computer vision and graphics. Namely, the embedding
corresponds to a map from the input x ∈ Rn to the 2m-dimensional frequency
domain as

x ∈ Rn 7→
[
a⊙ cos(Bσx)
a⊙ sin(Bσx)

]
∈ R2m, (4)

where Bσ ∈ Rn×m is a random wave number matrix sampled from the Gaussian
distribution N (0, σ2) and a ∈ Rm is a scaling vector. The authors analyzed the
effect of the embedding on the neural tangent kernel (NTK) of the standard
MLP to attenuate the spectral bias using appropriate σ and a.

3 Hierarchical PINN

The methods discussed in the previous section focus on various strategies to
improve the capability of a single neural network to learn a wide range of scales
in the solution of a PDE. In the current study, we propose a hierarchical learning
procedure of neural networks to represent the multiscale solution. The proposed
method, which we call ‘hierarchical Physics-informed neural network’ (HiPINN),
uses a sequence of neural networks to represent the multiscale solution of a
PDE and trains them sequentially rather than simultaneously. Our hierarchical
approach is motivated by the multigrid method that uses a hierarchy of different
grid sizes to expedite the convergence of an iterative method to solve PDEs [2].
The rationale of the multigrid method is that a grid size has its characteristic
scale with its corresponding convergence rate. The multigrid method achieves a
fast convergence rate by capturing different scale components through variable
grid sizes. The idea of the proposed hierarchical approach for PINN is to impose
a hierarchy in training so that each network can capture its corresponding scales
without the interruption in training other networks, which enables us to capture
uniformly all possible ranges of scales.

3.1 Hierarchical design of networks

HiPINN employs a set of M neural networks {vm(x;θm)}Mm=1 with a hierarchy
to represent the PDE solution where M represents the number of levels for dif-
ferent characteristic scales. To mimic the hierarchy of the multigrid method, we
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consider two approaches in the current study. The first approach is the standard
multiplayer perceptron (MLP) with various network sizes and complexity. We
expect that a simple network will be enough to approximate for low variability
components of the unknown solution, while high variability components require
a more complicated network. Following this intuitive argument, we increase the
complexity of networks by increasing the depth and width of each network. One
issue of this approach is that it is unclear to cover a specific range of scales. Sup-
pose two networks are significantly different in terms of complexity. In that case,
we expect that the two networks will represent different scale components, but
it is not clear whether there is a gap between them. In the study of the spectral
bias of neural networks [9], it is shown that higher frequencies are significantly
less robust than lower ones in the perturbation of the neural network parame-
ters. This observation indicates that a limited volume in the parameter space is
involved in expressing the high-frequency components. With the support of this
observation, we consider the complexity of networks in composing the hierarchy.
The schematic diagram of the hierarchical employment of the MLPs is displayed
in Fig. 1.

Another approach to impose a hierarchy in the network is the Fourier feature
embedding [12]. The structure of each network is identical through levels with the
input embedding as Eq. (4). However, we vary them by increasing σ as the level
(m) increases so that a high-level network represents high frequency or wavenum-
ber behaviors compared to the ones captured by the low-level networks. As the
network size does not change through the hierarchy, the Fourier embedding-
based approach does not provide any computational efficiency in solving a low-
level network compared to the hierarchy using the network complexity of MLP.
However, the Fourier embedded hierarchy can specify the target characteristic
scales through σ. In the multiscale approach using the Fourier embedding for
PINN [15], a various range of σ values is incorporated to design a single network
to target all possible ranges of scales in the solution. In terms of the network
complexity, HiPINN does not necessarily use a network more complicated than
the one used in [15]. The goal of HiPINN is to expedite the training process by
dividing the training into specific scales instead of training all possible scales
simultaneously. The schematic of a hierarchical neural network design using the
Fourier feature embedding is shown in Fig. 2.

3.2 HiPINN algorithm

The benefit of the proposed hierarchical learning method comes from the se-
quential training based on a hierarchy of networks. Using the neural networks
with a hierarchy, the M -level HiPINN representation of the PDE solution is the
sum of all neural networks, which is given as

uM (x) =

M∑
m=1

vm(x;θm). (5)

Under this structure, the training of each level network is on the correction of
the residual of the previous level solution representation. To add the (M +1)-th

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_42

https://dx.doi.org/10.1007/978-3-031-36024-4_42
https://dx.doi.org/10.1007/978-3-031-36024-4_42


6 J. Han and Y. Lee

Fig. 1. Hierarchical composition of standard MLPs; small-sized MLP for capturing low
variability components and large-sized MLP for high variability components.

Fig. 2. Hierarchical composition of Fourier feature embedded neural networks; With
the same network architecture, the target characteristic frequency is controlled by the
Fourier feature embedding of inputs as Eq. (4).

level to uM using vM+1, the loss function L(M+1) is

L(M+1)(θM ) = λΩL(M+1)
Ω (θM+1) + λ∂ΩL(M+1)

∂Ω (θM+1) , (6)

L(M+1)
Ω (θM+1) =

1

Nr

Nr∑
i=1

∣∣N [uM + vM+1(·;θM+1)](x
i
r)− f(xi

r)
∣∣2 , (7)

L(M+1)
∂Ω (θM+1) =

1

Nb

Nb∑
i=1

∣∣B[uM + vM+1(·;θM+1)](x
i
b)− g(xi

b)
∣∣2 . (8)

We note that uM is already approximated, and thus the training variable related
to L(M+1) is θM+1. If the differential operator and the boundary operator are
linear, the (M + 1)-th level training is equivalent to solving the original PDE
operator using vM+1 for modified f (M+1)(x) and g(M+1)(x), which are given by

f (M+1)(x) = f(x)−N [uM ](x) and g(M+1)(x) = g(x)− B[uM ](x), (9)

respectively. Therefore, the implementation for the linear case involves only
marginal modification of the standard PINN method. When the differential op-
erator N is nonlinear, the differential operator on vM+1 at the (M + 1)-th level
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will be different from the original operator N . However, the structure of the op-
erator does not change over the level; it remains at minimizing the loss related
to N [‘approximation up to the previous level’+ ‘current level network’] over the
current level network. Thus HiPINN for a nonlinear problem requires only one
implementation of a solver and uses it repeatedly for all levels.

We also note that HiPINN does not require any projection or interpolation
operations between different level solutions, which are crucial in the algebraic
multigrid method. In HiPINN, each level approximate solution uses the same
sampling points

{
xi
r

}Nr

i=1
and

{
xi
b

}Nb

i=1
. From the homogeneity of the problem to

be solved at each level, it is straightforward to implement various types of cycles
to iterate over different levels, such as V and W cycles [2]. The V cycle starts
from a low resolution to a high resolution and iterates back to a low resolution.
The W cycle repeats the V cycle to approximate scale components that are not
sufficiently captured at the corresponding level.

4 Numerical experiments

In this section, we validate the robustness and effectiveness of the proposed
hierarchical learning methodology to solve PDEs through a suite of test prob-
lems. In all numerical experiments, we use the standard multilayer perceptrons
(MLPs) and Fourier feature embedded neural networks [15] with the tanh acti-
vation function. In the Fourier feature embedding case, the architecture of each
network is designed as follows in sequence; 1) multiple Fourier feature embed-
dings of input, each of embedding corresponding to the map in Eq. (4) with
scaling vector a = 1, 2) a multiscale feature extractor MLP common for each
embedded feature, 3) a final linear layer passed by concatenated features ex-
tracted. In our numerical experiments, we consider the dimension of a Fourier
feature embedding the same as that of the first hidden layer of the multiscale
feature extractor. Moreover, we include a dense layer to pass the concatenated
features, which performs better than direct linear mapping to the output in our
experiments.

We train each neural network using the Adam optimizer [5] with β1 = 0.95
and β2 = 0.95, and all the trainable parameters are initialized from Glorot
normal distribution [4]. Moreover, we employ the adaptive weights algorithm [16]
in all experiments, updating the weights in every 100 gradient descent steps for
computational efficiency. To validate the performance of the proposed method,
we consider the standard training procedure using networks with and without a
hierarchy. We note that the standard training using networks with a hierarchy
uses the same overall network structure as in the proposed learning method.
The difference is in the training process; the proposed method uses sequential
training while the standard training uses simultaneous training (that is, the
networks of different scales are trained at the same time). Except for the first
test in which an exact solution is available, we obtain reference solutions using the
FEM method with sufficiently large mesh sizes. We measure the accuracy of the
network-based solutions ũ using the relative L2-error, ∥ũ−u∥2,Ω

∥u∥2,Ω
. All benchmark
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Fig. 3. Training procedures of MLPs in solving Eq. (10) by standard (single MLP: 3
hidden layers, 200 units, two MLPs: 2, 3 hidden layers, 200 units) and hierarchical (first
level: 3 hidden layers, 200 units, second level: 5 hidden layers, 200 units) learning. (left)
interior losses, (middle) boundary losses, (right) relative L2-errors. The hierarchical
learning corresponds to second level initiation at 4× 104 iterations.

losses are referred to the test losses computed on the grid points. We want to
note that the reference FEM simulation is much more efficient than the neural
network-based methods in the tests we consider here, which are PDEs in the
2D space domain. The computational efficiency of the neural network-based
methods comes in when the domain is in a high-dimensional space. Note that
in a high-dimensional case, the mesh generation and solving its corresponding
(nonlinear) system can be extremely slow compared to the Monte-Carlo-based
training in the neural network approach [10].

4.1 Poisson equation

As the first example, we consider the Poisson equation in the unit square Ω =
[0, 1]2 with a Dirichlet boundary condition,

∆u = f in Ω, u = g on ∂Ω. (10)

Here, we choose the force term f and the boundary value g such that Eq. (10)
has the exact solution u(x) = sin(8πx2

1 + 4πx2) sin(8πx
2
2 + 4πx1). We consider

two-level hierarchical learning with neural networks, v(x;θ1) and v(x;θ2), which
are sequentially trained using the corresponding loss functions,

L(1)(θ1) =
λΩ

Nr

Nr∑
i=1

∣∣∆v(xi
r;θ1)− f(xi

r)
∣∣2 + λ∂Ω

Nb

Nb∑
i=1

∣∣v(xi
b;θ1)− g(xi

b)
∣∣2 ,(11)

L(2)(θ2) =
λΩ

Nr

Nr∑
i=1

∣∣(∆v(xi
r;θ

∗
1) +∆v(xi

r;θ2)
)
− f(xi

r)
∣∣2 (12)

+
λ∂Ω

Nb

Nb∑
i=1

∣∣(v(xi
b;θ

∗
1) + v(xi

b;θ2)
)
− g(xi

b)
∣∣2 ,

respectively. Here, θ∗
1 in Eq. (12) is the updated θ1 at level 1 and is fixed at level

2. We note that as the differential (i.e., Laplacian) and boundary operators are

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_42

https://dx.doi.org/10.1007/978-3-031-36024-4_42
https://dx.doi.org/10.1007/978-3-031-36024-4_42


Title Suppressed Due to Excessive Length 9

50000 100000 150000 200000
iteration

10−1

100

101

102

103

104

105 standard (σ = 1)

standard (σ = 5)

standard (σ = 1, 5)

hierachical (σ1 = 1, σ2 = 5)

50000 100000 150000 200000
iteration

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100 standard (σ = 1)

standard (σ = 5)

standard (σ = 1, 5)

hierachical (σ1 = 1, σ2 = 5)

50000 100000 150000 200000
iteration

10−3

10−2

10−1

100
standard (σ = 1)

standard (σ = 5)

standard (σ = 1, 5)
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Fig. 4. Training procedures for Eq. (10) by standard and hierarchical learning. (left)
interior losses, (middle) boundary losses, (right) relative L2-errors. The standard learn-
ing corresponds to single Fourier feature embedding with σ = 1, σ = 5, separately, and
multiple embeddings σ = 1, 5. The hierarchical learning runs with single embedding
σ = 1 at the first level, and σ = 5 at the second level, in sequence. The second level
training is initiated at 6× 104 iterations.

linear, the second level PDE for the neural network v(x;θ2) is also a Poisson
equation with a Dirichlet boundary condition with shifted force and boundary
functions. We test our method using the standard MLPs, and Fourier feature
embedded neural networks with training sample sizes Nr = 400 and Nb = 400.

First, we use the MLP with three hidden layers of dimension 200 at the first
level and five hidden layers of dimension 200 at the second level. The hierarchi-
cal learning is compared with the standard learning (i.e., single-level hierarchy)
with different sizes of MLPs, H numbers of hidden layers of dimension 200 for
H = 2, 3, · · · , 8, among which the MLP with H = 3 achieves the best perfor-
mance in approximating the solution. We also test the standard learning with
the sum of two MLPs with H1 and H2 numbers of hidden layers of dimension
200 for H1, H2 = 2, 3, · · · , 8, H1 < H2, in which θ1 and θ2 are trained simulta-
neously. Among the combination of two MLPs, the networks with H1 = 2 and
H2 = 3 perform the best approximation of the solution. Fig. 3 shows the training
procedures for 2 × 105 iterations. We observe that the correction of the hierar-
chical learning at the second level properly works to accelerate the convergence
in two losses and achieve better approximation accuracy than standard learning
with the single network or the sum of two networks. We want to emphasize that
the importance of the sequential training process of the different level networks.
In comparison with the proposed method and the two MLP case in which the
total networks are the same, the hierarchical training (blue curve) shows better
performance than the combined network case (green curve). This result shows
that the training of each target scale network can be hindered by the training of
other scale networks. For the case of the Fourier feature embedded neural net-
works, we use the same size neural networks at both levels, where each network
has a different Fourier embedding. We use single Fourier feature embedding at
each level with σ = 1 and σ = 5, respectively, in considering low target fre-
quencies at the first level and relatively high frequencies at the next level. The
rest of the network consists of the feature extractor with three hidden layers of
dimension 200 followed by the last dense layer of dimension 200. To demonstrate
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Fig. 5. first row: The numerical solutions of Eq. (10) by standard (multiple embeddings
σ = 1, 5) and hierarchical (single embedding σ1 = 1, σ2 = 5 in sequence) learning. (left)
the exact solution, (middle) the pointwise error corresponding to standard learning,
(right) the pointwise error corresponing to proposed hierarchical learning. second row:
the approximations at each level in the hierarchical learning. (left) the approximation
v(·;θ∗

1) at the first level, (middle) the approximation v(·;θ∗
2) at the second level, (right)

the target function for v(·;θ2) at the second level, which is equal to (uexact − v(·;θ∗
1)).

the effectiveness of learning the diverse frequencies from low to high in sequence,
we compare our method with the standard learning with the single embedding
(σ = 1 and σ = 5) and multiple embeddings (σ = 1, 5) aiming to learn various
frequencies simultaneously. As shown in Fig. 4, our method accelerates the con-
vergence at the second level and achieves an accurate approximation (relative
L2-error 1.33× 10−3) in comparison to the other experiments (best relative L2-
error 1.65×10−2). Particularly, in comparison with the multiple embedding (red
curve) and the proposed hierarchical training (blue curve), where the overall net-
work structure to represent the solution is comparable, the hierarchical training
process shows a better performance than the simultaneous training process.

Fig. 5 shows the point-wise errors of each level approximation in compari-
son with the standard learning method. Moreover, our method combined with
Fourier feature embedding outperforms the performance of HiPINN using the
standard MLP, as we can employ a neural network suitable for learning the
target frequencies at each level. We address a question when it is appropriate
to switch to the next level. Fig. 6 presents the six training procedures of the
Fourier feature embedded neural networks (σ = 1, σ = 5 in level sequence). The
experiment shows that transition to the next level after 25000 iterations provide
comparable overall accuracy using the two-level representation.
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Fig. 6. Training procedures of Fourier feature embedded neural network (single em-
bedding σ1 = 1, σ2 = 5 in sequence) in solving 2D Poisson equation, Eq. (10) with
different second level initiations, 2n×104, n = 1, 2, 3, 4, 5, 6. (left) interior losses, (mid-
dle) boundary losses, (right) relative L2-errors.

4.2 Steady-state advection-diffusion equation

The last test is to demonstrate the capability of the proposed method in han-
dling the multiscale behavior, which could arise from the intertwined conse-
quences of both differential operator and force term. We consider the steady-
state advection-diffusion equation with mixed Dirichlet and Neumann boundary
conditions,

w · ∇u− ν∆u = f in x ∈ [0, 1]2,

u(0, x2) = g1, u(1, x2) = g2 for x2 ∈ [0, 1],

∂u

∂n
u(x1, 0) =

∂u

∂n
u(x1, 1) = 0 for x1 ∈ [0, 1].

(13)

We choose the diffusion coefficient ν = 0.01, the force f = sin(4πx2), Dirichlet
boundary value, g1 = 0 and g2 = 1, and an incompressible velocity field w,

w(x) = (−5 sin(6πx1) cos(6πx2), 5 cos(6πx1) sin(6πx2)) (14)

We solve Eq. (13) using two levels, in which neural networks v(x;θ1) and v(x;θ2)
are trained under the following loss functions

L(1)(θ1) =
λΩ

Nr

Nr∑
i=1

∣∣R(θ1;x
i
r)
∣∣2 + λ∂Ω,1

Nb,1

Nb,1∑
i=1

∣∣∣∣ ∂v∂n (xi
b,1;θ1)

∣∣∣∣2 (15)

+
λ∂Ω,2

Nb,2

Nb,2∑
i=1

∣∣v(xi
b,2;θ1)− g(xi

b,2)
∣∣2 ,

L(2)(θ2) =
λΩ

Nr

Nr∑
i=1

∣∣R(θ2;x
i
r)
∣∣2 + λ∂Ω,1

Nb,1

Nb,1∑
i=1

∣∣∣∣ ∂v∂n (xi
b,1;θ

∗
1) +

∂v

∂n
(xi

b,1;θ2)

∣∣∣∣2

+
λ∂Ω,2

Nb,2

Nb,2∑
i=1

∣∣v(xi
b,2;θ

∗
1) + v(xi

b,2;θ2)− g(xi
b,2)

∣∣2 , (16)
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Fig. 7. Training procedures for steady-state advection-diffusion equation, Eq. (13), by
standard learning and proposed hierarchical learning. (first row, left) interior losses,
(first row, right) Dirichlet boundary losses, (second row, left) Neumann boundary
losses, (second row, right) relative L2-errors. The standard learning corresponds to
single Fourier feature embedding with σ = 2, σ = 5, separately, and multiple embed-
dings σ = 2, 5. The hierarchical learning runs with single embedding σ = 2 at the first
level, and σ = 5 at the second level, in sequence. The second level training is initiated
at n×104, n = 1, 2, 3, iterations. The detail approximations are also presented in Fig. 8.

where the residuals of PDE at each level are

R(θ1;x
i
r) = w · ∇v(xi

r;θ1)− ν∆v(xi
r;θ1)− f(xi

r)

R(θ2;x
i
r) = w · ∇vc − ν∆vc − f(xi

r) vc = v(xi
r;θ

∗
1) + v(xi

r;θ2).
(17)

Here, xb,1 and xb,2 are sampling points for the Neumann and the Dirichlet
boundary conditions, respectively, g is read as g1 or g2 depending on the location
of xi

b,2, and θ∗
1 in Eq. (16) and Eq. (17) is the updated θ1 at the first level and is

fixed at the second level. Moreover, we also apply the adaptive weight algorithm
[16] by treating the weight λΩ on boundary loss separately into two parts, λ∂Ω,1

on the Neumann boundary loss and λ∂Ω,2 on the Dirichlet boundary loss.
We apply the hierarchical learning method with the Fourier feature embed-

ded neural networks. The exact size neural networks are considered at both
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Fig. 8. first row: The numerical solutions of Eq. (13) by standard (single embedding
σ = 2) and hierarchical (single embedding σ1 = 2, σ2 = 5 in sequence) learning. (left)
the reference solution, (middle) the pointwise error corresponding to standard learning,
(right) the pointwise error corresponding to proposed hierarchical learning. second row:
the approximations at each level in the hierarchical learning. (left) the approximation
v(·;θ∗

1) at first level, (middle) the approximation v(·;θ∗
2) at second level, (right) the

target function for v(·;θ2) at second level, which is equal to (ureference − v(·;θ∗
1)).

levels using different single embedding; σ = 2 at the first level and σ = 5 at the
second level to learn low and high-frequency components. The rest of the net-
work comprises the feature extractor with three hidden layers of dimension 200
followed by the last 200-dimensional dense layer. We train the neural networks
over 1× 105 iterations, where we switch to the second level at various instances
(which are at n× 104, n = 1, 2, 3, iterations).

We compare the hierarchical learning method with the standard learning
approach using the same size neural network with different Fourier feature em-
beddings; single embedding using σ = 2 or σ = 5, and multiple embeddings
using σ = 2, 5. Fig. 7 shows the training procedures in terms of three losses and
relative L2-errors. Among the standard learning experiments, σ = 2 embedding
is suitable for this example as it has the most accurate approximation with a L2

error 4.76× 10−3. In comparison with the hierarchical learning method, hierar-
chical learning has the lowest error 2.41×10−3 when the second level training is
triggered after 1× 104 iterations of the first level. We also note that hierarchical
learning converges after 4 × 104 iterations, which is 2.5 times faster than the
other method. Fig. 8 shows the numerical solutions from both standard learning
and hierarchical learning for reference.
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5 Discussions and conclusions

Several research efforts have been focused on the design of a network to effi-
ciently represent a PDE solution that contains a wide range of scales, including
hierarchical networks. However, the training process can suffer from slow con-
vergence due to the interruptions of different scale components of the multiscale
network. Thus, the trainability of the network becomes an issue even though the
network can represent the multiscale solution if sufficiently trained. This study
proposed a hierarchical learning method to solve PDEs using neural networks,
which uses sequential training based on a hierarchy of networks. The rationale
of the sequential training is to focus on the target characteristic scales of each
network by training them separately rather than by training all networks simul-
taneously. Among several other methods to impose a hierarchy in the network,
we tested two methods; 1) multi-layer perceptrons (MLPs) with various network
complexities, and 2) Fourier feature embedded networks. The first approach has
a computational efficiency in solving a low complexity network while capturing
the low-frequency components of the solution. The second approach does not
provide any computational gain as each network at different levels has the same
complexity. Still, we can explicitly impose the range of scales of the solution
through the Fourier feature embedded layers. The proposed hierarchical learn-
ing method has been tested through a suite of numerical tests including the
advection-diffusion problem with a multiscale velocity field.

There are several issues to be addressed for the proposed hierarchical learning
method. It is unclear to see the connection between the network complexity
and its characteristic scales to represent a function. We have checked in our
numerical experiments that changing the complexity of a network will change
its corresponding scales. Still, we lack explicit and rigorous criteria to determine
the characteristic scales.
Also, we used the same network complexity for each level for the Fourier feature
embedding approach, assuming that the Fourier embedded layer will determine
its characteristic scales.

In applying the hierarchical learning to time dependent problems, there are
two approaches. One approach is to use a network to learn the spatiotemporal
scales at the same time. The other approach is to march the problem where
the spatial variations are learned through a network [10]. We are interested in
designing hierarchical networks to resolve multiscale behaviors in the temporal
domain, particularly to capture the long-time behavior of a dynamical system,
such as the climatology of geophysical fluid systems. Lastly, we have tested the
hierarchical learning method in the PINN framework in the current study. As
the overarching idea of the proposed method is in the efficient representation of
a multiscale function using hierarchical networks, we expect that the proposed
method can apply to other network-based methods for solving PDEs, which we
leave as future work.
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