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Abstract. Uncertainty quantification (UQ) of an engineered system in-
volves the identification of uncertainties, modeling of the uncertainties,
and the forward propagation of the uncertainties through a system anal-
ysis model. In this work, a novel surrogate-based forward propagation
algorithm for UQ is proposed. The proposed algorithm is a new and
unique extension of the recent efficient global optimization using neu-
ral network (NN)-based prediction and uncertainty (EGONN) algorithm
which was created for optimization. The proposed extended algorithm
is specifically created for UQ and is called uqEGONN. The uqEGONN
algorithm sequentially and simultaneously samples two NNs, one for the
prediction of a nonlinear function and the other for the prediction un-
certainty. The uqEGONN algorithm terminates based on the absolute
relative changes in the summary statistics based on Monte Carlo simu-
lations (MCS), or a given maximum number of sequential samples. The
algorithm is demonstrated on the UQ of the Ishigami function. The re-
sults show that the proposed algorithm yields comparable results as MCS
on the true function and those results are more accurate than the results
obtained using space-filling Latin hypercube sampling to train the NNs.

Keywords: Uncertainty quantification · Monte Carlo simulation · effi-
cient global optimization · neural networks · sequential sampling.

1 Introduction

Uncertainty is ubiquitous in engineering design. For example, manufacturing
processes create deviations from specifications, the system operating and loading
conditions may vary, and some parameters are just inherently variable. Further-
more, the engineering models used in the design can be over simplified which
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introduces uncertainties. All of these can have a direct impact on the engineered
system and its performance. Quantifying the impacts of uncertainties on the
system is therefore an important part of the engineering design process.

Uncertainty quantification (UQ) of an engineering system can be divided
into three major steps [25]. The first step involves identifying the types of un-
certainties existing in the problem. For example, are there uncertainties in the
system parameters, the design variables, or in the engineering model itself. The
second step involves modeling the input parameter uncertainties. In particular,
the uncertainties need to be defined in terms of the parameters and variables
mathematically, for example using probability theory, and with respect to the
quantities of interest (QoI), for example using the mean and standard devia-
tion. The third step involves sampling the input uncertainties and propagating
through the system model to yield the output probability distribution of the QoI
and computing the associated statistics. This step often involves many evalua-
tions of the QoI to obtain converged values of the statistics.

This work is focused on the third step in the UQ process described above, i.e.,
the forward propagation of the uncertainty through the system analysis, when
dealing with computer simulations of the system. In particular, the goal of this
work is to efficiently propagate uncertainties through simulations non-intrusively.
In this work, it is assumed the system under consideration has a large number of
uncertain parameters and each evaluation of system using the simulation requires
the numerical solution of partial differential equations (PDEs). An example of
such a system is the aerodynamic analysis of the flow past a civil transport
aircraft at transonic speeds requiring a computational fluids dynamics (CFD)
simulation which can take on the order of 24 hours on a high-performance com-
puting (HPC) system [17,10]. The key challenges of simulation-based UQ are
(1) a large number of uncertain parameters, (2) time-consuming simulations,
and (3) many model evaluations.

UQ is a large and active field of research. Methods for forward propagation
of uncertainties are many. The four major classes of nonintrusive methods for
forward propagation are perturbation methods [24], direct quadrature [18,2],
polynomial chaos [12,19], and Monte Carlo simulation (MCS) [7,15]. Pertur-
bation methods use a local Taylor series expansion of the functional output.
These methods are limited to local modeling and need at least first-order deriva-
tive information. Direct quadrature uses numerical quadrature to evaluate the
statistics. This method is limited to low-dimensional problems, although sparse
grids enable partially alleviate this issue. Polynomial chaos represent uncertain
parameters as a sum of orthogonal basis functions and can yield the statistics
and the output distributions. This method is, however, limited to small num-
ber of dimensions. Monte Carlo methods approximate the statistics and output
distributions using random sampling. These methods are easy to use and are
independent of the problem dimension. However, a major weakness is their in-
efficiency, i.e., many samples are required to obtain converged values of the
statistics.
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In surrogate methods, the time-consuming simulations are replaced in the
heavy computations of the QoIs with an approximation model, called a surro-
gate model or simply a surrogate, which is fast to evaluate [20]. This way the
computational cost is shifted over to the creation of a surrogate model that can
represent the true simulated response as a function of the parameters. In the
context of simulation-based UQ, the surrogate needs to represent the uncertain
output response of the simulation model in terms of the uncertain input parame-
ter space. If that is possible, then the summary statistics and output distribution
can be estimated using the aforementioned forward propagation methods.

Kriging is a widely used surrogate modeling method capable of approximat-
ing nonlinear responses [3]. An advantage of using kriging prediction is that it
comes with its own prediction uncertainty. This enables the sequential (adaptive)
sampling of the parameters space to enhance the kriging prediction surrogate. A
widely used approach for sequential sampling is the efficient global optimization
(EGO) algorithm [9]. A weakness of kriging is that it is limited to small data
sets. Deep neural networks (DNNs) [6], on the other hand, scale more efficiently
for large data sets [16,21] and while still being handle nonlinear responses. A
major limitation, however, is that uncertainty estimates are not readily avail-
able for a single prediction [16], and it is necessary to make use of an ensemble
of NNs with a range of predictions [14,23,5] or use dropout to represent model
uncertainty [4] and these algorithms are computationally very intensive.

A recently created EGO algorithm with neural network (NN)-based predic-
tion and uncertainty (called EGONN) partially alleviates some of these chal-
lenges [13]. The EGONN algorithm was created for unconstrained global op-
timization problems. In the algorithm, a NN model approximates a nonlinear
high-dimensional objective function with initial samples and then proceeds to
sequentially sample the design space and continuously update the NN-based
prediction based on a predetermined computational budget or a termination
condition is fulfilled. The update is based on an infill sample point determined
by the prediction uncertainty of the NN model. In EGONN, a prediction uncer-
tainty model is constructed using another NN that is trained on separate data
set based on the current prediction NN model and sample from the true function.
The prediction NN and the prediction uncertainty NN are used to maximize the
expected improvement infill criterion to determine the next sample point.

In this paper, an extension to the EGONN algorithm to handle UQ problems
is proposed. The goal is create an accurate global surrogate model of the true
function that can be sampled quickly using MCS to compute the desired sta-
tistical information for the purpose of UQ. The proposed extension to EGONN
is to model the spatial error of the prediction NN in order to construct the
prediction uncertainty model. By maximizing the prediction error NN model,
a new sample point is determined and appended to the current data set for
training the prediction NN model. Since the prediction is being updated in each
sequential sampling cycle it allows for termination of the UQ process based on
convergence of the summary statistics. This is another new and unique feature
of the proposed algorithm. This is achieved in the following way. In each itera-
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tion of the sequential sampling the current prediction NN is used to perform a
MCS to yield the summary statistics and the change in the predicted mean and
standard deviation with respect to the previous iteration is calculated. The algo-
rithm terminates if the change in the statistics is below a pre-specified tolerance
or a pre-specified maximum number of function evaluations has been reached.
The proposed EGONN for UQ (uqEGONN) algorithm is demonstrated on two
analytical test functions and compared against MCS of the true function.

The next section describes the proposed uqEGONN algorithm. The following
section presents the numerical results of applying the proposed algorithm to an
analytical test functions. Concluding remarks and possible next steps in this
work are presented in the last section.

2 Methods

A surrogate-based forward propagation approach for simulation-based UQ is
proposed. The proposed uqEGONN algorithm is given in Algorithm 1. Initially,
two separate data sets, (X,Y) and (X,Y)u, are generated using design of experi-
ments, such as space-filling Latin hypercube sampling (LHS). (X,Y) is for train-
ing a prediction model NNy and (X,Y)u is for training a prediction uncertainty
model NNu. The next steps in the algorithm comprise the sequential sampling.
In the first step, the NNy is fit to the current training data set (X,Y). In the

second step, NNy is evaluated at X and Xu to yield Ŷ and Ŷu, respectively.

This data is used to compute the spatial prediction errors S =

√
(Y − Ŷ)2

and Su =

√
(Yu − Ŷu)2. The data is then appended as X̃ = X ∪ Xu, and

S̃ = S∪Su. The prediction uncertainty model NNu is fit to the data set (X̃, S̃).
A new sampling point P is now found by maximizing the prediction uncertainty
model Ŝ(x) = NNu(x). The new sample point P is appended to X and the cor-
responding function value y(P) is appended to Y. The prediction model NNy

is used in a MCS to yield the summary statistics, the mean µ and standard
deviation σ.

The algorithm terminates if the absolute relative change in the mean, calcu-
lated as |µ(i)−µ(i−1)|/|µ(0)|, is less than a predefined tolerance τµ, and the abso-
lute relative change in the standard deviation, calculated as |σ(i)−σ(i−1)|/|σ(0)|,
is less than a predefined tolerance τσ, or if the number of sequential sample cy-
cles exceeds Nmax. In this work, the values of tolerance are set to τµ = 0.005
and τσ = 0.005, and the maximum number of sequential samples is Nmax = 100.

In this work, LHS is used to generate the initial sampling data set. The
neural networks in uqEGONN are implemented within Tensorflow [1]. In this
work, both NNy and NNu have two hidden layers and each with 8 neurons.
The number of epochs is set to 10,000 and hyperbolic tan is used as activation
function. All the NNs are trained using the Adam optimizer [11] with a learning
rate of 0.001. For maximizing the infill criterion, differential evolution [22] is
used with a population size of 210. The mutation and recombination is set to
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0.8 and 0.9, respectively, with a maximum of 200 generations. MCS is performed
using random sampling.

Algorithm 1 Uncertainty quantification with EGONN (uqEGONN)

Require: initial data sets (X,Y) and (X,Y)u
repeat
fit NNy to data (X,Y)

use NNy to get Ŷ at X and Ŷu at Xu

compute prediction errors: S←
√

(Y − Ŷ)2 and Su ←
√
(Yu − Ŷu)2

combine data: X̃← X ∪Xu, S̃← S ∪ Su

fit NNu to data (X̃, S̃)

P← argmax Ŝ(x)
X← X ∪P
Y ← Y ∪ y(P)
µ, σ ← Monte Carlo simulation using NNy

until convergence

3 Numerical experiments

This section presents the numerical results of applying the proposed uqEGONN
algorithm for the UQ of the Ishigami function [8], which is written as

Y = f(x1, x2, x3) = sin(x1) + a sin2(x2) + bx4
3 sin(x1), (1)

where a = 7, b = 0.1, and xi ∼ U [−π, π] ∀ i = 1, 2, 3. The convergence of MCS
on the true analytical function (1) is shown in Figs. 1(a) and (b). It can be seen
that MCS needs around one million samples to reach a converged mean µ = 3.50
and standard deviation σ = 3.72. Figure 1(b) shows the true output distribution.

Figure 2 shows the convergence of the uqEGONN algorithm as a function of
the sequential infill samples for the mean (Fig. 2(a)) and the standard deviation
(Fig. 2(b)), as well as using NN modeling with LHS of the total number of
samples, i.e., ns = n+ni, where n is the number of initial samples and ni is the
number of infill samples. It can be seen that the convergence history for both
approaches exhibit oscillations which is due to the NN random fit. Also, the
figures show that the sequential algorithm achieves more reduction in the both
the mean and the standard deviation than the pure LHS approach.

Figures 3 to 5 show the progression in the convergence of the mean and the
standard deviation as the number of samples increases. It can seen that the
sequential algorithm reaches close to the true mean and true standard deviation
values using 50 initial samples and 70 infills. The LHS approach does not give get
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as close to the true values using 120 samples. It can also be seen that the output
distribution of the sequential approach is closer to the true output distribution
than the pure LHS approach.

4 Conclusion

A novel surrogate-based forward propagation algorithm for simulation-based un-
certainty quantification (UQ) is proposed. The unique features of the algorithm
are (1) the sequential updating of the neural network (NN) predictions of the
nonlinear function responses and the associated prediction uncertainty, (2) auto-
mated termination criteria based on the absolute relative change in the summary
statistics, and (3) the elimination of testing data sets and the arbitrary choice of
convergence metric values such as those based on the root mean squared error.

The demonstration example shows that comparable summary statistics and
probability density function are obtained as those of the true function at a low
computational cost. Furthermore, it was shown that the proposed algorithm
yields more accurate results than those of using design of experiments methods
without the sequential sampling to construct the NNs.

Future steps in this work include testing the proposed algorithm on higher di-
mensional analytical functions, and on simulation-based problems with the goal
of characterizing its properties with respect to the dimensionality. The effects of
the ratio of the number of samples of the initial sampling plan to the number
of sequential infill points needs to be investigated. Another important future di-
rection is the automation of the hyperparameter tuning of the NN architecture
and training algorithm. This is important because the optimal architecture may
change as the number of training data points increase in the sequential sampling.
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Fig. 1: Monte Carlo simulation convergence history of the true Ishigami function.
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Fig. 2: Convergence history of the uqEGONN algorithm (Sequential) and using neural
network modeling with Latin hypercube sampling without infills (LHS).
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Fig. 3: Monte Carlo simulations on neural network models trained with the initial data
sets (ns = 50) using Latin hypercube sampling (LHS) and the sequential algorithm:
(a) mean, (b) standard deviation, and (c) probability density functions of the output.
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Fig. 4: Monte Carlo simulations on neural network models trained with the using Latin
hypercube sampling (LHS) (ns = 85) and the sequential algorithm (n = 50, ni = 35):
(a) mean, (b) standard deviation, and (c) probability density functions of the output.
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Fig. 5: Monte Carlo simulations on neural network models trained with the using Latin
hypercube sampling (LHS) (ns = 120) and the sequential algorithm (n = 50, ni = 70):
(a) mean, (b) standard deviation, and (c) probability density functions of the output.
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