
Semi-supervised Learning Approach to Efficient
Cut Selection in the Branch-and-Cut Framework⋆

Jia He Sun1 and Salimur Choudhury2

1 Carleton University, Ottawa, ON, Canada
jiahesun@cmail.carleton.ca

2 Queen’s University, Kingston, ON, Canada
s.choudhury@queensu.ca

Abstract. Mixed integer programming (MIP) is an extremely versatile
subclass of mathematical optimization problems. Applications of MIP
are ubiquitous in our world today, ranging from scheduling to network
design to production planning. The standard approach in state-of-the-art
commercial solvers is called branch-and-cut. The selection of these cuts
is an integral part of the branch-and-cut process as high-quality cuts can
greatly increase solving efficiency. Currently, cut selection is decided by
heuristics that both require expert knowledge and lack generalizability.
In this paper, we propose an efficient and highly generalizable cut se-
lection scheme based on semi-supervised learning. First, we design a cut
evaluation metric that labels cuts based on whether they are efficient or
not. Then, we train a deep learning classification model with unsuper-
vised pre-training as a ranking function for cuts. In our evaluation, the
proposed model outperforms standard heuristics and is comparable to
existing machine learning approaches. Furthermore, the model is shown
to be generalizable over both problem size and problem class.

Keywords: Machine learning · Semi-supervised learning · Mixed integer
programming · Cutting planes.

1 Introduction

MIP problems are linear programming (LP) problems with integrality constraints.
This particular subclass of optimization problems can be applied to a plethora
of industrial applications including but not limited to: scheduling [7], network
design [8], and production planning [9]. Modern commercial MIP solvers take
the branch-and-cut approach which is a combination of the branch-and-bound
technique and the cutting planes technique [18]. The selection of solution vari-
ables for the branching and the selection of cuts are key decisions with a huge
impact on the overall efficiency of the branch-and-cut algorithm [18]. Recently,
there has been a surge in interest from the ML community in augmenting the
branching process of the branch-and-cut framework [4] [5] [6] [3] [10].

⋆ Supported by NSERC.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_40

https://dx.doi.org/10.1007/978-3-031-36024-4_40
https://dx.doi.org/10.1007/978-3-031-36024-4_40


2 J.H. Sun and S. Choudhury

The cut selection process, the focus of this paper, has seen less focus from
researchers aiming to integrate machine learning into the branch-and-cut frame-
work. Tang et al. proposed a deep reinforcement learning (RL) formulation for
intelligent adaptive cut selection for the cutting planes method [2]. Paulus et
al. proposed an imitation-based learning model called “NeuralCut" based on a
lookahead expert [13]. While these two works are in the same domain as our
work, they are different in terms of target evaluation.

Huang et al. designed a multiple instance supervised machine learning model
for cut selection in the branch-and-cut framework called “Cut Ranking" [1].
Huang et al.’s work is the most similar to the work proposed in this paper.
However, not only do we propose a different labelling system for generating
labelled cut data, but we also take a semi-supervised approach to the machine
learning model as opposed to “Cut Ranking"’s completely supervised approach.

In this paper, we propose a generalizable and efficient cut selection scheme
for the branch-and-cut framework. This selection scheme includes a cut classifi-
cation system that differentiates efficient cuts from inefficient cuts and a semi-
supervised machine learning model that learns to do the same.

2 Methods

For every MIP problem, and for each node of the branch-and-bound search tree,
existing MIP solvers can generate a set of candidate cuts. The goal of our model
is to select the most efficient cuts from this candidate set. In our work, the
approach taken is multiple instance learning (MIL).

MIL is where the training data is generated based on bags of instances. This
approach is chosen because individual cuts will have little measurable effect on
the overall efficiency of the branch-and-cut framework, thus, cuts are grouped
into bags and are evaluated at the bag level. Then, labels are assigned at the
bag level. “Cut Ranking" takes the same approach for data generation [1].

To construct the bags of instances, consider a MIP problem P of the form:

max{cTx : Ax ≤ b, xj ∈ Z,∀j ∈ NI} (1)

where c, x ∈ Rn, A ∈ Rm×n, and NI ⊆ N = {1, ..., n}. Let xLP be an optimal
solution to P ’s corresponding LP relaxation and let C be the candidate cut set
generated by a solver. For each cut ci ∈ C, it is of the form:

αT
i x ≤ βi (2)

Let fci ∈ Rl denote the feature vector of ci. Let B = {B1, ..., Bk} ⊆ C be
all bags of cuts sampled from C. Then, the feature vector of a bag Bu, denoted
by fBu

, is the average of the feature vectors fci for all ci ∈ Bu. That is, the
feature vector of a bag of cuts is the average of the feature vectors of the cuts
in the bag. Furthermore, |Bu| ≥ 0.1 · |C|,∀j ∈ {1, ..., k}. In other words, the size
of each sampled bag of cuts must be at least 10% of the size of the candidate

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_40

https://dx.doi.org/10.1007/978-3-031-36024-4_40
https://dx.doi.org/10.1007/978-3-031-36024-4_40


Title Suppressed Due to Excessive Length 3

cut set. This is to ensure that we do not have samples with not enough cuts to
make a measurable difference in run time.

For each cut ci, the features extracted are as follows:

1. cut coefficients features (4): maximum, minimum, mean, and standard devi-
ation of cut coefficients αi

2. objective function coefficients features (4): maximum, minimum, mean, and
standard deviation of objective function coefficients that correspond to the
non-zero cut coefficients

3. support
4. integral support
5. relative violation
6. distance
7. objective function parallelism
8. expected improvement

The first four features are basic structural data of the cut. The rest of the fea-
tures are popular metrics for measuring the quality of cuts. The exact definitions
of these features can be found in Wesselmann and Suhl’s work [11].

2.1 Cut Evaluation and Data Labelling

For each MIP problem P , after we have sampled k bags from the generated
candidate cut set C, every sampled bag Bu is evaluated by adding all cuts in
Bu to P and running the solver. To evaluate the performance of each bag, the
metric used in our scheme is normalized run time.

Let rj be the run time of problem P with appended bag Bj for all j ∈
{1, ..., k}. Without loss of generality, assume Bv to be the bag with shortest run
time and Bw be the bag with the longest run time. Then, the evaluation value
assigned to each sampled bag Bu, normalized run time, is defined by:

r∗j = 1− rj − rm
rn − rm

(3)

In this format, for each MIP problem, the best performing bag will always
be evaluated as 1 and the worst performing bag will always be evaluated as 0.
The rest of the bags will have an evaluation of some value in [0, 1].

After each bag of cuts has been evaluated, it will be given a discrete label.
In our scheme, we will assign 1 to bags with normalized run time over λ1 and
assign 0 to bags with normalized run time under λ2. λ1 and λ2 are both hyper-
parameters between 0 and 1 and λ1 > λ2. All other bags will not be labelled and
consequently will not be used in the supervised training portion of the model.

Furthermore, notice that we choose to allow some data points to remain
unlabelled. Intuitively, we are labelling the samples we know are good as 1 and
the samples we know are bad as 0. The samples in the middle that could be
good or could be bad are not labelled.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_40

https://dx.doi.org/10.1007/978-3-031-36024-4_40
https://dx.doi.org/10.1007/978-3-031-36024-4_40


4 J.H. Sun and S. Choudhury

2.2 Unsupervised Pre-training

The proposed machine learning model is a semi-supervised deep learning model
for tabular data which employs an unsupervised pre-training model. The rea-
son that unsupervised pre-training is chosen is that we have an abundance of
unlabelled data at our disposal. We implement the pre-training model used in
TabNet, a deep tabular data learning model [17]. TabNet’s pre-training model,
similar to a denoising auto-encoder, is designed to predict missing feature values
from corrupted feature input based on observed interdependencies.

2.3 Model Architecture

Table 1. Diagrams regarding the architecture and cut selection scheme

Model Architecture Proposed cut selection scheme

Following pre-training, the data will be pushed through a supervised classifica-
tion model. The model consists of 4 fully connected layers with an input layer,
an output layer, and 2 hidden dense layers of size 64 and 32 respectively. Since

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_40

https://dx.doi.org/10.1007/978-3-031-36024-4_40
https://dx.doi.org/10.1007/978-3-031-36024-4_40


Title Suppressed Due to Excessive Length 5

the proposed model is a binary classification model we chose to use binary cross
entropy as our loss function:

− 1

N

N∑
i=1

y log(p) + (1− y) log(1− p) (4)

where N is output size, y is target value, and p is model output. For the
same reasoning, we also choose to use sigmoid as our activation function:

σ(z) =
1

1 + e−x
(5)

A regression model was not chosen because, in our internal experiments, the
binary classification model consistently outperformed it. We hypothesize that
this is due to the relatively small amount of labelled data and the existence
of many outliers. A multi-class classification model was also tested with little
success. For each cut, the output of the model will be a continuous value between
[0, 1] and the top τ% of cuts will be added to the model, τ is the cut selection
threshold hyperparameter. A visual of our implemented architecture as well as
a high-level diagram of our proposed cut selection scheme is given in Table 2.3.

2.4 Data Sets

To train our model, we procured a data set consisting of 80 real-world set parti-
tioning problems from the Mixed Integer Programming Library (MIPLIB2017)
[12]. Set partitioning is chosen as it is one of the most widely applied mathemat-
ical optimization problems [19]. The problems in our chosen problem set are all
similar in terms of difficulty as they all take less than 30 minutes to solve. For
each problem, 135 samples were extracted from the candidate cut set generated
by our solver [15]. The total number of data points generated for training is
10,602.

For comparison, we implement the following evaluation baselines:

1. relative violation
2. objective function parallelism
3. distance
4. “Cut Ranking" [1]
5. proposed model but without unsupervised pre-training

Baselines 1-3 are common heuristics for cut selection [11]. Baseline 4 is the
model proposed by Huang et al. that also focuses on run time [1]. Baseline 5 is
to confirm the effects of using unlabelled data.

For evaluation, we perform experiments on the following real-world data sets:

1. 50 small set partitioning problems (different problems than the ones used in
training) [12]

2. 50 large set partitioning problems [12]

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_40

https://dx.doi.org/10.1007/978-3-031-36024-4_40
https://dx.doi.org/10.1007/978-3-031-36024-4_40


6 J.H. Sun and S. Choudhury

3. 50 mixed integer knapsack problems [14]
4. 50 lot sizing problems [16]
5. 50 general MIP problems [12]

Data sets 1-2 are used to evaluate the performance of the model on similar
problems that it was trained on as well as how well it generalizes in terms of
problem size. Data sets 3-5 are used to evaluate the model’s generalizability on
different problem classes.

2.5 Hyperparameters

After tuning, the hyperparameters for data generation are λ1 = 0.7 and λ2 =
0.45. That is, cut samples with normalized run time over 0.7 are labelled 1, and
cut samples with normalized run times under 0.45 are labelled 0. With these
hyperparameters, the labelled samples total 5,020, and the unlabelled samples
total 5,582. The cut selection threshold hyperparameter τ is set to be 0.7, that
is, the top 30% of cuts are added to the model.

For model specific hyperparameters, dropout is set to be 0.01, the learning
rate is set to be 0.0001, batch size is set to be 32, unsupervised pre-training is
set for 512 epochs, and supervised training is also set for 512 epochs.

2.6 Implementation

The MIP solver used is the Coin-or Cut-and-Branch Solver [15]. The train-
ing data used in this study are openly available in Mendeley Data at DOI:
10.17632/thtz8h894m.1. The model implemented is based on Arık and Pfister’s
proposed model and is available here [17].

3 Results

In our experimentation, the cut selection scheme is implemented only at the root
node of the search tree. In other words, cuts are only being added to the original
MIP problem. Since each node of the branching search tree can be considered
its own MIP problem, we believe that the results of our experimentation extend
to all nodes of the branching search tree.

Table 2 displays the evaluation results of our proposed model compared
against the selected baselines. First and foremost, the proposed model signif-
icantly outperforms all evaluated baselines on the data set it was trained on, set
partitioning (small), achieving an average normalized run time of almost 50%
better than the next highest baseline.

As for the other data sets, our proposed model is at worst comparable to
“Cut Ranking" and the other heuristics. For the set partitioning (large) and the
lot sizing data sets, our model outperforms all of the baselines by a comfortable

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_40

https://github.com/dreamquark-ai/tabnet
https://dx.doi.org/10.1007/978-3-031-36024-4_40
https://dx.doi.org/10.1007/978-3-031-36024-4_40


Title Suppressed Due to Excessive Length 7

Table 2. Average normalized run time evaluation between proposed model, “Cut Rank-
ing", and various heuristics (higher is better)

Problem Set
Proposed

Model
Cut Ranking

Relative

Violation
Distance Parallelism

Without

Pre-training

Set Partitioning

(small)
0.764 0.515 0.476 0.372 0.351 0.676

Set Partitioning

(large)
0.749 0.621 0.579 0.475 0.397 0.612

Mixed Integer

Knapsack
0.991 0.998 0.974 0.762 0.764 0.975

Lot Sizing 0.795 0.698 0.667 0.197 0.740 0.596

General MIP 0.695 0.729 0.562 0.424 0.392 0.612

margin. For mixed integer knapsack problems, the proposed model performs
barely worse than “Cut Ranking". For the general MIP data set, our model is
less efficient than “Cut Ranking" by a slight margin but outperforms the other
baselines.

Lastly, we can see that our proposed model consistently outperformed its
no pre-training counterpart. This confirms that the unsupervised pre-training
portion of our model is indeed beneficial.

4 Conclusion

The backbone of modern state-of-the-art MIP solvers is the branch-and-cut
framework. The selection of cutting planes to be implemented at each node of
the branching search tree is an important task and, to tackle this, we proposed
a semi-supervised deep learning based cut selection scheme. An unsupervised
pre-training model is trained to reconstruct features based on inter-feature de-
pendencies using unlabelled data. Then, the labelled data are trained using a
standard binary classification approach. From our experiments on real-world
MIP problem sets, we found that our model is not only comparable to current
state-of-the-art approaches but also generalizable over both problem size and
problem class.

Currently, both the branching process and the cutting process have received
attention from the machine learning community. However, they are often con-
sidered completely separate. It can be interesting and fruitful to study the de-
pendencies between variable/node selection in the branching process and cut
selection in the cutting process.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_40

https://dx.doi.org/10.1007/978-3-031-36024-4_40
https://dx.doi.org/10.1007/978-3-031-36024-4_40


8 J.H. Sun and S. Choudhury

References

1. Huang, Z., Wang, K., Liu, F., Zhen, H.L., Zhang, W., Yuan, M., Hao, J., Yu, Y.
and Wang, J., 2022. Learning to select cuts for efficient mixed-integer programming.
Pattern Recognition, 123, p.108353.

2. Tang, Y., Agrawal, S. and Faenza, Y., 2020, November. Reinforcement learning
for integer programming: Learning to cut. In International conference on machine
learning (pp. 9367-9376). PMLR.

3. Khalil, E.B., Dilkina, B., Nemhauser, G.L., Ahmed, S. and Shao, Y., 2017, August.
Learning to Run Heuristics in Tree Search. In Ijcai (pp. 659-666).

4. He, H., Daume III, H. and Eisner, J.M., 2014. Learning to search in branch and
bound algorithms. Advances in neural information processing systems, 27.

5. Balcan, M.F., Dick, T., Sandholm, T. and Vitercik, E., 2018, July. Learning to
branch. In International conference on machine learning (pp. 344-353). PMLR.

6. Khalil, E., Le Bodic, P., Song, L., Nemhauser, G. and Dilkina, B., 2016, February.
Learning to branch in mixed integer programming. In Proceedings of the AAAI
Conference on Artificial Intelligence (Vol. 30, No. 1).

7. Pan, C.H., 1997. A study of integer programming formulations for scheduling prob-
lems. International Journal of Systems Science, 28(1), pp.33-41.

8. Guihaire, V. and Hao, J.K., 2008. Transit network design and scheduling: A global
review. Transportation Research Part A: Policy and Practice, 42(10), pp.1251-1273.

9. Díaz-Madroñero, M., Mula, J. and Peidro, D., 2014. A review of discrete-time opti-
mization models for tactical production planning. International Journal of Produc-
tion Research, 52(17), pp.5171-5205.

10. Huang, L., Chen, X., Huo, W., Wang, J., Zhang, F., Bai, B. and Shi, L., 2021.
Branch and bound in mixed integer linear programming problems: A survey of
techniques and trends. arXiv preprint arXiv:2111.06257.

11. Wesselmann, F. and Stuhl, U., 2012. Implementing cutting plane management and
selection techniques. In Technical Report. University of Paderborn.

12. Gleixner, A., Hendel, G., Gamrath, G., Achterberg, T., Bastubbe, M., Berthold,
T., Christophel, P., Jarck, K., Koch, T., Linderoth, J. and Lübbecke, M., 2021. MI-
PLIB 2017: data-driven compilation of the 6th mixed-integer programming library.
Mathematical Programming Computation, 13(3), pp.443-490.

13. Paulus, M.B., Zarpellon, G., Krause, A., Charlin, L. and Maddison, C., 2022, June.
Learning to cut by looking ahead: Cutting plane selection via imitation learning. In
International conference on machine learning (pp. 17584-17600). PMLR.

14. Atamtürk, A., 2003. On the facets of the mixed–integer knapsack polyhedron.
Mathematical Programming, 98(1-3), pp.145-175.

15. Forrest, J. coin-or/Cbc: Release releases/2.10.8. Zenodo.
https://doi.org/10.5281/zenodo.6522795. 2022

16. Atamtürk, A. and Munoz, J.C., 2004. A study of the lot-sizing polytope. Mathe-
matical Programming, 99(3), pp.443-465.

17. Arik, S.Ö. and Pfister, T., 2021, May. Tabnet: Attentive interpretable tabular
learning. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 35,
No. 8, pp. 6679-6687).

18. Mitchell, J.E., 2002. Branch-and-cut algorithms for combinatorial optimization
problems. Handbook of applied optimization, 1(1), pp.65-77.

19. Diaby, M., 2010. Linear programming formulation of the set partitioning problem.
International Journal of Operational Research, 8(4), pp.399-427.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_40

https://dx.doi.org/10.1007/978-3-031-36024-4_40
https://dx.doi.org/10.1007/978-3-031-36024-4_40

