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Abstract. Supply chain management is a critical success factor for many manu-
facturing companies. During the pandemic period, the problem of meeting deliv-
ery on time according to customer needs has intensified in many companies 
around the world. Companies would like to keep inventories at a level that en-
sures smooth order fulfilment while minimising their own costs. Determining the 
optimal parameters is, however, a major challenge for Supply Chain inventory 
policy (SC). Combining simulation methods with optimisation techniques offers 
a methodology for obtaining an acceptable solution and, at the same time, pro-
vides a high degree of flexibility in the formulation of assumptions and the pos-
sibility of improving the decision-making process with respect to risk manage-
ment. In this paper we present a simulation-based optimisation model to improve 
the quality of inventory management decisions in SC design and planning. Fi-
nally, we refer to the benefits of implementing the model in the concept of digital 
twins. 
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1 Introduction 

Supply chain (SC) management is the management of the flow of goods and services 
and includes all processes that transform raw materials into final products delivered to 
consumers. Supply chains can be external if they include processes for the flow of raw 
materials from suppliers through manufacturers to the final external consumer. Supply 
chains can also be internal, in terms of the processes of material flow from supplier to 
customer within an organisation. One of the key components of internal SC is an in-
ventory management due to the high share of warehouse costs in the total cost of a 
product, considering the entire supply chain [1]. Companies therefore strive to have 
inventory levels set at optimal values to ensure smooth order fulfilment and keep costs 
in an acceptable range. Finding optimal parameters values is, however, severely ham-
pered by the high level of supply and demand uncertainty, the large number of decision 
variables, various internal and external constraints, and, above all, the high variability 
observed dynamically in the company itself and its environment. In the search for the 
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optimum values of the decision variables, optimisation methods are particularly help-
ful. However, its use is limited in cases where the degree of complexity of the problem 
and computational requirements make it impossible to find a solution using analytical 
methods. The combination of simulation methods with optimisation techniques makes 
it possible to obtain results that are impossible to achieve applying each of these ap-
proaches separately [2]. Simulation helps to dispense with the restrictive simplifying 
assumptions in the model and allows the inclusion of any number of parameters to 
achieve the required level of accuracy in the representation of the system under study. 
An important advantage of simulation is also its flexibility in mapping any number and 
various types of uncertainty and randomness.  

The industry 4.0 philosophy is making more and more companies focus on increas-
ing automation through the application of the Internet of Things, sensors, advanced 
communication systems, and the Digital Twin concept (DT) [3]. The use of simulation 
models in the form of DT provides technology that can lead to better decisions that 
result in more efficient systems, also with regard to external and internal supply chains. 

The purpose of this paper is to contribute to existing work by presenting a simula-
tion-based optimisation model to enhance the quality of inventory management deci-
sions in SC design and planning, taking into account uncertainty and risk analysis. The 
paper will also propose the concept of using the simulation model as a DT to simulate 
the near future of SC to predict potential delays and calibrate the ordering and renewal 
procedures parameters based on risk analysis. 

2 Decision Support in Supply Chain Management  

In recent years, many manufacturing companies have begun to see supply chain man-
agement as a critical success factor. Organisations that are able to deliver products to 
the customer in the right quality, time, and cost win the competitive battle. The problem 
of timely delivery according to customer needs has become apparent in a pandemic 
period [4][5]. Many of the risks associated with external supply chain conditions are 
beyond the control of companies, but they can mitigate risks in the operation of the 
internal supply chain, such as by properly managing the supply process based on the 
use of modern approaches to material inventory control.  

The classic approach to inventory management uses a push approach, in which the 
flow of materials within an organisation is controlled by demand forecasts [6]. Inven-
tory volumes are constant throughout the time covered by the forecast. The modern 
approach, the so-called pull approach, assumes that the flow of materials within the 
organisation is controlled by a signal received from the customer. The level of inventory 
in the company is held at a minimum and is replenished as demand arrives from the 
customer [6]. This approach is used in the concepts of Just-in-Time delivery and Lean 
Management, which have been increasingly used in organisations in recent years. 

From the point of view of inventory management, the use of the pull approach com-
pared to the classical approach brings many advantages, including [7] less storage, less 
use of warehouse space, reduction of material waste, reduction of costs. However, its 
use can also cause problems in the form of the risk of running out of stock, lack of 
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control over the time frame, and more planning required to take into account risks from 
the environment. The pull approach requires the collection of information from cus-
tomers and its processing in real time, and the adoption of a number of organisational 
solutions in the material flow process itself, as well as the use of a number of tools 
categorised as Industry 4.0 tools that increase the efficiency of information processing.  

In terms of organisational solutions companies must: 

• use a set of permanent suppliers based on selection criteria that primarily take into 
account the quality and reliability (timeliness) of deliveries,  

• develop spatial arrangement of workstations and tools (equipment) that optimise 
flow efficiency, 

• introduce automation of logistics processes,  
• apply system/methods of process integration inside and outside the company, 
• introduce a system for detecting and fixing problems inside the process, 
• apply risk assessment in the process flow and from the environment. 

The basic tools classified as Industry 4.0 tools that are applicable to inventory man-
agement are the following [8]:  

• Internet of Things (IoT) [9][10] that refers to the transmission and exchange between 
two or more objects different information through the Internet,  

• strongly correlated to IoT, the OPC – UA (Open Platform Communications - Unified 
Architecture), 

• Big Data, which helps to link (put in relation) large amounts of heterogeneous data 
in order to discover links between different phenomena and predict future ones,  

• cloud computing identified as the provision of services from a supplier to the end 
customer through the use of an Internet network.  

Simulation methods are widely used in supply chain inventory management to help 
optimise material flow processes or the spatial distribution of inventory. Discrete event 
simulation (DES), agent-based simulation, Monte Carlo simulation, and system dynam-
ics (SD) are being applied [11], but of these, the most widely used approach is DES and 
SD [12]. When comparing the use of DES and SD models in logistics, the clear ad-
vantage of DES is seen in modelling supply chain processes. According to [12] DES is 
primarily used to address issues such as supply chain structure, supply chain integra-
tion, replenishment control policy, supply chain optimisation, cost reduction, system 
performance, inventory planning and management, demand planning and forecasting, 
production planning and scheduling. 

3 Case Study 

3.1 Problem Definition 

This article deals with the delivery process of five products offered by the company. In 
addition to these five products, the company supplies customers with almost 200 other 
types of products, which the company manufactures on its own in Poland by importing 
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materials from various countries. In the case of the five types of products under consid-
eration, due to the high production costs in the country, the company decided to import 
them directly from the Chinese market. The process starts with the arrival of customer 
demand (Fig.1). Once a demand request is received from a customer, the process of 
completing the accepted request begins. If there are enough products of a given type in 
the stock, the request is processed immediately. If there is an insufficient inventory 
level, the request waits for the stock level to be renewed. The inventory level is moni-
tored on an ongoing basis. When the number of products in the stock falls to a certain 
minimum level (or below), an order is placed with a supplier in China. The production 
process at the Chinese manufacturer takes about 6 weeks (42 days) regardless of the 
quantity and type of products ordered. Finished products are imported by sea or air. The 
expected delivery time by air transport is 2 weeks, while the expected delivery time by 
sea is about 8 weeks. Due to the long distance and many stochastic factors that affect 
the timeliness of delivery, the risk of delay is quite significant. Once the order is re-
ceived, there is a quality control that takes about a week. After this time, the product is 
ready for sale and is put into the stock. The general structure of the considered supply 
chain is given in Fig.1.  

 
Fig. 1. General structure of the considered supply chain. 

3.2 Methods 

Discrete event simulation (DES) was used to simulate the supply chain from the mo-
ment of the arrival of the customer's request to the moment of the completion of cus-
tomer service. Arena ® by Rockwell Automation software was used to build the simu-
lation model. The simulation is carried out over a period of one year and starts with the 
set of initial inventory values. The goal of the simulation is to mimic the sales and 
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ordering process of five types of products imported from China, taking into account the 
random values of parameters that affect the delivery and the dynamics of the process. 
One of the key decisions reproduced in the model is the choice of the mode of trans-
portation: by air or by sea. The decision made has a direct impact on the costs incurred 
by the company and on the average customer's waiting time. The verified simulation 
model was then used in a two-stage optimisation, the aim of which was to find such 
values of input parameters at which the company incurs low order processing costs and 
at the same time the customers waiting time is acceptable. In the first stage of optimi-
sation, a series of simulation experiments was conducted to identify sets of values of 
boundary parameters in the vicinity of which a suboptimal solution might be found. 
The identified sets of input parameters were then entered into the OptQuest tool, which 
automatically searches for optimal solutions within the Arena simulation model, based 
on the set of baseline scenarios developed in the first phase of optimisation. The general 
scheme of simulation-based optimisation is shown in Fig. 2. 

 
Fig. 2. Conceptual model of simulation-based optimisation. 

3.3 Data and Input Parameters 

The basic groups of input parameters, which were elaborated on the basis of real data, 
are shown in Tab.1. Each of the five types of products has different characteristics. The 
most frequent demand requests are received for Product 4 and the fewest for Product 5. 
Within a single order, customers request the most units of Product 4 (from 1 to 235 
with varying probability), while the lowest orders are for Product 1 (from 1 to 25 with 
varying probability). The price of individual products varies. Thus, the most expensive 
is Product 1 (€182/piece) and the cheapest is Product 5 (€27/piece). Transportation 
costs by air and sea are the highest for Product 3, while the lowest for Product 5. Dif-
ferences between products are visualised in Fig. 3. 
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Table 1. Values of input parameters. 

Parameter Distribution Prod.1 Prod.2 Prod.3 Prod.4 Prod.5 
Arrival rate [days] Poisson 67 48 52 22 72 
Initial stock [units]  200 350 150 250 300 
Demand volume [units] Discrete 1‒25 1‒200 1‒75 1‒235 1‒75 
Cost of air transport [€/unit]  6 4.05 6.6 4.2 2.25 
Cost of sea transport [€/unit]  2 1.35 2.2 1.4 0.75 
Unit price [€]  182 78 96 35 27 
       

 

Fig. 3. Differentiating characteristics of the products considered in the model. 

3.4 Assumptions 

Several assumptions were formulated in the simulation model: 

• The cost of transporting one unit of the product does not change and is independent 
of the number of ordered products of a given type. 

• In the case of parallel execution of an order for several types of products, the trans-
portation cost per one unit always remains the same. 

• The production time of the products with the Chinese manufacturer does not depend 
on the number of ordered products.  

• For the purpose of the simulation, it was assumed that the delivery time by sea 
transport is in the range of 8 ‒ 12 weeks, while by air it takes 1.5 ‒ 2.5 weeks. 

• Inventory holding costs are not included in the simulation model. 
• Lost sales are not included in the simulation model. All customer orders are pro-

cessed from the time they are placed to delivery. 
• The simulation ends after 365 days, and pending orders are not included in the final 

statistics. 
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Assumptions relating to the initial conditions of the simulation are also formulated. At 
the start of the simulation: 

• the company is not fulfilling any previous demand requests from customers; 
• no transportation is being carried out; 
• there is a certain amount of each product in the warehouses. 

3.5 Simulation Phase 

Course of Simulation. In the simulation model, two types of entities are defined: de-
mand generated by customers and orders placed by the company with a Chinese sup-
plier.  

The demand requests from customers arrive according to a Poisson distribution 
(Tab.1) independently for five types of products. If products are in the stock when de-
mand from customers arrives, they are released to customers without undue delay, and 
the stock is reduced accordingly. If the products are out of the stock (customer demand 
cannot be met in full), the customer waits for the stock to be renewed. 

Stocks are continuously monitored. If the quantity of a product of a given type falls 
to a minimum level and, at the same time, an order has not been previously placed with 
the supplier for this product (no delivery is currently "on the way"), an order is placed 
with the supplier. The delivery process then begins. When the products are delivered to 
the company, the stock of the warehouse is increased, and demand requests from cus-
tomers waiting in the queue are immediately fulfilled. 

Mode of Transport. During the simulation, customer waiting times are continuously 
monitored. The decision to choose the mode of transportation (ship or plane) is made 
by comparing the current waiting time QueueTimei (i denotes customer, i = 1, 2,…) of 
the customer who waits the longest in the queue with a critical value of the decision 
parameter MaxWaitT (Eq.1). The critical value reflects the company's preference for an 
acceptable maximum customer waiting time for a product.  

 QueueTimei  ≥ MaxWaitT (1) 

When QueueTimei is greater than MaxWaitT, transport by air is selected, otherwise the 
sea route is chosen. Parameter MaxWaitT is a decision variable that can be freely de-
fined by the company and reflects customers’ expectations regarding the quality of the 
service. Parameter QueueTimei, on the other hand, is the current reading obtained dur-
ing simulation. This parameter is continuously monitored and directly affects the choice 
of transport route. 

Total Cost and Maximum Cost. During the simulation, the so-called cost of the frozen 
capital (in short, TotalCost) is calculated on the ongoing basis. This is the amount of 
money the company has to spend on fulfilling orders from the moment the order is 
placed with the supplier until the product is sold to the customer. The value of the To-
talCost parameter changes over time. At the end of the simulation, the average value of 
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this parameter is calculated for each replication (averaging over time). TotalCost con-
sists of three components: 

• SCCostjk (Eq.2): The total cost of the supply chain is calculated when a decision is 
made on the type of transport (air or sea) for the order j of the product k. The value 
of this element always adds to the current value of TotalCost. 

• PPCostjk (Eq.3): The product purchase cost is calculated at the time the order j for 
the product k is placed with the supplier. It always increases the current value of 
TotalCost. 

• PSRevik (Eq.4): The product sale revenue relates to the sale of the product k to the 
customer i. It is calculated when the products are delivered to the customer. The 
value of this element always reduces the current value of TotalCost. 

 SCCostjk = OrderVoljk ∙ TransCostk (2) 

 PPCostjk = OrderVoljk ∙ UnitPricek (3) 

 PSRevik = DemandVolik ∙ UnitPricek (4) 

where i denotes Customer (i = 1, 2, …),  j denotes Order (j = 1,2,…), and k denotes 
product type (k = 1…5). 
OrderVoljk: number of products of type k ordered from the supplier under the order j; 
TransCostk: the cost of transporting product k by sea or air, respectively (Tab.1); 
UnitPricek: the cost of purchasing one unit of product k from the manufacturer; 
DemandVolik: the number of products of type k requested by the customer i; 

In addition, at the end of the simulation the MaxCost parameter is also determined 
(Eq.5). It informs what the highest amount of money the company had to spend at a 
certain point during the simulation to fulfil the order with the supplier. 

 MaxCost = max(TotalCostt)t ∈ T (5) 

where t denotes the simulation time advancing in steps at specific moments determined 
by events, from moment zero to the end T of replication. 

Decision variables. The simulation model operates on 11 decision variables. These are: 

• ReorderPoint: Minimum stock levels (5 variables) set separately for each product 
type. It defines the minimum level of the stock in the warehouse, below which the 
company places an order with the supplier to deliver the next batch of products. 

• OrderVolume: The size of the order placed with the supplier (5 variables), set sepa-
rately for each product type. 

• MaxWaitT: The maximum acceptable waiting time for a customer (one variable).  

Output variables. At the end of each simulation experiment, the following output var-
iables are observed: the average cost of frozen capital (TotalCost), the maximum value 
of frozen capital (MaxCost), the average customer waiting time, the average number of 
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customers waiting for products, and the number of times there were no products in stock 
when a new demand request from a customer arrived. 

3.6 Verification and Validation  

Each simulation experiment consists of 10 replications. The duration of one replication 
was 365 days. The simulation is run with the preset initial stock levels and with a one-
month warm-up period. Key experts from the Company actively participated in the 
process of formulating assumptions for the model. The model was subjected to exten-
sive verification and validation. As part of the verification, tests were conducted to ver-
ify internal consistency. These were visualisation tests, degeneration tests, extreme con-
ditions tests, and many others. For validation purposes, two parameters were compared: 
the number of completed deliveries and the total volume of all deliveries. The results, 
shown in Tab.2, confirm the credibility of the model.  

Table 2. Validation of the simulation model (10 replications). 

Parameter Real system Simulation Half-width 
Number of orders 19 20.1 6.9 
Total volume ordered 5030 5106 1525.4 

     Product 1 270 206  
     Product 2 1155 1250  
     Product 3 675 850  
     Product 4 2550 2500  
     Product 5 380 300  

4 Results 

4.1 Simulation-Based Optimisation Scenarios 

Due to the large number of decision variables (11 variables; see Section 3.5), the opti-
misation was carried out in two phases. In the first phase, a series of simulation exper-
iments were performed to determine potential sets of input parameters for further anal-
ysis using the OptQuest optimiser (Tab.3). The objective function is to minimise the 
average value of the cost of the frozen capital (TotalCost). Three additional parameters 
are also taken into account: MaxCost (see Section 3.5), average customer waiting time 
QueueTime and average queue length of waiting customers QueueLength. In all exper-
iments, the values of 10 decision variables (ReorderPoint and OrderVolume) are fixed, 
while the optimisation algorithm selects the value of the MaxWaitT variable moving 
with a step of 1, from the starting value of 1 to 70. Each experiment was performed 
with the same simulation parameters as in the base scenario. In Scenario 1, the baseline 
values of 10 decision variables are established. In Scenario 2, an equally low Reorder-
Point for all products was introduced and, at the same time, OrderVolume values were 
raised slightly. In Scenario 3, the values of the 10 decision variables were set taking 
into account the characteristics of the products (see Tab. 1). 
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Table 3. Simulation‒based optimisation scenarios.  

Scenario  Decision variables 
  ReorderPoint 

[units] OrderVolume [units] MaxWaitT [days] 

Sc1 Prod.1 
Prod.2 
Prod.3 
Prod.4 
Prod.5 

15 
200 
100 
400 
10 

100 
350 
250 
150 
200 

1 ‒ 70 

Sc2 Prod.1 
Prod.2 
Prod.3 
Prod.4 
Prod.5 

50 
50 
50 
50 
50 

200 
400 
150 
400 
300 

1 ‒ 70 

Sc3 Prod.1 
Prod.2 
Prod.3 
Prod.4 
Prod.5 

100 
150 
150 
300 
100 

200 
600 
200 
600 
350 

1 ‒ 70 

4.2 Discussion 

The optimisation results are shown in the Tab. 4.  

Table 4. Scenario results: only the selection of results of the MaxWaitT parameter is displayed. 

 
Scenario MaxWaitT 

Average  
TotalCost MaxCost 

Average Queue  
Waiting Time 

Average  
Queue Length 

Sc1 1 116.9 216.7 16.4 56.1 
30 112.5 215.3 19.4 76.9 
50 108.6 214.8 23.7 89.2 
70 104.5 215.4 32.7 116.4 

Sc2 1 101.7 132.9 40.8 126.7 
 10 101.7 132.9 40.9 126.8 
 20 102.0 132.2 41.3 129.1 
 30 101.9 131.5 41.3 129.1 

Sc3 1 147.1 190.0 28.1 61.6 
 30 143.8 185.2 37.2 80.7 

The best results were obtained in Scenario 1. Although Scenario 2 provides a lower 
value of the objective function and a lower value of MaxCost, this is at the expense of 
high values of the parameters that describe the queue of waiting customers. This Sce-
nario turns out to be immune to changes in the MaxWaitT parameter. The values of the 
variables relating to the cost, as well as the parameters describing the queues, change 
very little as the MaxWaitT parameter increases. Only setting MaxWaitT to 20 causes a 
noticeable change in values of the observed parameters. Scenario 3, on the other hand, 
turned out to be unfavourable in terms of all parameters. Figures 4 and 5 show the 
optimisation results for all MaxWaitT values obtained in the best Scenario 1.  
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Fig. 4. Results of simulation-based optimisation according to Scenario 1: cost parameters. 

 
Fig. 5. Results of simulation-based optimisation according to Scenario 1: queue parameters. 

The objective function reaches the lowest level for high values of MaxWaitT param-
eter. Analysis of the values of parameters that describe the queue allows us to select the 
MaxWaitT parameter = 50 days. At this value of the MaxWaitT variable, both cost pa-
rameters are low, while the parameters that describe the queue increase only slightly. 
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4.3 The Concept of Digital Twin in SC Inventory Control 

In the case study presented in the paper, the physical process of SC inventory planning 
and control is represented by a simulation model supported by optimisation tools. In a 
stable environment, the results of the applied approach that combines simulation with 
optimization, help to choose a solution that keeps costs at an acceptable level and at the 
same time provides the desired quality of services. However, the dynamic environment 
in which companies operate means that planned procedures in the near future may no 
longer be optimal. It is possible to use a cyclical (e.g. monthly) review of parameters 
and run the simulation again, but more and more companies are considering the use of 
digital twins (DT) to optimise warehouse design and operational performance 
[5][13][14]. DT is a virtual/ digital replica of physical entities such as devices, people, 
processes, or systems that help businesses make model-driven decisions, [13][14]. The 
key concept of DT is the coexistence of three elements: a physical system, a virtual 
model, and a two-way connectivity that allows data to flow from real to virtual space, 
and information flow from virtual space to real system. 

In the case study presented above, once DT is integrated with the physical system, 
real-system information on customer requests can be fed into the simulation model on 
an ongoing basis. The optimisation module finds the optimal solution with changed 
values of the input parameters, and new decisions and adjustments are transferred back 
to the physical system. As a result, new values of decision variables are determined, 
which are immediately implemented in SC inventory management procedures.  

A simulation experiment was performed to illustrate the intercommunication be-
tween the real system and DT (see Figures 6 and 7). After performing the optimisation 
described in Section 4.1, it was decided that the MaxWaitT decision variable should be 
50 days. However, it was noticed that there was a slight increase in the arrival rate for 
Product 3, and the re-estimation of the inter-arrival rate for this product was performed. 
It turned out that after adjusting the value of the Arrival Rate parameter from 52 to 48 
days, the value of the MaxWaitT decision variable should also change. Figures 6 and 7 
compare the results of the two simulation-based optimisations. The values of the objec-
tive function in both optimisations change very similarly; that is, the lowest values of 
the TotalCost parameter are obtained at high values of MaxWaitT. However, the anal-
ysis of the parameters that describe the queue shows a deterioration in the customer 
waiting time and the length of the queue when the value of the parameter MaxWaitT is 
set to 50. A better choice would be to keep the MaxWaitT value less than 50 days. 
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Fig. 6. Results of simulation-based optimisation according to Scenario 1 (cost parameters) in 
response to revised data describing the arrival rate of product 3; (a) baseline arrival rate = 52 
days, (b) corrected arrival rate = 48 days. 

 
Fig. 7. Results of simulation-based optimisation according to Scenario 1 (queue parameters) in 
response to revised data describing the arrival rate of product 3; (a) baseline arrival rate = 52 
days, (b) corrected arrival rate = 48 days. 
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5 Conclusions 

In this paper, we discuss the simulation-based optimisation approach to support man-
agement decisions in SC inventory control. A simulation model built according to the 
DES paradigm was used to map the supply chain process in the part of it that deals with 
inventory supply control. The simulation results were then fed into the optimisation 
module to obtain acceptable values for the decision variables chosen both for minimis-
ing the objective function (average cost of frozen capital) and for maintaining an ac-
ceptable level of customer service quality (expressed by parameters describing the 
queue of customers waiting for orders to be fulfilled).  

The developed algorithm proved to be useful and fulfilled its purpose as a component 
of the decision support system in SC inventory control. The combination of simulation 
and optimization can significantly improve the quality of SC managers' decisions, es-
pecially when the complexity of the problem, the need to consider many variables, and 
the accumulation of factors of a random nature make it impossible to obtain an accepta-
ble solution by analytical methods. In addition, the use of a two-phase algorithm, dis-
cussed in the article in par. 4.1, reduces the time of performing calculations by prelim-
inarily indicating the ranges for potential optimization. The duration of one full simu-
lation run is less than a minute. Searching for the optimal solution within a predefined 
range therefore significantly reduces the duration of the entire study compared to full 
optimization process. From the company's point of view, any set of parameters that 
meets predefined quality requirements is satisfactory. Nevertheless, further research 
work will be aimed at an even more precise selection, through simulation experiments, 
of decision parameter ranges for further optimization. 

The article also discusses the concept of using a simulation-based optimisation 
model as an element of DT and thus obtaining a significant impact on the efficiency of 
the supply chain. 
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