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Abstract. This work presents a research on Nature Inspired Meta-
heuristic Algorithms (MA) used as optimizers in training process of Ma-
chine Learning method called Extreme Learning Machine (ELM). We
tested 19 MA optimizers measuring their performance directly on sam-
ple datasets. The impact of input parameters such as number of hidden
layer units, optimization stopping conditions and population size on the
accuracy results, training and prediction time is evaluated here. Signi�-
cant di�erences in performance of applied methods and their parameters'
values are detected. The most meaningful outcome of this paper shows
that an increase of the number of MA iterations does not yield signi�cant
boost in accuracy with a huge increase in training time. Indeed a cap on
number of MA iterations ranging from 1 to 5 is su�cient for analyzed
machine learning tasks. In our research the best results are obtained for
population size ranging between 50 and 100. Hybridized ELM outper-
forms classical implementation of ELM as higher accuracy is reached for
the same number of neurons.

Keywords: Computational Optimization · Metaheuristic Algorithms ·

Bio-inspired computing · Extreme Learning Machine · Machine Learning

1 Introduction

Mathematical optimization algorithms play a vital role in many contemporary
technology applications such as e.g. GPS or IT banking sector tools. In addition,
the optimization driven behavior is also prevalent within all living organisms
commonly relying on it while e.g. hunting or trying to move more e�ciently.
In fact, searching for the e�ciency in nature can be a matter of life and death.
Among all the latter is physically demonstrated by the reproduction capabilities.
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Thus, organisms that perform life activities more e�ciently are better adopted
to the environment and are more likely to pass these abilities to their o�springs
by genes according to the Darwin's Theory [7].

Scientists attempt to describe "optimized" activities of organisms in terms of
mathematical modeling [27] commonly called Metaheuristic Algorithms (MA).
The combination of bio-inspired optimization algorithms with machine learning
models may improve their performance [30]. Here one of such approaches is called
Extreme Learning Machine (ELM) - the Machine Learning method with growing
popularity since its formulation in 2004 [14].

Recently, a hybrid MA-ELM that combines ELM with Metaheuristic Algo-
rithms (MA) is proposed and evaluated in practical applications. In doing so,
Chia et al. [8] used particle swarm (PSO), moth-�ame (MFO) and whale op-
timization algorithm (WOA). In other practical related context, Wu et al. [30]
applied genetic algorithm (GA), ant colony optimization (ACO), cuckoo search
algorithm (CSA) and �ower pollination algorithm (FPA). The above research
demonstrates superiority of hybridized ELM over the regular one. Neverthe-
less, most of the works in this topic deal with the practical applications of these
methods. There is a shortage in literature on comprehensive comparison of meta-
heuristic algorithms used in ELMs. In this paper we evaluate hybrid ELM on
MNIST handwritten and Wine Quality White datasets [9] for di�erent MA. The
comparison analysis for a separate set of parameters to investigate their impact
on attained accuracy and registered computational time is also performed for
each examined algorithm. The experiment is carried out on a single machine in
MATLAB R2021b, Ryzen 9 3900X CPU, 64GB RAM, GTX 1660TI GPU.

2 Extreme Learning Machine

Extreme Learning Machine (ELM) is a dense feed-forward neural network classi-
�er and regressor introduced by Huang et al. in 2004 [14]. The network's topology
consists of input layer, a single hidden-layer and an output layer of neurons. The
numbers of selected neurons in input and output layer depends on the task char-
acteristics. The number of hidden layer units requires an empirical determination
as a consequence of the theoretical method scarcity permitting to determine up-
front its optimal numbers controlling the topology of the ELM.

2.1 Classi�cation

Input data regarding supervised classi�cation task with N observations can be
described as pairs of values {(xi, ti)}Ni=1, where xi is i-th vector of d features
and ti is i-th label of class to which selected xi belongs. Here, ti = 0, . . . ,M − 1,
whereM is the amount of distinctive classes in the classi�cation task in question.
Note here that for multiclass classi�cation (when object belongs to more than one
class) ti is a vector. Based on the latter, matrixX = (x1, x2, . . . , xN ) ∈ Md×N (R)
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is formed, where xi ∈ Rd with vector T = {ti}Ni=1:

X =

x11 . . . x1N

...
. . .

...
xd1 . . . xdN

 and T =

 t1
...
tN

 .

The ELM input layer comprises of d neurons and its output layer consists of units
number equal to M . As an output of the network, the corresponding N values
{yi}Ni=1 are calculated forming the matrix Y = (y1, y2, . . . , yN ) ∈ MN×M (R),
where yi ∈ RM . The recognition of a given input xi is performed based on
extracting the maximal value of yi observed on the p-th index which assigns xi

to the p-th class. Thus, matrix Y is actually reformatted as N values {yi}Ni=1,

where yi = [0, . . . ,
p

1, . . . , 0]. Subsequently, one has to properly format T in order
to facilitate comparison with Y . In the next step 1− of −K scheme is applied
to the vector T - see [6]. Such procedure is designed to reformat ti as {tij}Mj=0

that yields all values set to zero except one element at s-th index that in turn

is set to one. Consequently, ti can be written as ti = [0, . . . ,
s
1, . . . , 0], where s-th

element indicates that i-th input vector of X a�liates to the s-th class. Correct
classi�cation is observed if and only if s = p for a given input vector xi.

Let L be a number of neurons in hidden layer that is chosen a priori. Weights
between input and hidden layer determine the matrix W ∈ Md×L(R), where wij

represent the weights associated with the connection of i-th input layer neuron
with j-th in hidden layer (see left equation (1)). Bias connections are represented
by a vector b = {bi}Ni=1. In learning process of ELM coe�cients of W and b are
computed using uniform distribution function U(−1, 1). The outputs of hidden
layer neurons are stored in matrix H ∈ MN×L(R) (see right equation (1)):

W =

w11 . . . w1L

...
. . .

...
wd1 . . . wdL

 , H =

 f(
∑d

i=1 xi1wi1 + b1) . . . f(
∑d

i=1 xi1wiL + b1)
...

. . .
...

f(
∑d

i=1 xiNwi1 + bN ) . . . f
∑d

i=1 xiNwiL + bN )

 .

(1)
The activation function f : R → R represents in our investigation a sigmoid
function f(x) = fα(x) = 1

1+e−αx , with α = 1. The weights β between hidden
and output layer can be computed upon solving the following equation Y = Hβ.
The system cannot be directly solved since H with probability equal to 1 is
irreversible and ||Hβ − Y || = 0 (see Huang et al. [14]). We estimate β as a
minimizer of mean residual square error:

β̂ = argmin
β

∥Hβ − T∥2 = H†T, (2)

where H† de�nes a Moore-Penrose generalized inverse of H [26]. The Pseudo-
inverse of matrix H† is uniquely determined and in the case of a non-singular
matrix H it coincides with an ordinary inverse i.e. H† = H−1. The matrix H†

gives solution β̂ so that Hβ̂ is close to Y in terms of mean square error (MSE).
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Assigning random values to weights and bias between input and hidden ELM
layer makes the network not susceptible to overtraining. Most importantly, the
computed solution β̂ is a global minimizer of (2). The latter contrasts with Multi-
Layer Perceptron (MLP) supervised training procedure. Indeed Backpropagation
Algorithm �nds generically only a local minimizer of the given network's loss
function that measures how well the neural network classi�es the training data
[12]. In addition, the optimal value of β̂ is found here upon performing a non-
iterative procedure in (2). The learning speed of ELM can be thousands times
faster than other methods like MLP (see [15]).

3 Genetic Extreme Learning Machine

The original concept of ELM relies on selecting weights between input and hid-
den layer together with bias values as randomly generated. This principle has a
remarkable advantage in terms of computational e�ciency [15]. Still such ran-
domness in weights generation in ELM can lead to the unstable performance
[4]. The idea here is to somehow estimate weights and bias values in order to
maximize the accuracy and stability of the model. A possible remedy to this
problem is to combine the Genetic Algorithm (GA) (see [13]) with ELM to form
the so-called hybridized Genetic Extreme Learning Machine (GELM). GAs are
created as a computational representation of Darwinian evolution theories to
search for the optimal solution of global non-linear optimization task by simu-
lating the process of biological natural selection concept [16]. Our hope is that
re�ecting the natural processes of selection, crossover and mutation the �ttest
individuals are selected for reproduction that will provide better o�spring in
terms of improving an appropriate �tness evaluation function [5].

4 Nature-Inspired Metaheuristic Algorithms

In general, the constrained optimization problem can be formulated in terms of
minimizing some objective function: minimizef(x) with x = (x1, . . . , xn) ad-
mitted to ful�ll either some equality(ies) and/or inequality(ies) [31]. All modern
nature-inspired algorithms are called Metaheuristic Algorithms [17]. Up to now
there is no commonly accepted de�nition of MA, but one can outline the fol-
lowing selected principles of MA adopted in the literature (see [27, 31, 24]): a
strategy that the main aim is to guide the search process avoiding the disad-
vantages of iterative improvement allowing the local search to escape from local
optima; starting to �nd solutions in more intelligent way than just providing ran-
dom initial solutions; dealing with randomness in an biased form incorporating
search experience (in a form of memory) to guide the search; in the simulation
stage considered as a set of assumptions about the natural environment.

The search strategies of di�erent MA are highly dependent on the philoso-
phy of the metaheuristic itself. In this paper, as a comparison of the MA applied
in ELM learning process, we use methods simulating behaviors of living organ-
isms in terms of the following optimization processes: Arti�cial Ecosystem-based
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Optimization (AEO) [35], Arti�cial Hummingbird Algorithm (AHA) [34], Arti�-
cial Rabbits Optimization (ARO) [29], African Vultures Optimization Algorithm
(AVOA) [2], Coyote Optimization Algorithm (COA) [25], Dandelion Optimizer
(DO) [32], Fast Cuckoo Search (FCS) [23], Gorilla Troops Optimizer (GTO)
[3], Grey Wolf Optimizer (GWO) [20], Hybrid Grey Wolf and Cuckoo Search
Optimization Algorithm (GWO-CS) [11], Improved Grey Wolf Optimizer (I-
GWO) [21], Leader Harris Hawks Optimization (LHHO) [22], Mountain Gazelle
Optimizer (MGO) [1], Manta Ray Foraging Optimization (MRFO) [36], North-
ern Goshawk Optimization (NGO) [10], Pelican Optimization Algorithm (POA)
[28], Hybrid Particle Swarm Optimization and Gravitational Search Algorithm
(PSOGSA) [19], Sea-horse Optimizer (SHO) [33] and lastly Salp Swarm Algo-
rithm (SSA) [18].

5 Experiments and Results

The metaheuristic algorithms (brie�y outlined in the previous section) used in
this work have common prerequisites. In particular, from now on, the term MA
directly refers to the algorithms exclusively used in this paper (see Section 4).

MA de�ne a concept of population as a set S of Sn candidate solutions, where
si, i = 1, . . . , Sn is a solution vector called also an individual and implement
the concept of intelligent iterative ransacking search space taking as an input
dimension of the vector Sd = dim(si), number of population Sn and constraints
applied to si. A termination condition for the algorithm and appropriate �tness
function must be determined. As MA fall into iterative methods, in k-th iteration
the set Sk called generation is produced with ski ∈ Sk representing generation's
individual, where k = 1, . . . , kn. The output of MA smin = skn

i yields a minimal
value of a given �tness function in the last generation of the algorithm.

To integrate MA with ELM we �rst need to specify input parameters for
MA. Analogously to GELM our aim is to evaluate optimal values of weights
between input and hidden layer including bias. In fact, the output of the MA is
a vector smin ∈ RSd , where Sd = dN + N . As a consequence we can reformat
smin properly constructing W and b:

W =

s
min
11 . . . smin

1N
...

. . .
...

smin
d1 . . . smin

dN

 and b =

 smin
dN+1
...

smin
dN+N

 .

Vector smin forms the �nal, optimal value of W smin

and bs
min

. Fitness func-
tion g is prepared based on the response of the ELM network represented
as Y k

i for a given ski (forming W k
i and bki ) compared to the expected results

T , g(X,W k
i , b

k
i , T ) = 1

N

∑N
j=1(Y

k
ij − Tj)

2, where Y k
i = Hβ, β = H†T and

H = f(XTW k
i + bki ) (see also (1)). The inequality constraints −1 < sij < 1

(with j ∈ [1, . . . Sd] for each i ∈ [1, . . . , Sn]) enforce si ∈ [−1; 1]Sd ⊆ RSd . The
impact of parameters Sn and the termination condition on the algorithm per-
formance is investigated in this research. The admitted values for Sn are equal
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to 50, 100 or 200. It is noteworthy that lowering the vales of Sn led to un-
stable results, while higher Sn values resulted in impractically long evaluation
times for our experiment. Two di�erent approaches of selecting stopping con-
ditions of MA are here considered. First, the stopping �ag is activated once
one of two conditions is ful�lled. More speci�cally, the upper limit on k iter-
ations is a priori set (here kn = 10000). In conjunction with the latter, the
optimization procedure terminates once the following a posteriori condition is
met

∣∣g(X,W k
i , b

k
i , T )− g(X,W k+1

i , bk+1
i , T )

∣∣ < ε holding for longer than 200 it-
erations (here ε = 0.0001). In further presentation of calculation results the �rst
variant of stopping condition is marked as "Limit 0". Second, the impact of �x-
ing ad hock an upper bound k on number of iterations is also analyzed here for
kn = 1, kn = 5 and kn = 50 that can be recognized in further considerations as
"Limit 1", "Limit 5" and "Limit 50", respectively.

Another parameter taken also here into consideration is the number of neu-
rons L in hidden layer of ELM. At this point one should mention a dilemma of
evaluating results applying testing and training sets once MA is used for opti-
mizing W and b. A core principle of the Machine Learning (ML) is to examine
results returned by a selected method on data that cannot be used for training
process. To enforce the latter the data is usually a priori divided into training
and testing sets or alternatively one resorts to a cross-validation method [12].
Cross-validation is an iterative method that uses di�erent portions of data to
test and to train a model applying randomness. Thus, matrices W and b are
optimized upon using MA on training data exclusively and cannot be speci�ed
as optimal on testing set. A similar approach should be adopted for β evalua-
tion while computing weights between hidden and output layer of ELM. It is
implicitly assumed here that dependencies for both training and testing sets are
similar. Therefore the optimized W and b based on training set can equally suc-
cessfully operate on testing set. The case of unbalanced number of observations
obtained on training and testing sets deserves a short note. Indeed, should the
latter occurs, the matrices W and b generated by MA on training set cannot
be directly applied to estimate Y on testing set. In ML there exists an implicit
assumption that the testing set should be essentially smaller than a training
one. Typically, the proportion of observations abides from 9:1 to 7:3 ratio. Con-
sequently, smin is too large to be properly re-formatted to W and b which can
still act on testing set. Assuming testing set contains N test observations we solve
this problem by taking k = N test × d �rst elements of smin transforming them
into matrix W smin

Ntest×d and last N test elements of smin creating vector bs
min

:

W smin

=

 smin
1 . . . smin

N
...

. . .
...

smin
k−N . . . smin

k

 and bs
min

=

s
min
Sd−Ntest

...
smin
Sd

 .

The entire calculation process is presented in the �owchart (see Fig. 5).
First, we evaluate the model in question for a di�erent number of neurons

L in hidden layer, population size Sn and MA termination condition taken as
"Limit 0". Unfortunately, even for Sn = 50 and L = 100 computation time for
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Fig. 1. Flowchart of MA-ELM training and testing process.

most of the methods exceeded a few hours. Then, a full comparison to the other
Limits is impossible. Therefore we discarded "Limit 0" calculations and leave it
for a future investigation. For our research two exemplary datasets are used. The
�rst set is called MNIST handwritten digits. The dataset contains 60000 training
and 10000 testing samples that are handwritten digits saved as greyscale images
of size 28 × 28 pixels. Thus, input vectors' size is 784 after �atten operation
is applied to the original image transforming image to the row by row vector.
The dataset is a typical example of classi�cation task where accuracy of the
classi�er is evaluated. The second set is called Wine Quality White which is
composed of features describing chemical and physical parameters of white wine
i.e. �xed acidity, volatile acidity, pH etc. Our task is to assign to a given wine
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sample the quality measure ranging from 0 to 10. Here classi�cation performance
is measured with MSE as we recognize di�erences between inappropriate class
assignments i.e. attaching a wine which is truly categorized as 0 to class 9 is a
graver mistake than assigning this wine to class 1. The dataset does not contain
separate training and testing subsets and because of that to obtain the most
meaningful results a 20% cross-validation method is applied that is repeated 50
times to properly estimate a statistically signi�cant value of MSE and to discard
randomness in�uence on the �nal results.

ACC [%] 100 200 300 400 500 600 700 800 900 1000

AEO 78.31 79.04 82.05 85.19 85.06 86.14 84.95 78.74 88.89 88.00

AHA 77.08 81.02 83.80 84.17 86.77 85.22 87.89 88.29 85.29 89.61

ARO 73.74 83.43 81.06 83.17 83.76 85.96 88.27 89.20 88.08 88.02

AVOA 68.50 82.11 84.06 81.66 84.46 85.78 86.55 88.85 89.84 89.60

COA 72.75 78.67 83.83 84.62 86.36 86.04 86.28 89.36 88.47 90.09

DO 73.48 81.41 83.61 80.31 87.55 81.95 89.22 86.20 87.54 85.98

FCS 72.89 80.43 80.94 86.15 85.77 87.17 86.76 89.25 88.02 88.80

GTO 78.54 81.73 78.35 84.67 75.38 88.85 84.99 80.26 83.8 84.41

GWO 69.42 74.79 81.01 83.28 83.95 88.52 87.58 85.05 88.65 90.08

GWO-CS 46.43 51.76 63.67 68.60 62.92 70.41 68.98 70.54 73.66 71.76

I-GWO 71.36 79.02 82.68 80.52 86.51 86.38 88.23 86.47 84.77 85.78

LHHO 72.48 81.02 80.57 87.39 84.42 86.93 85.53 87.43 87.88 87.84

MGO 71.59 78.65 78.06 80.13 86.27 86.93 86.93 88.36 88.42 88.92

MRFO 73.52 81.21 86.47 83.36 82.47 88.8 88.34 89.16 90.01 89.25

NGO 69.89 81.43 84.35 84.63 84.9 86.17 87.09 88.54 89.72 90.70

POA 69.81 81.06 83.16 84.73 85.89 87.31 87.83 88.09 87.36 89.60

PSOGSA 74.91 78.97 83.23 84.25 85.34 86.70 86.36 84.90 86.89 90.19

SHO 72.87 81.92 81.92 84.57 86.44 84.13 83.34 89.73 89.49 85.07

SSA 74.92 80.61 81.97 82.41 82.41 86.66 88.8 87.78 87.21 87.77
Table 1. Accuracy of ELM with selected MA applied for a given number of neurons
in hidden layer, population size 50 and limit of iterations equal to 1 used directly as a
classi�er on MNIST handwritten digits dataset.

For MNIST similarly to the ELM (see Tab. 7) for MA-ELM we obtain better
results upon increasing number of neurons (see Tab. 1). Then it was decided to
�x L to the value of 1000 in further calculations of MA-ELM. In contrast, for
Wine Quality White dataset the best results are observed for L = 100 (see Tab.
2), so this value will be �xed analyzing the dataset. Fitting process (see Tab.
3) for MNIST, L = 1000, Sn = 50 and selected limit of iterations combined
with a method in question may take from a few seconds to some hours. The
fastest methods turned out to be AVOA, DO, PSOGSA, SHO and SSA. In
particular, the last one yields the most prominent results with 8s, 284s and
2784s �t time for limit kn set to 1, 5 and 50, respectively. One can also notice
that raising the number of iterations more or less linearly increases the resulting
computation time. Di�erences in �tting time between various methods testify
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MSE 100 200 300 400 500 600 700 800 900 1000

AEO 0.641 0.647 0.659 0.679 0.692 0.699 0.725 0.734 0.755 0.775

AHA 0.634 0.645 0.661 0.669 0.685 0.701 0.718 0.731 0.759 0.768

ARO 0.648 0.650 0.654 0.670 0.684 0.697 0.716 0.739 0.747 0.765

AVOA 0.645 0.647 0.663 0.675 0.688 0.706 0.722 0.739 0.753 0.776

COA 0.639 0.647 0.659 0.680 0.690 0.712 0.721 0.738 0.751 0.771

DO 0.653 0.652 0.661 0.681 0.692 0.708 0.725 0.743 0.754 0.768

FCS 0.647 0.650 0.659 0.677 0.694 0.707 0.727 0.738 0.762 0.761

GTO 0.650 0.650 0.659 0.661 0.674 0.719 0.712 0.723 0.740 0.756

GWO 0.648 0.647 0.661 0.678 0.690 0.709 0.719 0.741 0.757 0.774

GWO-CS 0.625 0.628 0.641 0.642 0.671 0.672 0.726 1.105 0.722 1.056

I-GWO 0.644 0.651 0.668 0.672 0.693 0.709 0.723 0.747 0.749 0.770

LHHO 0.630 0.638 0.660 0.676 0.695 0.681 0.722 0.727 0.758 0.794

MGO 0.635 0.637 0.656 0.668 0.695 0.694 0.721 0.726 0.726 0.752

MRFO 0.641 0.642 0.656 0.657 0.674 0.711 0.720 0.730 0.751 0.765

NGO 0.647 0.654 0.664 0.674 0.686 0.708 0.726 0.739 0.751 0.771

POA 0.656 0.651 0.664 0.676 0.691 0.704 0.724 0.745 0.756 0.773

PSOGSA 0.647 0.648 0.662 0.677 0.695 0.703 0.732 0.737 0.758 0.772

SHO 0.651 0.649 0.659 0.677 0.696 0.710 0.723 0.738 0.756 0.772

SSA 0.647 0.652 0.663 0.675 0.696 0.708 0.720 0.742 0.755 0.767
Table 2. MSE of Extreme Learning Machine with selected Metaheuristic Algorithms
applied for a given number of neurons in hidden layer, population size 50 and limit of
iterations equal to 1 used directly as a classi�er on Wine Quality White dataset.

their practical applicability i.e. MGO needs fourfold more time for "Limit 1" to
achieve comparable results with SSA. It should be emphasized here that there is
no correlation between more computational time involved versus achieving better
results. Indeed, a GWO method surpasses in terms of ACC the other methods
that still need twice longer time to be executed. In previous section MA are
de�ned as methods that tend to create the new generations with individuals
characterized by lower �tness function value. Simultaneously, as we stated the
low MSE value for a given individual being MA solution cannot be directly
recognized as better in terms of accuracy upon applying on a testing set, because
of the fact that in training and testing di�erent subsets of dataset are used.
Surprisingly, for many of the methods increasing number of iterations does not
improve ACC (see Tab. 3). For most of them we observe a slight increase of
ACC between "Limit 1" and "Limit 5". The decrease of ACC between "Limit

5" and "Limit 50" was not expected. For some of the methods the lowest ACC
is obtained for "Limit 50". The classi�er performance on Wine Quality White
con�rms results obtained on MNIST. For the majority of methods we do not
observe signi�cant changes of MSE. Setting kn to higher value even increases
MSE in the case of AHA, COA, GWO-CS, LHHO, MGO and PGOGSA. For
the remaining methods change of kn from 1 to 5 results in a slight decrease of
MSE. Methods AEO, AVOA, DO, FCS, GWO, MGO, MRFO and NGO can
be characterized by decreasing MSE once kn changes from 1 to 5. In terms of
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MNIST Wine Quality White

Fit time [s] ACC [%] Fit time [s] MSE

Method / kn 1 5 50 1 5 50 1 5 50 1 5 50

AEO 237 571 5697 88.00 86.79 84.95 0.6 2.4 21.6 0.641 0.635 0.641

AHA 155 312 3989 89.61 88.98 84.62 0.3 1.7 10.7 0.634 0.646 0.631

ARO 156 309 4028 88.02 88.15 81.87 0.3 1.4 11.0 0.648 0.637 0.636

AVOA 78 258 4050 89.60 84.94 77.36 0.1 1.0 10.9 0.645 0.629 0.634

COA 278 692 7274 90.09 82.7 88.83 0.6 3.2 26.6 0.639 0.643 0.624

DO 77 273 2666 85.98 88.46 86.9 0.1 1.3 11.5 0.653 0.649 0.650

FCS 233 564 5041 88.80 86.51 77.86 0.5 2.5 20.9 0.647 0.647 0.651

GTO 103 567 5062 84.41 89.99 89.89 0.5 2.6 20.5 0.650 0.637 0.633

GWO 250 277 2705 90.08 88.57 87.78 0.2 1.1 11.8 0.648 0.648 0.653

GWO-CS 270 311 3046 71.76 72.99 87.88 0.2 1.3 13.7 0.625 0.643 0.630

I-GWO 445 608 5466 85.78 88.99 86.67 0.6 3.2 24.7 0.644 0.643 0.635

LHHO 240 896 8879 87.84 89.87 76.34 0.6 3.6 36.7 0.630 0.635 0.623

MGO 236 1218 11486 88.92 90.55 89.89 1.0 5.6 52.6 0.635 0.633 0.640

MRFO 232 566 5069 89.25 88.14 83.28 0.5 2.9 21.3 0.641 0.642 0.643

NGO 141 566 5038 90.70 91.45 87.42 0.5 2.6 21.5 0.647 0.645 0.647

POA 212 556 4974 89.60 81.25 86.32 0.5 2.8 20.6 0.656 0.647 0.638

PSOGSA 82 507 4800 90.19 85.8 90.81 0.5 2.6 24.6 0.647 0.655 0.649

SHO 22 471 4152 85.07 87.37 72.69 0.5 2.4 17.0 0.651 0.644 0.634

SSA 8 284 2784 87.77 87.71 88.90 0.2 1.5 12.8 0.647 0.647 0.643
Table 3. Fit time and accuracy of Extreme Learning Machine with selected Meta-
heuristic Algorithms applied for L = 1000 neurons in hidden layer, population size
Sn = 50 and kn = 1, 5 or 50 used directly as a classi�er on MNIST handwritten digits.
For L = 100, Sn = 50, kn = 1, 5 or 50 on Wine Quality White dataset.

�tting time we observe more or less a linear growth of computational time when
kn is enlarged. In Tab. 4 we tested a di�erent population size Sn. It shows that
increasing Sn expands the �tting time, but to a lesser extent with exceptions
like SSA method that needs almost 14× computation time for Sn = 100 as
compared to Sn = 50. Such tendency is similar for SHO method. Fitting time
between Sn = 100 and Sn = 200 for most of the methods expand twice. In terms
of accuracy, we do not observe a signi�cant increase when population size is
enlarged. The methods that are bene�cial to this increase are DO, FCS, GTO,
GWO-CS, I-GWO, LHHO, MGO, MRFO and SSO. Noticeably, for DO, FCS,
I-GWO, MGO and MRFO the highest accuracy is registered for Sn = 100 and
the lowest for Sn = 200. The observed dependencies on MNIST are even more
visible for Wine Quality dataset. The lowest MSE for all methods is obtained
for Sn = 50 and increases substantially when Sn = 100 or Sn = 200 is used.
For standard ELM classi�er applied on MNIST handwritten dataset the highest
accuracy 91.41% is generated for 4000 and 5000 neurons in hidden layer (see
Tab. 7). In comparison, for MA-ELM the highest ACC of 91.45% is reached for
NGO metaheuristic algorithm, 1000 neurons, limit of 5 iterations, population
size 50 and 91.43% ACC for MRFO with 1000 neurons, limit of 1 iteration and
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MNIST Wine Quality White

Fit time [s] ACC [%] Fit time [s] MSE

Method / Sn 50 100 200 50 100 200 50 100 200 50 100 200

AEO 237 331 675 88.00 86.47 88.50 0.6 30 57 0.641 0.743 0.741

AHA 155 211 428 89.61 86.46 86.07 0.3 19 36 0.634 0.804 0.788

ARO 156 208 435 88.02 84.53 86.26 0.3 19 36 0.648 0.732 0.771

AVOA 78 104 215 89.60 88.13 88.87 0.1 9. 18 0.645 0.745 0.712

COA 278 369 785 90.09 89.42 88.25 0.6 35 68 0.639 0.717 0.744

DO 77 102 209 85.98 89.93 87.88 0.1 9 17 0.653 0.704 0.734

FCS 233 313 654 88.80 90.06 88.67 0.5 29 57 0.647 0.737 0.711

GTO 103 321 649 84.41 80.56 89.26 0.5 28 54 0.650 0.804 0.716

GWO 250 115 231 90.08 88.99 88.85 0.2 11 21 0.648 0.750 0.731

GWO-CS 270 142 315 71.76 84.23 89.93 0.2 16 34 0.625 0.733 0.759

I-GWO 445 345 721 85.78 89.06 87.23 0.6 33 65 0.644 0.747 0.736

LHHO 240 422 845 87.84 88.39 89.68 0.6 39 71 0.630 0.715 0.749

MGO 236 657 1574 88.92 89.59 87.32 1.0 69 153 0.635 0.731 0.729

MRFO 232 318 673 89.25 91.43 82.92 0.5 30 60 0.641 0.774 0.788

NGO 141 312 651 90.70 86.34 88.46 0.5 29 56 0.647 0.737 0.749

POA 212 306 628 89.60 87.06 89.96 0.5 28 53 0.656 0.732 0.717

PSOGSA 82 296 996 90.19 87.65 88.91 0.5 42 140 0.647 0.664 0.747

SHO 22 286 593 85.07 88.07 89.39 0.5 28 56 0.651 0.717 0.743

SSA 8 110 229 87.77 90.69 88.18 0.2 10 20 0.647 0.687 0.746
Table 4. Fit time and accuracy of Extreme Learning Machine with selected Meta-
heuristic Algorithms applied for 1000 neurons in hidden layer, limit of iterations equal
to 1 and a di�erent population size Sn = 50, 100 or 200 used directly as a classi�er on
MNIST handwritten digits dataset and 100 neurons in hidden layer, limit of iterations
equal to 1 and a di�erent population size Sn = 50, 100 or 200 used directly as a clas-
si�er on Wine Quality White dataset.

Method Sn L kn Fit MSE Fit time [s] Prediction time [s] ACC [%]

NGO 50 1000 5 0.059 566 0.074 91.45

MRFO 100 1000 1 0.057 318 0.082 91.43

GTO 50 900 5 0.058 471 0.081 90.88

GTO 200 900 5 0.057 2928 0.069 90.85

SSA 50 900 5 0.062 236 0.065 90.81

PSOGSA 50 1000 50 0.060 4800 0.068 90.81
Table 5. The 6 highest ACC for Extreme Learning Machine with selected Metaheuris-
tic Algorithms used directly as a classi�er on MNIST handwritten digits dataset.

population size 100 (see Tab. 5). Here we obtained comparable results of ELM
and MA-ELM but for a di�erent number of neurons. Training time, that is stated
as a �t time for MA-ELM, is a lot longer than in case of typical ELM. Note here
that in many practical application cases of ML a short prediction time is crucial.
The time is extended when net is composed of more hidden layer units. Focusing
on prediction time we should compare nets with 1000 hidden layer neurons, then
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Method Sn L kn Fit MSE Fit time [s] Prediction time [s] MSE

LHHO 50 100 50 0.417 36.706 0.008 0.623

COA 50 100 50 0.414 26.659 0.008 0.624

GWO-CS 50 100 1 0.425 0.285 0.005 0.625

GWO-CS 50 200 1 0.398 0.561 0.010 0.628

AVOA 50 100 5 0.421 1.073 0.008 0.629
Table 6. The 5 lowest MSE for Extreme Learning Machine with selected Metaheuristic
Algorithms used directly as a classi�er on Wine Quality White dataset.

Neurons Fit Time [s] Prediction Time [s] ACC [%]

1000 3 0.069 88.69

2000 7 0.134 90.57

3000 14 0.256 91.26

4000 26 0.268 91.41

5000 45 0.412 91.41

6000 71 0.511 91.30

7000 115 0.527 90.58

8000 165 0.707 90.83
Table 7. Extreme Learning Machine used directly as a classi�er on MNIST handwrit-
ten digits dataset results.

Neurons Fit Time [s] Prediction Time [s] MSE

100 0.004 0.0003 0.646

200 0.008 0.0014 0.652

300 0.021 0.0032 0.660

400 0.028 0.0034 0.677

500 0.025 0.0025 0.691

600 0.040 0.0033 0.710

700 0.052 0.0037 0.721

800 0.053 0.0041 0.744

900 0.105 0.0061 0.757

1000 0.130 0.0084 0.770
Table 8. Extreme Learning Machine used directly as a classi�er on Wine Quality
White results.

MA-ELM achieve ACC higher by 3pp (percentage points) over EML. Prediction
time is highly dependent on L, then there is no di�erence of prediction time
between MA-ELM and ELM. When we compare a similar ACC from the both
methods (for MA-ELM L = 1000 and ELM L = 4000) prediction time for 1000
is 6 times shorter which can be very bene�cial in models that require short
classi�cation time. Summing up the results obtained for the Wine Quality with
ELM classi�er applied leads to a rise of MSE when number of neurons in hidden
layer increases (see Tab. 8). The lowest MSE=0.646 is generated for L = 100 with
training time of the net equal to 0.004s and prediction coinciding with 0.0003s.
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According to Tab. 6 which presents the top 5 lowest MSE across all exploited
parameters' values of MA-ELM the best results are produced for Sn = 50,
L = 100 and kn = 50 for LHHO and COA methods. The lowest observed
MSE=0.623 for MA-ELM is a better result than using core ELM method for
which MSE=0.646 is detected. Both classi�ers for this dataset have comparable
prediction time as the best results are reached for the same value of L.

6 Conclusions

In this paper the concept of hybridized ELM with MA is introduced. Subse-
quently, the in�uence of the parameters' value selection on �nal results is ex-
amined. More precisely, the impact on the results of the number of neurons in
hidden layer of ELM, the size of the population and the stopping conditions for
MA are investigated. Based on this research we conclude that higher accuracy of
the hybridized ELM can be detected even for lower number of neurons in hidden
layer than in typical ELM. The latter leads to a signi�cant fall in prediction time
of the model. Surprisingly, the best results assessing MA termination condition
of MA are registered as a hard limit of 5 iterations for MNIST handwritten and
of 50 iterations for Wine Quality White dataset. Unfortunately, we were not
able to examine termination condition of MA as a limit of 10000 iterations or
changes of �tness less than ε = 0.0001 because of the computational complexity
involved. This aspect should be further investigated. The population sizes exam-
ined in our study were set to 50, 100, and 200, as lower values led to unstable
results, and higher values resulted in impractically long evaluation times for our
experiment. In total 19 MA methods are tested and across all SSA and MRFO
stand out for their high accuracy combined with shorter training times com-
pared to other methods. Notwithstanding, one ought to emphasize that there
is no method that yields excellent results on both datasets. It is worth noting
that there is no direct correlation between increased computational time and
improved results. The selection of the appropriate MA algorithm for a partic-
ular task should be based on comprehensive evaluation. However, in our work,
we observed that certain algorithms exhibit a high computational complexity
without a signi�cant improvement in classi�cation accuracy. Therefore, MGO,
AEO, COA, and LHHO may not be suitable for hybridized ELM and can be
discarded from further consideration.
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