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Abstract. Modeling the dynamics of the exoplanetary system TRAP-
PIST with seven bodies of variable mass moving around a central parent
star along quasi-elliptic orbits is discussed. The bodies are assumed to
be spherically symmetric and attract each other according to Newton’s
law of gravitation. In this case, the leading factor of dynamic evolution
of the system is the variability of the masses of all bodies. The problem
is analyzed in the framework of Hamiltonian’s formalism and the dif-
ferential equations of motion of the bodies are derived in terms of the
osculating elements of aperiodic motion on quasi-conic sections. These
equations can be solved numerically but their right-hand sides contain
many oscillating terms and so it is very difficult to obtain their solutions
over long time intervals with necessary precision. To simplify calculations
and to analyze the behavior of orbital parameters over long time intervals
we replace the perturbing functions by their secular parts and obtain a
system of the evolutionary equations composed by 28 non-autonomous
linear differential equations of the first order. Choosing some realistic
laws of mass variations and physics parameters corresponding to the
exoplanetary system TRAPPIST, we found numerical solutions of the
evolutionary equations. All the relevant symbolic and numeric calcula-
tions are performed with the aid of the computer algebra system Wolfram
Mathematica.

Keywords: Non-stationary many-body problem · Isotropic change of
mass · Secular perturbations · Evolution equations · Poincaré variables.
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1 Introduction

In the wake of discoveries of exoplanetary systems [1], study of dynamic evolu-
tion of such planetary systems has become highly relevant. Observational data
show that celestial bodies in such systems are non-stationary, their characteris-
tics such as mass, size, and shape may vary with time [2]–[6]. At the same time,
it is very difficult to take into account non-stationarity of the bodies because
the corresponding mathematical models become very complicated. Even in the
case of classical two-body problem, a general solution of which is well-known,
dependence of masses on time makes the problem non-integrable; only in some
special cases its exact solution can be found in symbolic form (see [7]). However,
the masses of the bodies influence essentially on their interaction and motion
and so it is especially interesting to investigate the dynamics of the many-body
system of variable masses. One of the first works in this direction were done
by T.B. Omarov [8] and J.D. Hadjidemetriou [9] (see also [10]) who started
investigation of the effects of mass variability on the dynamic evolution of non-
stationary gravitating systems. Later these investigations were continued in a
series of works [11]–[15], where the systems of three interacting bodies with vari-
able masses were considered. It was shown also that application of the computer
algebra systems is very fruitful and enables to get new interesting results because
very cumbersome symbolic computations are involved (see [16]–[18]).

It should be noted that most of the works on the dynamics of planetary sys-
tems are devoted to the study of evolution of multi-planet systems of many point
bodies with constant masses. As the many-body problem is not integrable the
perturbation theory based on the exact solution of the two-body problem is usu-
ally used (see [19]). This approach turned out to be very successful and many
interesting results were obtained in the investigation of the motion of planet
or satellite in the star-planets or double star system (see [20]–[21]). Paper [22]
describes the problem of constructing a theory of four planets’ motion around
the central star, while the bodies masses are constant. The Hamiltonian func-
tions are expanded into Poisson series in the osculating elements of the second
Poincaré system up to the third power of the small parameter. Evolution of
the planetary systems Sun - Jupiter - Saturn - Uranus - Neptune is studied in
[23]. The averaged equations of motion are constructed analytically up to the
third order in a small parameter for a four-planetary system. Paper [24] studies
the orbital evolution of three-planet exosystem HD 39194 and the four-planet
exosystems HD 141399 and HD 160691 (µ Ara). As a result, the authors have
developed an averaged semi-analytical theory of motion of the second order in
terms of exoplanet masses.

In the present paper, we investigate a classical problem of 8 bodies of variable
masses which may be considered as model of the exoplanetary system TRAP-
PIST with a central star and 7 planets orbiting the star (see [1], [25]–[26]). The
work is aimed at calculating secular perturbations of planetary systems on non-
stationary stage of its evolution when mass variability is the leading factor of
evolution. Equations of motion of the system are obtained in a general form in
the relative coordinate system with the star located at the origin. The masses of
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the bodies are variable and change isotropically which means that the reactive
forces do not arise. We describe main computational problems occurring when
the perturbing functions are written in terms of the second Poincaré system and
the evolutionary equations are obtained. For this paper, all symbolic compu-
tations were performed with the aid of the computer algebra system Wolfram
Mathematica [30] which has a convenient interface and allows one to combine
various kinds of computations.

The paper is organized as follows. In Section 2 we formulate the physical
problem and describe the model. Then in Section 3 we derive the equations of
motion in the osculating elements which are convenient for applying the per-
turbation theory. Section 4 is devoted to computing the perturbing functions in
terms of the second Poincaré system. As a result, we obtain the evolutionary
equations in Section 5 and write out them in terms of dimensionless variables.
In Section 6 we describe numerical solution of the evolutionary equations. At
last, we summarize the results in Conclusion.

2 Statement of the Problem and Differential Equations
of Motion

Let us consider the motion of a planetary system consisting of n + 1 spher-
ical bodies with isotropically changing masses mutually attracting each other
according to Newton’s law. Let us introduce the following notation: S is a par-
ent star of the planetary system of mass m0 = m0(t), Pi are planets of masses
mi = mi(t), (i = 1, 2, ..., n). We will study the motion in a relative coordinate
system with the origin at the center of the parent star S the axes of which are
parallel to the corresponding axes of the absolute coordinate system.

The positions of the planets are such that Pi is an inner planet relative to
the Pi+1 planets, but at the same time it is an outer planet relative to Pi−1. We
assume that this position of the planets is preserved during the evolution.

Let the rate of mass change be different

ṁ0

m0
6= ṁi

mi
, ṁi

mi
6= ṁj

mj
(i, j = 1, n, i 6= j). (1)

In a relative coordinate system, the equations of motion of planets with
isotropically varying masses may be written as [27]–[29]

r̈i = −f (m0 +mi)

r3i
ri + f

n∑
j=1

′mj

(
rj − ri
r3ij

− rj
r3j

)
(i, j = 1, n), (2)

where rij are mutual distances between the centers of spherical bodies

rij =
√

(xj − xi)2 + (yj − yi)2 + (zj − zi)2 = rji, (3)

f is the gravitational constant, ri(xi, yi, zi) is a radius-vector of the planet Pi,
and the prime sign in summation means that i 6= j.
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4 A. Chichurin et al.

3 Equation of Motion in the Osculating Elements

3.1 Extraction of the perturbing function

Equations of motion (2) may be rewritten in the form

r̈i + f
(m0 +mi)

r3i
ri −

γ̈i
γi
ri = F i, γi =

m0(t0) +mi(t0)

m0(t) +mi(t)
= γi(t), (4)

where t0 is an initial instant of time, and

F i = gradri
Wi, Wi = Wgi +Wri, (5)

Wgi = f

n∑
j=1

′mj

(
1

rij
− ri · rj

r3j

)
, rij = rj − ri, Wri = − γ̈i

2γi
r2i . (6)

The equations of relative motion written in the form (4) are convenient for
applying the perturbation theory developed for such non-stationary systems [6].
In the case under consideration the perturbing forces are given by the expressions
(5), (6). Note that in the case of F i = 0 equations (4) reduce to integrable
differential equations describing unperturbed motion of the bodies along quasi-
conic sections.

3.2 Differential equations of motion in analogues of the second
system of Poincaré variables

For our purposes, analogues of the second system of Poincaré canonical elements
given in the works [6], [28] are preferred

Λi, λi, ξi, ηi, pi, qi, (7)

which are defined according to the formulas

Λi =
√
µi0
√
ai,

λi = li + πi,
(8)

ξi=
√

2
√
µi0
√
ai(1−

√
1−e2i ) cosπi,

ηi= −
√

2
√
µi0
√
ai(1−

√
1−e2i ) sinπi,

(9)

pi=
√

2
√
µi0
√
ai
√

1−e2i (1− cos Ii) cosΩi,

qi= −
√

2
√
µi0
√
ai
√

1−e2i (1− cos Ii) sinΩi,

(10)
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where
li = Mi = ñi[φi(t)− φi(τi)], πi = Ωi + ωi. (11)

The differential equations of motion of n planets in the osculating analogues of
the second system of Poincaré variables (8)–(11) have the canonical form

Λ̇i = −∂R
∗
i

∂λi
, ξ̇i = −∂R

∗
i

∂ηi
, ṗi = −∂R

∗
i

∂qi
,

λ̇i =
∂R∗i
∂Λi

, η̇i =
∂R∗i
∂ξi

, q̇i =
∂R∗i
∂pi

,
(12)

where the Hamiltonian functions are given by

R∗i = − µ
2
i0

2Λ2
i

· 1

γ2i (t)
−Wi (t, Λi, ξi, pi, λi, ηi, qi) . (13)

The canonical equations of perturbed motion (12) are convenient for describ-
ing the dynamic evolution of planetary systems when the analogues of eccentric-
ities ei and analogues of the inclinations Ii of the orbital plane of the planets are
sufficiently small

ei << 1, Ii << 1 (i = 1, n). (14)

Let us rewrite the canonical equations of motion (12) as

λ̇i =
∂R∗i
∂Λi

=
µ2
i0

γ2i Λ
3
i

− ∂Wi

∂Λi
, Λ̇i =

∂R∗i
∂λi

=
∂Wi

∂λi
,

η̇i =
∂R∗i
∂ξi

= −∂Wi

∂ξi
, ξ̇i =

∂R∗i
∂ηi

=
∂Wi

∂ηi
,

q̇i =
∂R∗i
∂pi

= −∂Wi

∂pi
, ṗi =

∂R∗i
∂qi

=
∂Wi

∂qi
.

(15)

4 The Secular Part of the Main Part of the Perturbing
Function

The secular part of the perturbing functions (13) has the form [29]

W
(sec)
i = W

(sec)
is +W

(sec)
ik +W

(sec)
ri . (16)

Let us write the explicit form of the secular part of the perturbing function

W
(sec)
i = f

i−1∑
s=1

ms

( Ais0
2

+Πis
ii

η2i + ξ2i
2Λi

+Πis
is

ηiηs + ξiξs√
ΛiΛs

+Πis
ss

η2s + ξ2s
2Λs

−

−Bis1
(
p2i + q2i

8Λi
− pips + qiqs

4
√
ΛiΛs

+
p2s + q2s

8Λs

))
+ f

n∑
k=i+1

mk

(
Aik0
2

+Πik
ii

η2i + ξ2i
2Λi

+

+Πik
ik

ηiηk + ξiξk√
ΛiΛk

+Πik
kk

η2k + ξ2k
2Λk

−Bik1
(
p2i + q2i

8Λi
− pipk + qiqk

4
√
ΛiΛk

+
p2k + q2k

8Λk

))
−

− γ̈iΛ
4
i

2γiµ2
i0

(
1 +

3

2Λi

(
ξ2i + η2i

))
, (17)
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6 A. Chichurin et al.

where the following designations are accepted for the inner planets (s < i)

Πis
ii = −3αis

4
Bis0 −

1

2
Bis1 +

15 + 6α2
is

8
Cis0 −

3αis
2
Cis1 −

9

8
Cis2 ,

αis =
γsas
γiai

= αis(t) < 1,

(18)

Πis
is =

1

8

(
9Bis0 +Bis2

)
−

9
(
1 + α2

is

)
8αis

Cis0 +
21

16
Cis1 +

3
(
1 + α2

is

)
8αis

Cis2 +
3

16
Cis3 , (19)

Πis
ss = − 3

4αis
Bis0 −

1

2
Bis1 +

15α2
is + 6

8α2
is

Cis0 −
3

2αis
Cis1 −

9

8
Cis2 ,

(s < i).

(20)

Ais0 =
2

πaiγi

π∫
0

dλ

(1 + α2
is − 2αis cosλ)

1/2
, (s < i), p = 0, 1, 2, 3, (21)

Bisp =
2asγs

π (aiγi)
2

π∫
0

cos(pλ)dλ

(1 + α2
is − 2αis cosλ)

3/2
,

Cisp =
2 (asγs)

2

π (aiγi)
3

π∫
0

cos(pλ)dλ

(1 + α2
is − 2αis cosλ)

5/2
.

(22)

For the outer planets (i < k) the following notations are accepted

Πik
ii = −3αik

4
Bik0 −

1

2
Bik1 +

15 + 6α2
ik

8
Cik0 −

3αik
2

Cik1 −
9

8
Cik2 , (i < k),

αik =
γiai
γkak

= αik(t) < 1,

(23)

Πik
ik =

1

8

(
9Bik0 +Bik2

)
−

9
(
1 + α2

ik

)
8αik

Cik0 +
21

16
Cik1 +

3
(
1 + α2

ik

)
8αik

Cik2 +
3

16
Cik3 , (24)

Πik
kk = − 3

4αik
Bik0 −

1

2
Bik1 +

15α2
ik + 6

8α2
ik

Cik0 −
3

2αik
Cik1 −

9

8
Cik2 , (25)

Aik0 =
2

πakγk

π∫
0

dλ

(1 + α2
ik − 2αik cosλ)

1/2
, (i < k), p = 0, 1, 2, 3, (26)
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Bikp =
2aiγi

π (akγk)
2

π∫
0

cos(pλ)dλ

(1 + α2
ik − 2αik cosλ)

3/2
,

Cikp =
2 (aiγi)

2

π (akγk)
3

π∫
0

cos(pλ)dλ

(1 + α2
ik − 2αik cosλ)

5/2
.

(27)

Note that the Laplace coefficients Aij0 , Bij0 , Bij1 , Bij2 , Cij0 , Cij1 , Cij2 , Cij3 (i 6= j)
are interconnected by recursive relations.

5 Evolutionary Equations

5.1 Derivation of evolution equations

The evolutionary equations that determine the behavior of the orbital parame-
ters over long time intervals are obtained from the equations of motion if instead

of the perturbing functions Wi we substitute their secular part W
(sec)
i according

to (17).
The evolution equations have the form [29]

ξ̇i =f

i−1∑
s=1

ms

(
Πis
ii

Λi
ηi +

Πis
is√

ΛiΛs
ηs

)
+f

n∑
k=i+1

mk

(
Πik
kk

Λi
ηi +

Πik
ik√

ΛiΛk
ηk

)
− 3γ̈iΛ

3
i

2γiµ2
i0

ηi,

(28)

η̇i =−f
i−1∑
s=1

ms

(
Πis
ii

Λi
ξi +

Πis
is√

ΛiΛs
ξs

)
−f

n∑
k=i+1

mk

(
Πik
kk

Λi
ξi +

Πik
ik√

ΛiΛk
ξk

)
+

3γ̈iΛ
3
i

2γiµ2
i0

ξi,

(29)

ṗi = −f
i−1∑
s=1

msB
is
1

(
qi

4Λi
− qs

4
√
ΛiΛs

)
−f

n∑
k=i+1

mkB
ik
1

(
qi

4Λi
− qk

4
√
ΛiΛk

)
, (30)

q̇i = f

i−1∑
s=1

msB
is
1

(
pi

4Λi
− ps

4
√
ΛiΛs

)
+ f

n∑
k=i+1

mkB
ik
1

(
pi

4Λi
− pk

4
√
ΛiΛk

)
, (31)

λ̇i =
µ2
i0

γ2i Λ
3
i

− ∂W
(sec)
i

∂Λi
, Λ̇i = 0. (32)

From the second equation of the system (32) we obtain

Λi = const (33)
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or
ai = const. (34)

Note that the first equation of system (32) is solved after integrating the
equations (28)–(31).

5.2 Transition to dimensionless variables

Let us rewrite the evolution equations for eccentric and oblique elements in the
form

ξ̇i =f

i−1∑
s=1

ms

(
Πis
ii

Λi
ηi +

Πis
is√

ΛiΛs
ηs

)
+f

n∑
k=i+1

mk

(
Πik
kk

Λi
ηi +

Πik
ik√

ΛiΛk
ηk

)
− 3γ̈iΛ

3
i

2γiµ2
i0

ηi,

(35)

η̇i = −f
i−1∑
s=1

ms

(
Πis
ii

Λi
ξi +

Πis
is√

ΛiΛs
ξs

)
−f

n∑
k=i+1

mk

(
Πik
kk

Λi
ξi +

Πik
ik√

ΛiΛk
ξk

)
+

3γ̈iΛ
3
i

2γiµ2
i0

ξi,

(36)

ṗi = −f
i−1∑
s=1

msB
is
1

(
qi

4Λi
− qs

4
√
ΛiΛs

)
−f

n∑
k=i+1

mkB
ik
1

(
qi

4Λi
− qk

4
√
ΛiΛk

)
, (37)

q̇i = f

i−1∑
s=1

msB
is
1

(
pi

4Λi
− ps

4
√
ΛiΛs

)
+ f

n∑
k=i+1

mkB
ik
1

(
pi

4Λi
− pk

4
√
ΛiΛk

)
. (38)

Physical units: t is measured in years, ai are measured in astronomical units,
mi are measured in masses of the Sun. In the evolution equations (35)–(38) we
switch to dimensionless variables t∗, a∗i , m

∗
i ,

t∗ = τ = ω1t, a∗i =
ai
a1
, m∗i =

mi

m00
, (39)

ω1 =

√
fm00

a
3/2
1

= const, T t1 =
1

ω1
=

1√
fm00

a
3/2
1 = const, (40)

m00 = m0(t0) = const, a1 = a1(t0) = const,
d

dτ
= ()

′
, (41)

ai = a1a
∗
i , mi = m00m

∗
i . (42)

Then we obtain

Λi =
√
fm00

√
a1Λ

∗
i , Λ∗i =

√
µ∗i0
√
a∗i , µ∗i0 = 1 +

mi0

m00
= const, (43)
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ξi = ξ∗i (fm00a1)1/4, ηi = η∗i (fm00a1)1/4,

pi = p∗i (fm00a1)1/4, qi = q∗i (fm00a1)1/4
(44)

3γ̈iΛ
3
i

2γiµ2
i0

= ω1
3γ′′i
2γi

Λ∗3i
µ∗2i0

,
d2

dτ2
= ()

′′
. (45)

Thus, the dimensionless eccentric and oblique elements have the form

ξ∗i =
√

2
√
µ∗i0
√
a∗i (1−

√
1− e2i ) cosπi,

η∗i = −
√

2
√
µ∗i0
√
a∗i (1−

√
1− e2i ) sinπi,

(46)

p∗i =
√

2
√
µ∗i0
√
a∗i
√

1− e2i (1− cos Ii) cosΩi,

q∗i = −
√

2
√
µ∗i0
√
a∗i
√

1− e2i (1− cos Ii) sinΩi.

(47)

Using the introduced notations (39)–(42) and the relations (43)–(45), we can
write down the evolution equations (35)–(38) in dimensionless quantities

t∗ = τ, a∗i , m
∗
i , (48)

Λ∗ = const, ξ∗i , η∗i , p∗i , q∗i . (49)

As a result, reducing the left and right sides of the equations (35)–(38) by a
common factor

ω1(fm00a1)1/4 = const (50)

we obtain the evolution equations (35)–(38) in dimensionless quantities (48)–
(49). For convenience of notation, we omit the symbol (∗) and rewrite the equa-
tions (35)–(38) in dimensionless variables (48)–(49) in the form

ξ′i =

i−1∑
s=1

ms

(
Πis
ii

Λi
ηi +

Πis
is√

ΛiΛs
ηs

)
+

n∑
k=i+1

mk

(
Πik
kk

Λi
ηi +

Πik
ik√

ΛiΛk
ηk

)
− 3γ′′i

2γi

Λ3
i

µ2
i0

ηi,

(51)

η′i = −
i−1∑
s=1

ms

(
Πis
ii

Λi
ξi +

Πis
is√

ΛiΛs
ξs

)
−

n∑
k=i+1

mk

(
Πik
kk

Λi
ξi +

Πik
ik√

ΛiΛk
ξk

)
+

3γ′′i
2γi

Λ3
i

µ2
i0

ξi,

(52)

p′i = −
i−1∑
s=1

msB
is
1

(
qi

4Λi
− qs

4
√
ΛiΛs

)
−

n∑
k=i+1

mkB
ik
1

(
qi

4Λi
− qk

4
√
ΛiΛk

)
, (53)
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q′i =

i−1∑
s=1

msB
is
1

(
pi

4Λi
− ps

4
√
ΛiΛs

)
+

n∑
k=i+1

mkB
ik
1

(
pi

4Λi
− pk

4
√
ΛiΛk

)
. (54)

At the same time, the expressions

Πis
ii , Πis

is , Πik
kk, Πik

ik (55)

in the equations (51)–(54) and the Laplace coefficients keep their form, according
to the formulas (18)–(22) and (23)–(27). They become dimensionless quantities.

6 The Algorithm of Calculations

In our model, it is more convenient to use analogues of the second system of
Poincaré canonical elements [9] and to write the equations of motion in the form
(15). The secular part of the perturbing functions Wi is defined in the form
(16)–(20), (23)–(25) with the Laplace coefficients of the form (21), (22), (26),
(27). The evolutionary equations are written in dimensionless variable in the
form (51)–(54).

I. We define and study a system of 14 differential equations of the form
(53)–(54). To do this, we perform the following steps:

a) Determine the type of change in the masses of the central star and planets
(we consider dependencies accordingly Eddington-Jeans law)

m0(t) = (ε0(1− n0)(t− t0) +m1−n0
00 )1/(1−n0) (n0 = 3),

mi(t) = (εi(1− ni)(t− t0) +m1−ni
i0 )1/(1−ni) (ni = 2, i = 1, 7);

b) taking into account the type of functions αi (i = 1, 7) we compute the
Laplace coefficients Bik1 from (27) (p = 1);

c) for each of the seven planets we build a system of two differential equations
of the form (53)–(54) and add the initial conditions (47),

σ1 = 1.374, ν1 = 10−5, a1 = 0.01154, e1 = 0.00622,
π1(t0) = 21◦, I1(t0) = 0.35◦, Ω1(t0) = 45◦

(56)

for the first planet P1. Similar initial conditions at the point τ = 0 for the other
six planets P2, ..., P7 can be taken from [1]. Adding these initial conditions to
the system of differential equations, we obtain the required system (53)–(54);

d) using the numerical integration, we find the functions pi, qi, and then
visualize the orbital elements (see Fig. 1)

sin2 Ij ≈
p2j+q

2
j

Λj
(j = 1, 7). (57)

II. We define and study a system of 14 differential equations of the form
(51)–(52). To do this, we perform the following steps:
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a) Using the results of step I a) we determine the Laplace coefficients Aij0 , B
ij
0 ,

Bij1 , B
ij
2 , C

ij
0 , C

ij
1 , C

ij
2 , C

ij
3 from the system (21), (22), (26), (27);

b) on the next step we define functions Πij
ii from (18)–(20) and (23)–(25);

c) for each of the seven planets we build a system of two differential equations
(51)–(52), add the initial conditions (46) and other initial conditions from [1] at
the point τ = 0. Adding initial conditions to the system of differential equations,
we obtain the required system (51)–(52);

d) using the numerical integration, we find the functions ξi, ηi, and then

eccentric elements e2i ≈
ξ2i+η

2
i

Λi
(Fig. 2), πi = − arctan ηi

ξi
;

e) performing steps I d), II d) we can find and visualize the orbital elements
ωi = πi −Ωi.
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Fig. 1. Plots of the functions sin2(Ii) =
p2i+q

2
i

Λi
(i = 1, 7) (see (57))

7 Conclusion

For the first time, a system of differential equations has been obtained that
describes the motion of planets of variable masses around a central star in the
TRAPPIST-1 system.

The evolution equations have been obtained in dimensionless variables, and
their numerical solutions have been found in the case of the physical parameters
corresponding to the TRAPPIST-1 system. The calculation time was chosen to
be 2000 revolutions of the first planet.

Numerical experiment was carried out in three ways: first, the Laplace coeffi-
cients in elliptic functions were directly calculated; then (in the second and third
cases) these coefficients were expanded into series up to the 4th and 2nd order
of smallness. The results of the calculations practically coincided. The compu-
tation time has significantly decreased in the second case in comparison to the
first one, and in the third case it has decreased even more significantly.
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Fig. 2. Plots of the functions e2i (i = 1, 7)

The graph (Fig. 1) shows the time dependence of the inclination of the planets
orbits determined by the formulas (57). They change in a very narrow range
which allows us to conclude that the system is moving in one plane (the Laplace
plane). At the same time the changes of eccentricities of planets’ orbits are more
noticeable (see Fig. 2).

Note that choosing different laws of mass variations, one can find numerical
solutions to the evolutionary equations for different values of physical parame-
ters. Such simulation enables to investigate dynamical evolution of the exoplan-
etary system and to understand better an influence of the masses change on
the system motion. The corresponding calculations may be carried out with the
aid on any software but here we used the computer algebra system Wolfram
Mathematica which enables to visualize easily the obtained results, as well.
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7. Berkovič, L.M.: Gylden-Meščerski problem. Celestial Mechanics 24, 407–429 (1981)
8. Omarov, T.B.: Two-body problem with corpuscular radiation. Sov. Astron. 7, 707–

714 (1963)
9. Hadjidemetriou, J.D.: Two-body problem with variable mass: A new approach.

Icarus 2, 440–451 (1963). https://doi.org/10.1016/0019-1035(63)90072-1
10. Veras, D., Hadjidemetriou, J.D., Tout, C.A.: An Exoplanet’s Response

to Anisotropic Stellar Mass-Loss During Birth and Death. Monthly
Notices of the Royal Astronomical Society 435(3), 2416–2430 (2013).
https://doi.org//10.1093/mnras/stt1451

11. Minglibayev, M.Zh., Mayemerova, G.M.: Evolution of the orbital-plane orienta-
tions in the two-protoplanet three-body problem with variable masses. Astronomy
Reports 58(9), 667–677 (2014). https://doi.org/10.1134/S1063772914090066

12. Prokopenya, A.N., Minglibayev, M.Zh., Beketauov, B.A.: Secular perturba-
tions of quasi-elliptic orbits in the restricted three-body problem with vari-
able masses. International Journal of Non-Linear Mechanics 73, 58–63 (2015).
https://doi.org/10.1016/j.ijnonlinmec.2014.11.007

13. Minglibayev, M.Zh., Prokopenya, A.N., Mayemerova, G.M., Imanova, Zh.U.:
Three-body problem with variable masses that change anisotropically at
different rates. Mathematics in Computer Science 11, 383–391 (2017).
https://doi.org/10.1007/s11786-017-0306-4

14. Prokopenya, A.N., Minglibayev, M.Zh., Mayemerova, G.M., Imanova, Zh.U.: In-
vestigation of the restricted problem of three bodies of variable masses using
computer algebra. Programming and Computer Software 43(5) 289–293 (2017).
https://doi.org/10.1134/S0361768817050061

15. Minglibayev, M., Prokopenya, A., Shomshekova, S.: Computing perturbations
in the two-planetary three-body problem with masses varying non-isotropically
at different rates. Mathematics in Computer Science 14(2), 241–251 (2020).
https://doi.org/10.1007/s11786-019-00437-0

16. Prokopenya, A.N., Minglibayev, M.Zh., Mayemerova, G.M.: Symbolic
computations in studying the problem of three bodies with variable
masses. Programming and Computer Software 40(2), 79–85 (2014).
https://doi.org/10.1134/S036176881402008X

17. Minglibayev, M., Prokopenya, A., Shomshekova, S.: Applications of com-
puter algebra in the study of the two-planet problem of three bodies with
variable masses. Programming and Computer Software 45(2), 73–80 (2019).
https://doi.org/10.1134/S0361768819020087

18. Prokopenya, A.N., Minglibayev, M.Zh., Baisbayeva, O.: Analytical computations in
studying translational-rotational motion of a non-stationary triaxial body in a cen-
tral gravitational field. In: F. Boulier, M. England, T.M. Sadykov, E.V. Vorozhtsov
(Eds.) Computer Algebra in Scientific Computing / CASC’2020. LNCS, vol. 12291,
pp. 478–491. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-030-60026-
6 28

19. Murray, C.D., Dermott, S.F.: Solar System Dynamics. Cambridge University Press,
New York (1999)

20. Lidov, M.L., Vashkov’yak, M.A.: On quasi-satellite orbits in a restricted elliptic
three-body problem. Astronomy Letters 20(5), 676–690 (1994)

21. Ford, E.B., Kozinsky, B., Rasio, F.A.: Secular evolution of hierarchical triple star
systems. The Astronomical Journal 535, 385–401 (2000)

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_36

https://dx.doi.org/10.1007/978-3-031-36024-4_36
https://dx.doi.org/10.1007/978-3-031-36024-4_36


14 A. Chichurin et al.

22. Perminov, A.S., Kuznetsov, E.D.: The implementation of Hori–Deprit method
to the construction averaged planetary motion theory by means of computer al-
gebra system Piranha. Mathematics in Computer Science 14(2), 305–316 (2020).
https://doi.org/10.1007/s11786-019-00441-4

23. Perminov, A.S., Kuznetsov, E.D.: The orbital evolution of the
Sun–Jupiter–Saturn–Uranus–Neptune system on long time scales. Astrophysics and
Space Science 365(8), 144 (2020). https://doi.org/10.1007/s10509-020-03855-w

24. Perminov, A.S., Kuznetsov E.D.: Orbital evolution of the extrasolar planetary
systems HD 39194, HD 141399, and HD 160691. Astronomy Reports 96(10), 795–
813 (2019). https://doi.org/10.1134/S1063772919090075

25. Gillon, M. et.al.: Seven temperate terrestrial planets around the nearby
ultracool dwarf star TRAPPIST-1. Nature 542(7642), 456–460 (2017).
https://doi.org/10.1038/nature21360

26. Shallue, C. J., Vanderburg, A.: Identifying exoplanets with deep learning: A five-
planet resonant chain around Kepler-80 and an Eighth planet around Kepler-90. The
Astronomical Journal 155(2), 94 (2018). https://doi.org/10.3847/1538-3881/aa9e09

27. Minglibayev, M.Zh., Kosherbayeva, A.B.: Differential equations of planetary sys-
tems. Reports of the National Academy of Sciences of the Republic of Kazakhstan
2(330), 14–20 (2020). https://doi.org/10.32014/2020.2518-1483.26

28. Minglibayev, M.Zh., Kosherbayeva, A.B.: Equations of planetary systems motion.
News of the National Academy of Sciences of the Republic of Kazakhstan. Physico-
Mathematical Series 6(334), 53–60 (2020). https://doi.org/10.32014/2020.2518-
1726.97

29. Prokopenya, A.N., Minglibayev, M.Zh., Kosherbayeva A.B.: Derivation of evolu-
tionary equations in the many–body problem with isotropically varying masses us-
ing computer algebra. Programming and Computer Software 48(2), 107–115 (2022).
https://doi.org/10.1134/S0361768822020098

30. Wolfram, S.: An elementary introduction to the Wolfram Language. Second Ed.
Wolfram Media, New York (2016)

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_36

https://dx.doi.org/10.1007/978-3-031-36024-4_36
https://dx.doi.org/10.1007/978-3-031-36024-4_36

