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Abstract. This paper is a study of an application-based model in profit-
maximizing multi-vehicle pickup and delivery selection problem (PPDSP).
The graph-theoretic model proposed by existing studies of PPDSP is
based on transport requests to define the corresponding nodes (i.e., each
request corresponds to a pickup node and a delivery node). In practice,
however, there are probably multiple requests coming from or going to
an identical location. Considering the road networks with the integrat-
able nodes as above, we define a new model based on the integrated
nodes for the corresponding PPDSP and propose a novel mixed-integer
formulation. In comparative experiments with the existing formulation,
as the number of integratable nodes increases, our method has a clear
advantage in terms of the number of variables as well as the number of
constraints in the generated instances, and the accuracy of the optimized
solution obtained within a given time.

Keywords: Combinatorial optimization · Mixed-integer programming ·
Logistics.

1 Introduction

With the increasing expansion of the supply chain, logistics has become the
backbone of the modern economy. Adequate transportation capacity is a neces-
sary condition for commerce. However, during the peak period of logistics order
trading, the shortage of transportation resources still occurs from time to time.
As an operator (i.e., transportation company), it is a challenge to provide lim-
ited transportation resources to some of the requests in a competitive market in
order to maximize profit.

Recently, the profit-maximizing multi-vehicle pickup and delivery selection
problem (PPDSP) has gained a lot of attention in the field of practical trans-
portation and logistics, such as sensor transportation [8], dial-a-ride servise [11],
green pickup-delivery [3], and customized bus network design [7]. This problem
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was first proposed in [10], which involves three classical problem models: routing
optimization, pickup and delivery, and selective pickup (a.k.a. knapsack). Solv-
ing this problem quickly and optimally can both help improve the operational
efficiency of the carriers and contributes to more eco-friendly transportation.

For solving PPDSP, previous studies have presented a branch-and-price al-
gorithm [1], an exact method of graph search [4], and several metaheuristic
methods including tabu search, genetic algorithm, scatter search [12], simulated
annealing algorithm [2], and variable neighborhood search [6]. To the best of our
knowledge, in the graph-theoretic models constructed in the existing studies,
the definitions of nodes are based on the pickup and delivery location from the
requests. This means that one request needs to correspond to two nodes. How-
ever, in application scenarios, there are often plural requests coming from or to
arrive at the same location. The number of variables to be required in the ex-
isting mixed-integer formulation heavily depends on the number of nodes in the
model, and since PPDSP is an NP-hard problem, its computational complexity
is exponential with respect to the number of variables.

The motivation of this study is to provide a more reasonable and effective
mathematical model for practical logistics and transportation problems. Consid-
ering the road networks with the integratable nodes as above, we proposes a new
concise model in which the definition of nodes is based on the locations rather
than the requests, and give a tailored mixed-integer programming formulation
that reduces the number of required variables. It is necessary to claim that the
solution set of our proposed location-based method is a subset of the solution
set of the request-based method. This is because the integrated node can only
be passed at most once under the Hamiltonian cycle constraint, where “at most”
is due to the objective function of profit-maximizing (i.e., it is possible that any
node will not be traversed).

In Fig. 1, we take the delivery of single truck as an example, and assume
that the truck is transported according to the route given in Fig. 1a as a feasible
solution in this scenario, where the pickup coordinates of request 1 (abbr. req.
1 pickup coord.) and req. 2 pickup coord. are the identical locations. We can
integrate them as location 1 as shown in Fig. 1b, and after integrating all the
same coordinates into one location respectively, our model becomes more concise.
This integration changes the nodes of the model from repeatable coordinates
based on the request to the unique locations, which results in each location can
only be visited once. Therefore, the location-based model can also correspond
to the feasible solutions in Fig. 1a, but not to some of the feasible solutions
corresponded to the request-based model, such as the solution given in Fig. 1c.
Whereas in real long-distance logistics application scenarios, making multiple
retraces to the same location is rare (e.g., insufficient vehicle capacity, goods
cannot be mixed, etc.), and also non-efficient. For such locations with a large
number of requests or high loading volume, it is a more common strategy to
assign multiple vehicles to them. Therefore, we argue that the location-based
model can improve the optimization efficiency although it reduces the range of
feasible solutions.
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Fig. 1: A simple example for explaining the relationship between the request-
based model (i.e., Fig. 1a and 1c) and the location-based model (i.e., Fig. 1b),
where {req. 1 pickup coord.} and {req. 2 pickup coord.}, {req. 3 pickup coord.}
and {req. 2 dropoff coord.}, and {req. 3 dropoff coord.} and {req. 1 dropoff
coord.} can be integrated as {location 1}, {location 2} and {location 3}, re-
spectively. The route shown in Fig. 1c can be regarded as a feasible solution of
the request-based model, but cannot be corresponded to in the location-based
model.

It should be emphasized that although the location-based model has been
widely used on the vehicle routing problem, there is no existing study that em-
ploys the location-based model on the pickup and delivery probem because it
is relatively difficult to formulate the location-based capacity constraint, espe-
cially for PPDSP. We propose a novel formulation for the location-based model
on PPDSP and conduct comparative experiments with the existing formulation
through simulations, which is the main contribution of our study.

2 Preliminaries

Given a directed graph G = (V,E), where V = {0, 1, 2, . . . , |V |} is the set of
nodes representing the location points (0 is depot) and E is the set of arc,
denoted as

>
od, and given a set of trucks T = {1, 2, . . . , |T |}, we define a type of

Boolean variables xt
od that is equal to 1 if the truck t passes through the arc

>
od

and 0 otherwise. We denote the load capacity of truck t as ct, and the cost of
the truck t traversing the arc

>
od as ltod, where t ∈ T and o, d ∈ V .

Let R = {1, 2, . . . , |R|} be a set of requests. Each request r (r ∈ R) is
considered as a tuple r = ⟨wr, qr, f(r), g(r)⟩, where

– wr is the the payment that can be received for completing the shipping of
request r;

– qr is the volume of request r;
– f(r) is the loading point of request r;
– g(r) is the unloading point of request r,

and f : R → V \ {0} (resp. g : R → V \ {0}) is a function for mapping the
loading (resp. unloading) point of requests r. We also define another type of
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Boolean variables ytr that is equal to 1 if request r is allocated to truck t and 0
otherwise, where r ∈ R and t ∈ T . Besides, we denote the number of location
points visited by truck t before it reaches v (v ∈ V \ {0}) as ut

v.

Definition 1 (Delivery of Truck t). Delivery of truck t is denoted by Dt =⋃
r∈R{r | ytr = 1}, where t ∈ T .

Definition 2 (Route of Truck t). Route of truck t is denoted by St =⋃
o∈V

⋃
d∈V {

>
od |xt

od = 1}, where t ∈ T . St satisfies the following conditions
if Dt ̸= ∅:

Hamiltonian Cycle – Denote Pt = {0} ∪
⋃

r∈Dt
{f(r), g(r)} as the set of

location points visited and departed exactly once by truck t, where the
predecessor and successor are the same node is not counted (i.e., even if
>vv |xt

vv = 1, neither this time can be included in the number of visits or
departures of truck t to/from location v);

– Ensure that no subtour exists in St.3

Loading Before Unloading ∀i ∈ Dt, u
t
f(i) < ut

g(i).
Capacity Limitation At any time, the total volume of cargo carried by truck

t cannot exceed its capacity ct.

Definition 3 (Delivery Routing Solution). Delivery routing solution DS =⋃
t∈T {(Dt, St)} that is a partition of R into disjoint and contained Dt with the

corresponding St:

∀i, j (i ̸= j), Di ∩Dj = ∅,
⋃

Di∈DS

Di ⊆ R,
⋃

Si∈DS

Si ⊆ E.

Denote the set of all possible delivery routing solutions as Π(R, T ).

Definition 4 (Profit-Cost Function). A profit-cost function assigns a real-
valued profit to every Dt: w : Dt → R and a cost to every St: l : St → R, where
w(Dt) =

∑
r∈Dt

wr and l(St) =
∑

>
od∈St

ltod. For any delivery routing solution
DS ∈ Π(R, T ), the value of DS is calculated by

ξ(DS) =
∑

Dt∈DS

w(Dt)−
∑

St∈DS

l(St).

In general, a delivery routing solution DS that considers only maximizing
profits or minimizing costs is not necessarily an optimal DS. Therefore, we have
to find the optimal delivery routing solution that maximizes the sum of the
values of profit-cost functions. We define a delivery routing problem in profit-
cost function as follows.
3 The time window constraint included in the existing studies can be regarded as a

special MTZ-based formulation [9]. In this study, we omit the time window constraint
and instead use the most basic MTZ-formulation to eliminate subtour.
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Definition 5 (PPDSP). For a set of requests and trucks (R, T ), a profit-
maximizing multi-vehicle pickup and delivery selection problem (PPDSP) is to
find the optimal delivery routing solution DS∗ such that

DS∗ ∈ arg max
DS∈Π(R,T )

ξ(DS).

Here we show an example of PPDSP.

Example 1. Assume that two trucks T = {t1, t2} are responsible for three re-
quests R = {r1, r2, r3} with the following conditions.

– The information about the requests:

Request wr qr f(r) g(r)
r1 13 4 a c
r2 7 2 a b
r3 4 1 b c

– The information about the trucks:
• The capacities of the trucks ct1 = 6 and ct2 = 3.
• The cost matrices of each truck through each arc (δ is depot).

lt1od δ a b c
δ 0 2 2 2
a 2 0 4 7
b 2 4 0 2
c 2 7 2 0

lt2od δ a b c
δ 0 1 1 1
a 1 0 3 5
b 1 3 0 1
c 1 5 1 0

For all DS ∈ Π(R, T ), we have their respective profit-cost function as follows.

ξ({(Dt1 = ∅, St1 = ∅), (Dt2 = ∅, St2 = ∅)}) = 0,
ξ({(Dt1 = ∅, St1 = ∅), (Dt2 = {r2}, St2 = {

>
δa,

>
ab,

>
bδ})}) = 2,

ξ({(Dt1 = ∅, St1 = ∅), (Dt2 = {r3}, St2 = {
>
δb,

>
bc,

>
cδ})}) = 1,

ξ({(Dt1 = ∅, St1 = ∅), (Dt2 = {r2, r3}, St2 = {
>
δa,

>
ab,

>
bc,

>
cδ})}) = 5,

ξ({(Dt1 = {r1}, St1 = {
>
δa,>ac,

>
cδ}), (Dt2 = ∅, St2 = ∅)}) = 2,

ξ({(Dt1 = {r1}, St1 = {
>
δa,>ac,

>
cδ}), (Dt2 = {r2}, St2 = {

>
δa,

>
ab,

>
bδ})}) = 4,

ξ({(Dt1 = {r1}, St1 = {
>
δa,>ac,

>
cδ}), (Dt2 = {r3}, St2 = {

>
δb,

>
bc,

>
cδ})}) = 3,

ξ({(Dt1 = {r1}, St1 = {
>
δa,>ac,

>
cδ}), (Dt2 = {r2, r3}, St2 = {

>
δa,

>
ab,

>
bc,

>
cδ})}) = 7,

ξ({(Dt1 = {r2}, St1 = {
>
δa,

>
ab,

>
bδ}), (Dt2 = ∅, St2 = ∅)}) = −1,

ξ({(Dt1 = {r2}, St1 = {
>
δa,

>
ab,

>
bδ}), (Dt2 = {r3}, St2 = {

>
δb,

>
bc,

>
cδ})}) = 0,

ξ({(Dt1 = {r3}, St1 = {
>
δb,

>
bc,

>
cδ}), (Dt2 = ∅, St2 = ∅)}) = −2,

ξ({(Dt1 = {r3}, St1 = {
>
δb,

>
bc,

>
cδ}), (Dt2 = {r2}, St2 = {

>
δa,

>
ab,

>
bδ})}) = 0,

ξ({(Dt1 = {r1, r2}, St1 = {
>
δa,

>
ab,

>
bc,

>
cδ}), (Dt2 = ∅, St2 = ∅)}) = 10,

ξ({(Dt1 = {r1, r2}, St1 = {
>
δa,>ac,

>
cb,

>
bδ}), (Dt2 = ∅, St2 = ∅)}) = 7,

ξ({(Dt1 = {r1, r2}, St1 = {
>
δa,

>
ab,

>
bc,

>
cδ}), (Dt2 = {r3}, St2 = {

>
δb,

>
bc,

>
cδ})}) = 11,

ξ({(Dt1 = {r1, r2}, St1 = {
>
δa,>ac,

>
cb,

>
bδ}), (Dt2 = {r3}, St2 = {

>
δb,

>
bc,

>
cδ})}) = 8,

ξ({(Dt1 = {r1, r3}, St1 = {
>
δa,

>
ab,

>
bc,

>
cδ}), (Dt2 = ∅, St2 = ∅)}) = 7,
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ξ({(Dt1 = {r1, r3}, St1 = {
>
δb,

>
ba,>ac,

>
cδ}), (Dt2 = ∅, St2 = ∅)}) = 2,

ξ({(Dt1 = {r1, r3}, St1 = {
>
δa,

>
ab,

>
bc,

>
cδ}), (Dt2 = {r2}, St2 = {

>
δa,

>
ab,

>
bδ})}) = 9,

ξ({(Dt1 = {r1, r3}, St1 = {
>
δb,

>
ba,>ac,

>
cδ}), (Dt2 = {r2}, St2 = {

>
δa,

>
ab,

>
bδ})}) = 4,

ξ({(Dt1 = {r2, r3}, St1 = {
>
δa,

>
ab,

>
bc,

>
cδ}), (Dt2 = ∅, St2 = ∅)}) = 1.

In this example, the optimal delivery routing solution DS∗ for the given
PPDSP is {(Dt1 = {r1, r2}, St1 = {

>
δa,

>
ab,

>
bc,

>
cδ}), (Dt2 = {r3}, St2 = {

>
δb,

>
bc,

>
cδ})},

and its value is 11.

3 Problem Formulation

In this section, we present the following MIP formulation of the location-based
model for PPDSP and prove its correctness as well as the space complexity of
the generated problem.

max
∑
r∈R

∑
t∈T

(wr · ytr)−
∑
t∈T

∑
o∈V

∑
d∈V

(ltod · xt
od), (1)

s.t. xt
od, y

t
r ∈ {0, 1}, ∀(t, o, d, r) : t ∈ T, o, d ∈ V, r ∈ R, (2)∑

t∈T

ytr ≤ 1, ∀r : r ∈ R, (3)

ytr ≤
∑
o∈V

o ̸=f(r)

xt
of(r), ∀(t, r) : t ∈ T, r ∈ R, (4)

ytr ≤
∑
o∈V

o ̸=g(r)

xt
og(r), ∀(t, r) : t ∈ T, r ∈ R, (5)

∑
d∈V

xt
od −

∑
d∈V

xt
do = 0, ∀(t, o) : t ∈ T, o ∈ V, (6)∑

d∈V
d ̸=o

xt
od ≤ 1, ∀(t, o) : t ∈ T, o ∈ V, (7)

ut
d − ut

o ≥ 1− |V |(1− xt
od),

∀(t, o, d) : t ∈ T, o, d ∈ V \ {0}, o ̸= d, (8)

ut
f(r) − ut

g(r) < |V |(1− ytr), ∀(t, r) : t ∈ T, r ∈ R, (9)
Γ −M · (1− xt

od) ≤ ht
d − ht

o ≤ Γ +M · (1− xt
od),

Γ ≜
∑

r∈f−1(d)(qr · ytr)−
∑

r∈g−1(d)(qr · ytr),
M ≜ ct +

∑
r∈R qr,

,

∀(t, o, d) : t ∈ T, o, d ∈ V \ {0}, o ̸= d, (10)

0 ≤ ht
v ≤ ct, ∀(t, v) : t ∈ T, v ∈ V \ {0}, (11)

0 ≤ ut
v ≤ |V | − 2, ∀(t, v) : t ∈ T, v ∈ V \ {0}. (12)
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3.1 Correctness

The objective function in Eq. (1) maximizes the profit-cost function for all possi-
ble delivery routing solutions. Eq. (2) introduces two types of Boolean variables
xt
od and ytr. Eq. (3) guarantees that, each request can be assigned to at most one

truck.

Theorem 1. For PPDSP, the Hamiltonian cycle constraints can be guaranteed
by the simultaneous Eqs. (4)–(8) and Eq. (12).

Proof. According to Eq. (4) (resp. Eq. (5)), if request r is assigned to truck t,
then truck t reaches the pickup (resp. dropoff) point of r at least once via a
point that is not the pickup (resp. dropoff) point of r. Eq. (6) ensures that the
number of visits and the number of departures of a truck at any location must
be equal. Eq. (7) restricts any truck departing from a location to at most one
other location. It is clear from the above that, all nodes of

⋃
r∈Dt

{f(r), g(r)} are
ensured to be visited and departed by truck t exactly once.

Eq. (8), a canonical MTZ subtour elimination constraint [9], resrticts the
integer variables ut

v, where v ∈ V \ {0}, such that they form an ascending series
to represent the order that truck t arrives at each location v. Eq. (12) gives the
domain of such variables ut

v. Furthermore, Eq. (8) associated with Eqs. (4)–(7)
also enforces that depot 0 must be visited and departed by truck t exactly once
if Dt ̸= ∅. ⊓⊔

Eq. (9) ensures that, for any request r, the arrival of its pickup point must
precede the arrival of its dropoff point by truck t if ytr = 1.

Theorem 2. For PPDSP, the capacity constraint can be guaranteed by the Eqs.
(10) and (11).

Proof. We introduce another integer variables ht
v, where v ∈ V \{0}, in Eq. (10),

whose domains are between 0 and ct (i.e., the capacity of truck t) as given in Eq.
(11). Such a variable ht

v can be considered as the loading volume of truck t when
it departs at location v. We define the amount of change in the loading of truck t
at location v as Γ , which equals the loaded amount at v (i.e.,

∑
r∈f−1(v)(qr ·ytr))

minus the unloaded amount at v (i.e.,
∑

r∈g−1(v)(qr · ytr)). The main part of Eq.
(10) guarantees that ht

d−ht
o is exactly equal to Γ when xt

od = 1, which is written
as a big-M linear inequality, where we specify M as ct +

∑
r∈R qr. ⊓⊔

3.2 Space Complexity

Consider that the number of trucks is m (i.e., |T | = m) and the number of
requests is n (i.e., |R| = n). Assume that the average repetition rate of the same
locations is k, where k ≥ 1, then we can estimate the number of unique locations
as 2nk−1, which is also the number of integrated nodes (viz., |V \{0}| = 2nk−1).

Theorem 3. The number of linear (in)equations corresponding to Eqs. (3)–(10)
is always of a pseudo-polynomial size, and both this number and the number of
required variables are bounded by Θ(mn2k−2).
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Table 1: The bounded numbers of linear (in)equations corresponding to the
constraints that are formulated in Eqs. (3)–(10).

Constraint #(In)equations Constraint #(In)equations
Eq. (3) n Eq. (7) m(1 + 2nk−1)

Eq. (4) mn Eq. (8) m
(
2nk−1

2

)
Eq. (5) mn Eq. (9) mn

Eq. (6) m(1 + 2nk−1) Eq. (10) 2m
(
2nk−1

2

)

Proof. The number of Boolean variables xt
od (resp. ytr) required in proposed

formulation is m(1 + 2nk−1)2 (resp. mn); while both the number of required
integer variables ut

d and ht
d are m(1 + 2nk−1). In Table 1, we list the bounded

numbers of linear (in)equations that correspond to Eqs. (3)–(10) involved in the
proposed PPDSP formulation. Therefore, the number of required variable as well
as the number of corresponded linear (in)equations are of Θ(mn2k−2). ⊓⊔

4 Experiment

We compare the performance of a MIP optimizer in solving randomly generated
PPDSP instances based on the proposed formulation (i.e., location-based model),
and based on the existing formulation (i.e., request-based model), respectively.
Due to page limitations of the submission, please refer to the appendix section
in the preprint version of this manuscript [13] for the specific description of the
existing formulation used for the comparative experiments.

4.1 Simulation Instances Generation

The directed graph informations for generating instances are set based on the
samples of TSPLIB benchmark with displaying data as the coordinates of nodes.4
We denote the number of nodes contained in the selected sample as |V |, and set
the first of these nodes to be the depot node. The pickup and dropoff points of
each request are chosen from the non-depot nodes. Therefore, given an average
repetition rate k for the same locations, we need to repeatably select n pairs of
non-depot nodes (i.e., a total of 2n repeatable non-depot nodes) to correspond
to n requests, where n = round(k(|V |−1)

2 ).
In Algorithm 1, we construct the repeaTimeList of length |V | − 1 to mark

the number of times of each non-depot node being selected. In order to ensure
that each non-depot node is selected at least once, each value on such list is
initialized to 1. We continuously generate a random index of repeaTimeList and
add one to the value corresponding to the generated index (i.e., the number of
times of the non-depot node being selected increases by one) until the sum of
these numbers reaches 2n.
4 http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp/
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Algorithm 1: Randomly specify the number of repetitions of each non-
depot node

Input: G = (V,E), k
Init. : n← round( k(|V |−1)

2
), repeaTimeList← [|V | − 1 of 1]

1 while
∑

i repeaTimeList[i] < 2n do
2 i← round(RandomUniform(0, |V | − 2))
3 repeaTimeList[i]← repeaTimeList[i] + 1

4 return repeaTimeList

The pickup and dropoff nodes for each request are randomly paired up in
Algorithm 2. We first rewrite repeaTimeList as a list of length 2n, shuffList,
which consists of all selected non-depot nodes, where the number of repetitions
indicates the number of times they are selected. For example, we have shuffList =
[0, 0, 0, 1, 2, 2] for repeaTimeList = [3, 1, 2]. Next, we shuffle shuffList and clear
pairList, which is used to store pairs of nodes indicating the pickup and dropoff
points of all requests. We then divide shuffList into n pairs in order. If two nodes
of any pair are identical (i.e., the pickup and dropoff are the same point), or the
pair with considering order is already contained in pairList, then we are back to
Line 4. Otherwise, we append the eligible pair of nodes into pairList until the
last pair is added.

Algorithm 2: Randomly pair up the pickup and dropoff nodes for each
request

Input: G = (V,E), n = round( k(|V |−1)
2

), repeaTimeList
Init. : shuffList← [ ], pairList← [ ], reshuffle← true

1 for i← 0 to |V | − 2 do
2 shuffList.Extend([repeaTimeList[i] of i])

3 while reshuffle do
4 RandomShuffle(shuffList)
5 pairList← [ ]
6 for i← 0 to n− 1 do
7 if shuffList[2i] = shuffList[1 + 2i] or

[shuffList[2i], shuffList[1 + 2i]] in pairList then
8 break
9 else

10 pairList.Append([shuffList[2i], shuffList[1 + 2i]])
11 if i = n− 1 then reshuffle← false

12 return pairList

Since we intend to generate instances corresponding to different k for each
selected sample of TSPLIB benchmark, and the number of requests n gets smaller
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as k decreases, we need to produce a decrementable list of node pairs such
that we can remove some of the node pairs to correspond to smaller k, but the
remaining part of the node pairs still contains all locations in the sample other
than that as depot (i.e., they still need to be selected at least once). Therefore,
in Algorithm 3, we assume that a sorted list of node pairs pops the end elements
out of it one by one, yet it is always guaranteed that every non-depot node is
selected at least once. We insert the node pair in which both nodes are currently
selected only once into the frontmost of head in Line 7, and then append the
node pair in which one of them is selected only once into head in Line 11. Then
we keep inserting the node pair in which the sum of the repetitions of the two
nodes is currently maximum into the frontmost of tail in Line 22. Note that
such insertions and appends require popping the corresponding node pair out of
pairList and updating L. We merge head and tail to obtain a sorted list of node
pairs sortedPairs at the end of Algorithm 3.

Algorithm 3: Sort the node pairs by the sum of the repeat times of
each node in the node pair

Input: repeaTimeList, pairList
Init. : L ← repeaTimeList, head← [ ], tail← [ ], max← 0, maxIndex← −1,

sortedPairs← [ ]
1 while |pairList| > 0 do
2 i← 0
3 while i < |pairList| do
4 if L[pairList[i][0]] = 1 and L[pairList[i][1]] = 1 then
5 L[pairList[i][0]]← L[pairList[i][0]]− 1
6 L[pairList[i][1]]← L[pairList[i][1]]− 1
7 head.Insert(0, pairList.Pop(i))
8 else if L[pairList[i][0]] = 1 or L[pairList[i][1]] = 1 then
9 L[pairList[i][0]]← L[pairList[i][0]]− 1

10 L[pairList[i][1]]← L[pairList[i][1]]− 1
11 head.Append(pairList.Pop(i))
12 else i← i+ 1

13 max← 0
14 maxIndex← −1
15 for j ← 0 to |pairList| − 1 do
16 if L[pairList[j][0]] + L[pairList[j][1]] > max then
17 max← L[pairList[j][0]] + L[pairList[j][1]]
18 maxIndex← j

19 if maxIndex ̸= −1 then
20 L[pairList[maxIndex][0]]← L[pairList[maxIndex][0]]− 1
21 L[pairList[maxIndex][1]]← L[pairList[maxIndex][0]]− 1
22 tail.Insert(0, pairList.Pop(maxIndex))

23 sortedPairs← head.Extend(tail)
24 return sortedPairs
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Parameter settings Finally, we can generate a list containing n requests for
each selected sample of TSPLIB benchmark, as shown in Algorithm 4. In ad-
dition, we generate data for the three types of trucks recursively in the order
of maximum load capacity of 25, 20, and 15 until the number of generated
trucks reaches m. And these three types of trucks correspond to their respective
cost coefficients for each traversing arc of 1.2, 1, and 0.8. For example, for a
truck t of load capacity 15, ltod, i.e., the cost of it passing through the arc

>
od is

0.8×Distance(
>
od).5 According to the average volume of 5 for each request set

in Algorithm 4, it is expected that each truck can accommodate four requests
at the same time.

Algorithm 4: Randomly generate the list of requests
Input: G = (V,E), n = round( k(|V |−1)

2
), sortedPairs

Init. : avgDistance← 1
|V |·|V −1|

∑
o∈V

∑
d∈V
d̸=o

Distance(
>
od), avgVolume← 5,

requestList← [ ]
1 for r ← 0 to n− 1 do
2 qr ← round(RandomUniform(1, 2× avgVolume− 1))
3 wr ← round(2× avgDistance× qr ÷ avgVolume)
4 f(r)← sortedPairs[r][0]
5 g(r)← sortedPairs[r][1]
6 requestList.Append(⟨wr, qr, f(r), g(r)⟩)
7 return requestList

We generate a total of 3× 5× 5 = 75 PPDSP instances for our comparative
experiments based on the proposed formulation and on the existing formulation,
respectively, according to the following parameter settings.

– The selected TSPLIB samples are {burma14, ulysses16, ulysses22};
– The average repetition rate of the same locations, k ∈ {1, 1.5, 2, 2.5, 3};
– The number of trucks m ∈ {2, 4, 6, 8, 10}.

4.2 Experimental Setup

All experiments are performed on an Apple M1 Pro chip, using the Ubuntu
18.04.6 LTS operating system via the Podman virtual machine with 19 GB of
allocated memory. A single CPU core is used for each experiment. We imple-
mented the instance generators for both the proposed formulation and the exist-
ing formulation by using Python 3. Each generated problem instance is solved
by the MIP optimizer–Cplex of version 20.1.0.0 [5] within 3,600 CPU seconds
time limit. Source code for our experiments is available at https://github.com/
ReprodSuplem/PPDSP.

5 Distance(
>
od) is the Euclidean distance between the coordinates of node o and the

coordinates of node d.
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Table 2: Comparison of the existing formulation-based method with the proposed
formulation-based method for TSPLIB sample burma14 in terms of the number
of variables and constraints generated, as well as the optimal values achieved.

m item k = 1 k = 1.5 k = 2 k = 2.5 k = 3
(n = 7) (n = 10) (n = 13) (n = 16) (n = 20)

2
#Var. 576 458 1056 464 1680 470 2448 476 3696 484
#Con. 1027 1041 1942 1062 3145 1083 4636 1104 7072 1132
Opt. 30 30 42 40 56 53 65 75 100 107

4
#Var. 1152 916 2112 928 3360 940 4896 952 7392 968
#Con. 2047 2075 3874 2114 6277 2153 9256 2192 14124 2244
Opt. 33 30 49 44 58 61 53 77 68 103

6
#Var. 1728 1374 3168 1392 5040 1410 7344 1428 11088 1452
#Con. 3067 3109 5806 3166 9409 3223 13876 3280 21176 3356
Opt. 33 31 46 42 57 58 43 81 46 103

8
#Var. 2304 1832 4224 1856 6720 1880 9792 1904 14784 1936
#Con. 4087 4143 7738 4218 12541 4293 18496 4368 28228 4468
Opt. 33 31 46 44 56 56 4 79 81 104

10
#Var. 2880 2290 5280 2320 8400 2350 12240 2380 18480 2420
#Con. 5107 5177 9670 5270 15673 5363 23116 5456 35280 5580
Opt. 33 31 44 44 57 58 24 80 49 96

4.3 Results

Tables 2–4 show the performance of the existing formulation-based method and
our proposed formulation-based method in terms of the number of generated
variables (#Var.), the number of generated constraints (#Con.), and the optimal
values (Opt.) for the various average repetition rates of the same locations (k)
and the different numbers of trucks (m), corresponding to TSPLIB samples
burma14, ulysses16 and ulysses22, respectively. Each cell recording the left and
right values corresponds to a comparison item, where the left values refers to the
performance of the existing formulation-based method, while the right values
corresponds to the performance of the proposed formulation-based method. We
compare the performance of these two methods in such cells and put the values
of the dominant side in bold.

We can see that either the number of variables or the number of constraints
generated by our proposed method is proportional to m, while neither the num-
ber of variables nor the number of constraints generated by our proposed method
increases significantly as k becomes larger. Such a result is consistent with The-
orem 3. In contrast, although the number of variables and the number of con-
straints produced by the existing method is also proportional to m, with k be-
coming larger, exponential increases in both of them are observed. Furthermore,
it is interesting to note that even when k = 1, the proposed method generates
fewer variables than the existing method.

As k increases, the optimal value obtained by the proposed method increases
within the time limit; while there is no such trend in the optimal values obtained
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Table 3: Comparison of the existing formulation-based method with the proposed
formulation-based method for TSPLIB sample ulysses16 in terms of the number
of variables and constraints generated, as well as the optimal values achieved.

m item k = 1 k = 1.5 k = 2 k = 2.5 k = 3
(n = 8) (n = 11) (n = 15) (n = 19) (n = 23)

2
#Var. 720 588 1248 594 2176 602 3360 610 4800 618
#Con. 1300 1380 2311 1401 4107 1429 6415 1457 9235 1485
Opt. 94 94 96 94 109 112 157 187 168 230

4
#Var. 1440 1176 2496 1188 4352 1204 6720 1220 9600 1236
#Con. 2592 2752 4611 2791 8199 2843 12811 2895 18447 2947
Opt. 99 98 104 101 104 124 140 198 29 247

6
#Var. 2160 1764 3744 1782 6528 1806 10080 1830 14400 1854
#Con. 3884 4124 6911 4181 12291 4257 19207 4333 27659 4409
Opt. 99 98 105 101 104 139 92 205 0 226

8
#Var. 2880 2352 4992 2376 8704 2408 13440 2440 19200 2472
#Con. 5176 5496 9211 5571 16383 5671 25603 5771 36871 5871
Opt. 99 98 91 98 89 138 75 176 96 241

10
#Var. 3600 2940 6240 2970 10880 3010 16800 3050 24000 3090
#Con. 6468 6868 11511 6961 20475 7085 31999 7209 46083 7333
Opt. 99 98 96 101 111 130 82 186 27 221

by the existing method. In addition, as m grows up, in theory, the upper bound
of the optimal value cannot be smaller. However, the optimal values obtained
by the proposed method and the existing method do not maintain the trend of
increasing, instead, they both have inflection points. This is due to the fact that
the search space of the problem becomes huge, which makes it inefficient for the
solver to update the optimized solution. There are even cases on the existing
method where the initial solution is not obtained until the end of time.

Last but not least, we can clearly see that for those problems with larger k
(i.e., more nodes that can be integrated), the method based on our proposed
formulation generates fewer variables and constraints, as well as achieves larger
optimal values, than the method based on the existing formulation.

4.4 Discussion

In a real-world scenario, different logistics orders may be sent from the same
place to various places, or from different places to the same place. With a cer-
tain range of shipping services, as the number of orders increases, the average
repetition rate (k) of pickup locations as well as delivery locations becomes
higher. From the experimental results, we can see that, although the proposed
method is more efficient than the existing methods, PPDSP is still difficult to
be solved exactly, even for problem instances generated based on small-scale
road networks in the limited time of 3,600 CPU seconds to find the optimal
solution. We do not consider the time window constraint in this paper because
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Table 4: Comparison of the existing formulation-based method with the proposed
formulation-based method for TSPLIB sample ulysses22 in terms of the number
of variables and constraints generated, as well as the optimal values achieved.

m item k = 1 k = 1.5 k = 2 k = 2.5 k = 3
(n = 11) (n = 16) (n = 21) (n = 26) (n = 32)

2
#Var. 1248 1074 2448 1084 4048 1094 6048 1104 8976 1116
#Con. 2311 2685 4636 2720 7761 2755 11686 2790 17452 2832
Opt. 116 120 161 206 182 225 85 297 79 336

4
#Var. 2496 2148 4896 2168 8096 2188 12096 2208 17952 2232
#Con. 4611 5359 9256 5424 15501 5489 23346 5554 34872 5632
Opt. 134 120 141 185 53 216 34 277 15 327

6
#Var. 3744 3222 7344 3252 12144 3282 18144 3312 26928 3348
#Con. 6911 8033 13876 8128 23241 8223 35006 8318 52292 8432
Opt. 115 125 136 192 0 227 45 242 0 343

8
#Var. 4992 4296 9792 4336 16192 4376 24192 4416 35904 4464
#Con. 9211 10707 18496 10832 30981 10957 46666 11082 69712 11232
Opt. 124 117 102 206 25 224 58 228 41 276

10
#Var. 6240 5370 12240 5420 20240 5470 30240 5520 44880 5580
#Con. 11511 13381 23116 13536 38721 13691 58326 13846 87132 14032
Opt. 124 123 31 173 44 204 42 243 44 319

adding more constraints would make the solution of the problem more difficult.
Nonetheless, for solving larger scale PPDSP within a reasonable computation
time, we still need to tailor heuristic algorithms for the location-based model in
our future work. Compared to the request-based model, we propose a surrogate
optimization model for PPDSP, whose solution set is a subset of the former. This
may result in a lower upper bound on the optimized value of exact solutions.
However, our approach remains competitive in obtaining approximate solutions.

5 Conclusion

In this paper, we revisit PPDSP on road networks with the integratable nodes.
For such application scenarios, we define a location-based graph-theoretic model
and give the corresponding MIP formulation. We prove the correctness of this
formulation as well as analyze its space complexity. We compare the proposed
method with the existing formulation-based method. The experimental results
show that, for the instances with more integratable nodes, our method has a
significant advantage over the existing method in terms of the generated problem
size, and the optimized values.
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