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Abstract. The problem of fitting a given ordered sample of data points
in arbitrary Euclidean space is addressed. The corresponding interpola-
tion knots remain unknown and as such must be first somehow found.
The latter leads to a highly non-linear multivariate optimization task,
equally non-trivial for theoretical analysis and for derivation of a com-
putationally efficient numerical scheme. The non-degenerate case of at
least four data points can be handled by Leap-Frog algorithm merging
generic and non-generic univariate overlapping optimizations. Sufficient
conditions guaranteeing the unimodality for both cases of Leap-Frog op-
timization tasks are already established in the previous research. This
work complements the latter by analyzing the degenerate situation i.e.
the case of fitting three data points, for which Leap-Frog cannot be used.
It is proved here that the related univariate cost function is always uni-
modal yielding a global minimum assigned to the missing internal-point
knot (with no loss both terminal knots can be assumed to be fixed).
Illustrative examples supplement the analysis in question.
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1 Introduction

The problem of fitting data is a classical problem for which numerous interpo-
lation techniques can be applied (see e.g. [1, 11, 16]). In classical setting, most
of such schemes admit a sequence of n + 1 input points Mn = {xn}ni=0 in
arbitrary Euclidean space Em accompanied by the sequence of the correspond-
ing interpolation knots T = {ti}ni=0. The problem of data fitting and modeling
gets complicated for the so-called reduced data for which only the points Mn

are given. Here, for a given fitting scheme, different choices of ordered inter-
polation knots {t̂i}ni=0 render different curves. An early work on this topic can
be found in [12] subsequently investigated e.g. in [10, 11]. In particular, various
quantitative criteria (often for special m = 2, 3) are introduced to measure the
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suitability of a special choice of {t̂i}ni=0 - e.g. the convergence rate of the inter-
polant to the unknown curve onceMn is getting denser. A more recent work in
which different parameterization of the unknown knots are discussed (including
the so-called cumulative chord or its extension called the exponential param-
eterization) can be found e.g. in [2, 8, 11]. One of the approaches (see [3]) to
substitute the unknown knots Tn−1 = (t1, t2, . . . , tn−1) (here one can set t0 = 0

and tn = T , e.g. with T as cumulative chord) is to minimize
∫ tn
t0
‖γ̈NS(t)‖dt

subject to 0 < t1 < t2 < ... < tn−1 < T , where γNS : [0, T ] → Em defines a
natural spline (see [1]) based on Mn and Tn−1. Such constrained optimization
task can be transformed into minimizing (see e.g. [3]) the following multivariate
cost function:

J (t1, t2, . . . , tn−1) = 4

n−1∑
i=0

( −1
(∆ti)3

(−3‖xi+1 − xi‖2 + 3〈vi + vi+1|xi+1 − xi〉∆ti

−(‖vi‖2 + ‖vi+1‖2 + 〈vi|vi+1〉)(∆ti)2
)
, (1)

where the set {vi}ni=0 represents the respective velocities at Mn which are ex-
pressible in terms ofMn and parameters Tn−1 (see [1]). The latter constitutes a
highly non-linear multivariate optimization task difficult to analyze and to solve
numerically (see [4]). For technical reason it is also assumed that xi 6= xi+1,
for i = 1, 2, . . . , n − 1. Leap-Frog algorithm is a possible remedy here (n ≥ 3
yields a non-degenerate case of (1) yielding at least four interpolation points)
which with the aid of iterative overlapping univariate optimizations (generic and
non-generic one) computes a critical point (topt1 , topt2 , . . . , toptn−1) to (1). More infor-
mation on Leap-Frog in the context of minimizing (1) together with the analysis
on establishing sufficient conditions enforcing the unimodality of the respective
univariate cost functions can be found in [6, 7].

This work3 extends theoretical analysis on minimizing (1) via Leap-Frog
algorithm (performed for n ≥ 3) to the remaining degenerate case of n = 2.
Here neither generic nor non-generic case of Leap-Frog is applicable. Indeed for
the univariate generic Leap-Frog optimization (see [6]) both velocities in the k-
iteration process i.e. vki and vki+2 (at points xi and xi+2, respectively) are assumed
to be temporarily fixed and a local complete spline γCi : [tki , t

k
i+2]→ Em (see [1])

is used to recompute the knot tk−1i+1 to tki+1 and consequently the velocity vk−1i+1

to vki+1 (at point xi+1) upon minimizing Ei(ti+1) =
∫ tki+2

tki
‖γ̈Ci (t)‖dt. Similarly

univariate non-generic Leap-Frog optimization (see [7]) relies on a0 = 0 and vk2
or on vkn−2 and an = 0 given (with velocities vk2 and vkn−2 fed by generic Leap-
Frog iterations), where a0 and an represent the corresponding accelerations fixed
at x0 and xn, respectively. Here knots tk−11 (and tk−1n−1) are recomputed into tk1
(and tkn−1) with the corresponding velocities vk−11 (and vk−1n−1) updated to vk1 (and
vkn−1). For the exact local energy formulation and the related analysis see [7].

3 This work is a part of Polish National Centre of Research and Development Project
POIR.01.02.00-00-0160/20.
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Optimal Knots in Fitting Degenerate Reduced Data 3

Noticeably for n = 2 (i.e. degenerate case of reduced data with three inter-
polation points) accompanied by a0 = 0 and a2 = 0 minimizing (1) reformulates
into:

Edeg(t1) = J (t1) = 4

1∑
i=0

( −1
(∆ti)3

(−3‖xi+1 − xi‖2 + 3〈vi + vi+1|xi+1 − xi〉∆ti

−(‖vi‖2 + ‖vi+1‖2 + 〈vi|vi+1〉)(∆ti)2
)
, (2)

which does not fall into one of the Leap-Frog so-far derived schemes (i.e. generic
and non-generic case handlingMn with n ≥ 3).

In this paper we prove the unimodality of (2) and supplement illustrative ex-
amples. Consequently, computing the optimal knot t1 is not susceptible to the
initial guess and forms a global minimum of (2). Fitting reduced data Mn via
optimization (1) (or with other schemes replacing the unknown knots T ) applies
in modeling [16] (e.g. computer graphics and computer vision), in approxima-
tion and interpolation [5, 11] (e.g. trajectory planning, length estimation, image
segmentation or data compression) as well as in many other engineering and
physics problems [13] (e.g. robotics or particle trajectory estimation).

2 Degenerate Case: First and Last Accelerations Given

Assume that for three data points x0, x1, x2 ∈Mn (for n = 2) the interpolation
knots t0 and t2 are somehow known together with respective first and terminal
accelerations a0, a2 ∈ Rm. In fact, one can safely assume here (upon coordinate
shift and rescaling) that t0 = 0 and t2 = Tcc = ‖x1−x0‖+‖x2−x1‖ representing
a cumulative chord parameterization. Let a C2 piecewise cubic (depending on
varying t1 ∈ (t0, t2)) denoted by γcdeg : [t0, t2]→ Em (i.e. a cubic on each [t0, t1]
and [t1, t2]) satisfy:

γcdeg(tj) = xj , j = 0, 1, 2 ; γ̈cdeg(tj) = ak , k = 0, 2 ,

and be C2 class over [t0, t2]. Upon introducing the mapping φdeg : [t0, t2]→ [0, 1]

φdeg(t) =
t− t0
t2 − t0

(3)

the reparameterized curve γ̃cdeg : [0, 1] → Em defined as γ̃cdeg = γcdeg ◦ φ
−1
deg

satisfies, for 0 < s1 < 1 (where s1 = φdeg(t1)):

γ̃cdeg(0) = x0 , γ̃cdeg(s1) = x1 , γ̃cdeg(1) = x2 ,

with the adjusted first and terminal accelerations ã0, ã2 ∈ Rm

ã0 = γ̃c
′′

deg(0) = (t2 − t0)2a0 , ã2 = γ̃c
′′

deg(1) = (t2 − t0)2a2 . (4)
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4 R. Kozera and L. Noakes

Remark 1. An easy inspection shows (for each s1 = φdeg(t1)) that Ẽdeg(s1)

=

∫ 1

0

‖γ̃c
′′

deg(s)‖ds = (t2 − t0)3
∫ t2

t0

‖γ̈cdeg(t)‖2dt = (t2 − t0)3Edeg(t1) . (5)

Hence all critical points scrit1 of Ẽdeg are mapped (one-to-one) onto critical points
tcrit1 = φ−1deg(s

crit
1 ) = scrit1 (t2 − t0) + t0 of Edeg. Consequently all optimal points

of Edeg and Ẽdeg are conjugated with topt1 = φ−1deg(s
opt
1 ). ut

We determine now the explicit formula for Ẽdeg. In doing so, for γ̃cdeg (with
s1 ∈ (0, 1) as additional parameter) define now (here γ̃lcdeg(s1) = γ̃lcdeg(s1)):

γ̃cdeg(s) =

{
γ̃lcdeg(s) , for s ∈ [0, s1]

γ̃rcdeg(s) , for s ∈ [s1, 1]

where, with cdegj , ddegj ∈ Rm (for j = 0, 1, 2, 3)

γ̃lcdeg(s) = cdeg0 + cdeg1 (s− s1) + cdeg2 (s− s1)2 + cdeg3 (s− s1)3 ,

γ̃rcdeg(s) = ddeg0 + ddeg1 (s− s1) + ddeg2 (s− s1)2 + ddeg3 (s− s1)3 ,

the following must hold:

γ̃lcdeg(0) = x0 , γ̃lcdeg(s1) = γ̃rcdeg(s1) = x1 , γ̃rcdeg(1) = x2 , (6)

and also
γ̃lc
′′

deg(0) = ã0 , γ̃rc
′′

deg (1) = ã2 , (7)

together with the C1 and C2 class constraints at s = s1:

γ̃lc
′

deg(s1) = γ̃rc
′

deg(s1) , γ̃lc
′′

deg(s1) = γ̃rc
′′

deg (s1) . (8)

Without loss, we may assume that

x̃0 = x0 − x1 , x̃1 = 0 , x̃2 = x2 − x1 , (9)

and hence by (6) we have

γ̃lcdeg(0) = x̃0 , γ̃lcdeg(s1) = γ̃rcdeg(s1) = 0 , γ̃rcdeg(1) = x̃2 . (10)

Therefore combining now (8) with x̃1 = 0 we obtain

γ̃lcdeg(s) = cdeg1 (s− s1) + cdeg2 (s− s1)2 + cdeg3 (s− s1)3 ,

γ̃rcdeg(s) = cdeg1 (s− s1) + cdeg2 (s− s1)2 + ddeg3 (s− s1)3 , (11)

with cdeg0 = ddeg0 = 0. The unknown vectors cdeg1 , cdeg2 , cdeg3 , ddeg3 appearing in
(11) are uniquely determined by solving the following system of four linear vector
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equations obtained from and (7) and (10):

x̃0 = −cdeg1 s1 + cdeg2 s21 − c
deg
3 s31 ,

x̃2 = cdeg1 (1− s1) + cdeg2 (1− s1)2 + ddeg3 (1− s1)3 ,
ã0 = 2cdeg2 − 6cdeg3 s1 ,

ã2 = 2cdeg2 + 6ddeg3 (1− s1) . (12)

An inspection reveals that vector coefficients:

cdeg1 = − ã0s
2
1 − ã2s21 − 2ã0s

3
1 + 2ã2s

3
1 + ã0s

4
1 − ã2s41 − 6x̃0 + 12s1x̃0 − 6s21x̃0

6(s1 − 1)s1

− 6s21x̃2
6(s1 − 1)s1

,

cdeg2 = −−ã2s1 − ã0s
2
1 + 2ã2 s

2
1 + ã0s

3
1 − ã2s31 + 6x̃0 − 6s1x̃0 + 6s1x̃2

4(s1 − 1)s1
,

cdeg3 = −−2ã0s1 − ã2s1 + ã0s
2
1 + 2ã2s

2
1 + ã0s

3
1 − ã2s31 + 6x̃0 − 6s1x̃0 + 6s1x̃2

12(s1 − 1)s21
,

ddeg3 = −−3ã2s1 − ã0s
2
1 + 4ã2s

2
1 + ã0s

3
1 − ã2s31 + 6x̃0 − 6s1x̃0 + 6s1x̃2

12(s1 − 1)2s1
. (13)

solve (as functions in s1) the system (12). Alternatively one may e.g. use Math-
ematica function Solve to find explicit formulas for (13) solving (12). In our
special degenerate case of n = 2 we have a0 = a2 = 0 (with ã0 = ã2 = 0 - see
(4)) and thus (13) reads as:

cdeg01 = −−6x̃0 + 12s1x̃0 − 6s21x̃0 + 6s21x̃2
6(s1 − 1)s1

,

cdeg02 = −6x̃0 − 6s1x̃0 + 6s1x̃2
4(s1 − 1)s1

,

cdeg03 = −6x̃0 − 6s1x̃0 + 6s1x̃2
12(s1 − 1)s21

,

ddeg03 = −6x̃0 − 6s1x̃0 + 6s1x̃2
12(s1 − 1)2s1

. (14)

Note that the formula for the energy Ẽdeg reads as:

Ẽdeg(s1) =
∫ s1

0

‖γ̃lc
′′

deg(s)‖2ds+
∫ 1

s1

‖γ̃rc
′′

deg (s)‖2ds . (15)
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Combining (15) with (11) and (14) yields (upon e.g. using Mathematica functions
Integrate and FullSimplify):

Ẽdeg(s1) =
3(‖x̃0‖2(s1 − 1)2 + s1(‖x̃2‖2s1 + (2− 2s1)〈x̃0|x̃2〉))

(s1 − 1)2s21

= 3

∣∣∣∣∣∣∣∣ x̃0(s1 − 1)− x̃2s1
(s1 − 1)s1

∣∣∣∣∣∣∣∣2 , (16)

for arbitrary m. To justify the latter one proves first that (16) holds for m = 1.
Then the same vector version is derived by using m times one dimensional for-
mula with the observation that one dimensional sections of homogeneous bound-
ary conditions a0 = a2 = 0 are additive. Coupling x̃0 = x0−x1 and x̃2 = x2−x1
with (16) yields:

Ẽdeg(s1) = 3

∣∣∣∣∣∣∣∣x1 − x0 − s1(x2 − x0)(s1 − 1)s1

∣∣∣∣∣∣∣∣2 . (17)

By (16) or (17) we have

lim
s1→0+

Ẽdeg(s1) = lim
s1→1−

Ẽdeg(s1) = +∞ . (18)

Thus as Ẽdeg ≥ 0, Ẽdeg ∈ C1((0, 1)) there exists a global minimum sopt1 ∈ (0, 1)

of Ẽdeg for which Ẽ ′deg vanishes. We use next the assumption that xi 6= xi+1 (for
i = 0, 1) as then x̃0 6= 0 and x̃2 6= 0. Similarly, (18) holds for x0 = x2.

An easy inspection shows that (use alternatively symbolic differentiation in
Mathematica and FullSimplify):

Ẽ ′deg(s1) = −
6(‖x̃0‖2(s1 − 1)3 + ‖x̃2‖2s31 − (s1 − 1)s1(2s1 − 1)〈x̃0|x̃2〉)

(s1 − 1)3s31
.(19)

The numerator of (19) is a polynomial of degree 3 (Ẽ ′deg(s1) = −1
(s1−1)3s31

Ndeg(s1))

Ndeg(s1) = bdeg0 + bdeg1 s1 + bdeg2 s21 + bdeg3 s31 (20)

with vector coefficients bdegj ∈ Rm (for j = 0, 1, 2, 3) equal to (apply e.g. Mathe-
matica functions Factor and FullSimplify):

bdeg0

6
= −‖x̃0‖2 = −‖x1‖2 − ‖x0‖2 + 2〈x0|x1〉 ,

bdeg1

6
= 3‖x̃0‖2 − 〈x̃0|x̃2〉 = 3‖x0‖2 + 2‖x1‖2 − 5〈x0|x1〉+ 〈x1|x2〉 − 〈x0|x2〉 ,

bdeg2

6
= 3(〈x̃0|x̃2〉 − ‖x̃0‖2) = 3(−〈x1|x2〉+ 〈x1|x0〉+ 〈x0|x2〉 − ‖x0‖2) ,

bdeg3

6
= ‖x̃2 − x̃0‖2 = ‖x2‖2 + ‖x0‖2 − 2〈x0|x2〉 . (21)
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Note that by (16) the sufficient condition for Edeg to vanish is the colinearity
of shifted data x1 − x0 and x2 − x1 and the existence of sopt1 ∈ (0, 1) satisfying
x1 − x0 = sopt1 (x2 − x0). Such sopt1 yields the global minimum of Edeg.

In a search for critical points and a global optimum of Ẽdeg, one can invoke
Mathematica Package Solve which can find all roots (real and complex) for a
given low order polynomial. Upon computing the roots of (20) we select only
these which are real and belong to (0, 1). Next we evaluate Ẽdeg on each critical
point scrit1 ∈ (0, 1) and choose scrit1 with minimal energy Ẽdeg as global optimizer
over (0, 1). We shall perform more exhaustive analysis for the existence of critical
points of Ẽdeg over (0, 1) in Section 3 (for arbitrary m).

3 Critical Points for Degenerate Case

We investigate now the character of critical points for Ẽdeg over the interval (0, 1)
(for degenerate case of reduced dataMn with n = 2). In Section 2 the existence
of a global minimum for Ẽdeg over (0, 1) is justified.

Example 1. Consider first a special case i.e. of co-linear data Mn for which
x̃0 = kx̃2. Recall that cumulative chord assigns to to Mn the knots t̂0 = 0,
t̂1 = ‖x1 − x0‖ = ‖x̃0‖ and t̂2 = t̂1 + ‖x2 − x1‖ = ‖x̃0‖ + ‖x̃2‖. Thus the
normalized cumulative chord reads as scc0 = 0, scc1 = ‖x̃0‖/(‖x̃0‖ + ‖x̃2‖) and
scc2 = 1.

For k < 0 i.e. co-linearly ordered data the cumulative chord ŝcc1 is the global
optimizer sg nullifying Ẽdeg(scc1 ) = 0. Indeed by (16) we see that Ẽdeg vanishes if
and only if x̃0(1−s1)+s1x̃2 = 0. Since x̃0 = kx̃2 we have (k(1−s1)+s1)x̃2 = 0,
which as x̃2 6= 0 yields k(1 − s1) + s1 = 0 and therefore as k < 0 the global
optimizer s1 = −k/(1 − k) = |k|/(1 + |k|) ∈ (0, 1). The latter coincides with
cumulative chord ŝcc1 forMn. This fact can be independently inferred by defining
x(s) = x̃0(1− s) + x̃2s which satisfies x(0) = x̃0, x(1) = x̃2, x′′(0) = x′′(1) = 0.
As x̃0 = kx̃2 with k < 0 we also have x(ŝcc1 ) = x̃1 = 0, where ŝcc1 = |k|/(1 + |k|)
is a cumulative chord. As also x(s) is a piecewise cubic and is of class C2 at ŝcc1
since x′′(s) ≡ 0 the curve x(s) minimizes Ẽdeg with ŝcc1 .

The case of k = 0 in x̃0 = kx̃2 is impossible as otherwise x̃0 = 0 which leads
to x0 = x1 contradictory to xi 6= xi+1 (for i = 1, 2).

For 0 < k < 1 (co-linearly unordered data) in x̃0 = kx̃2 the energy at global
minimum Ẽdeg(sg) > 0, as otherwise sg = k/(k − 1) < 0.

Similarly for k > 1 in x̃0 = kx̃2 the energy at global minimum Ẽdeg(sg) > 0
as otherwise sg = k/(k − 1) > 1.

Lastly, for k = 1 in x̃0 = kx̃2 the energy Ẽdeg(sg) > 0 satisfies sg = scc1 = 1/2.
Indeed, by (16) here Ẽdeg(s1) = ‖x0‖2/((s1−1)2s21) > 0 (as x0 6= x1) and yields a
single critical point sg = 1/2 which coincides with scc1 = 1/2 as ‖x̃0‖ = ‖x2‖. ut

In a search for all critical points of Ẽdeg recall (20) and (21) which yield
(modulo factor 1/6) Ndeg(0) = −‖x̃0‖2 < 0 and Ndeg(1) = ‖x̃2‖2 > 0 - note
that the remaining factor in Ẽ ′deg is always positive for s1 ∈ (0, 1) (see (19)). To
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guarantee the existence of a single critical point it suffices by Intermediate Value
Theorem to show that either

N ′deg(s1) = cdeg0 + cdeg1 s1 + cdeg2 s21 > 0

over (0, 1) (yielding Ndeg as strictly increasing with exactly one root ŝ1 ∈ (0, 1))
or that N

′

deg = 0 has exactly one root û1 ∈ (0, 1) (i.e. Ndeg has exactly one
max/min/saddle at some ŝ1). The latter combined with Ndeg(0) · Ndeg(1) < 0

results in Ndeg(s1) = 0 having exactly root ŝ1 ∈ (0, 1) (a critical point of Ẽdeg).
Note that if ŝ1 = û1 then û1 is a saddle point of Ndeg. Here the quadratic
N ′deg(s1) has the following coefficients (see (21)):

cdeg0 = 3‖x̃0‖2 − 〈x̃0|x̃2〉 , cdeg1 = 6(〈x̃0|x̃2〉 − ‖x̃0‖2) , cdeg2 = 3‖x̃2 − x̃0‖2 > 0 .

(22)

We introduce two auxiliary parameters (λ, µ) ∈ Ω = (R+× [−1, 1]) \ {(1, 1)}:

‖x̃0‖ = λ‖x̃2‖ , 〈x̃0|x̃2〉 = µ‖x̃0‖‖x̃2‖ . (23)

Note that geometrically µ stands for cos(α), where α is the angle between vectors
x̃0 and x̃2 - hence µ = λ = 1 results in x̃0 = x̃2. Such case is analyzed in Ex. 1
for k = 1 rendering (µ, λ) = (1, 1) as admissible.

Upon substituting two parameters (µ, λ) ∈ Ω (see (23)) into N ′deg(s1) > 0
(see also (22)) we arrive at genuine quadratic inequality in u ∈ (0, 1) (for u = s1):

Wλµ(u) = 3λ2 − µλ+ u(6µλ− 6λ2) + u2(3λ2 − 6µλ+ 3) > 0 , (24)

with positive coefficient (standing with u2) as 3λ2 − 6µλ+ 3 = 3((λ− µ)2 + 1−
µ2) > 0 over Ω.

We examine now various constraints on (µ, λ) ∈ Ω ensuring existence of
either no roots of the quadratic N ′deg(s1) = 0 (as then since Ndeg(0) < 0 and
Ndeg(1) > 0 a cubic Ndeg is an increasing function) or exactly one root of the
quadratic N ′deg(s1) = 0 over (0, 1). As already pointed out the satisfaction of
both these cases yield exactly one critical point of Ẽdeg). The discriminant ∆̃crit

for Wλµ(u) = 0 (see (24)) reads as:

∆̃deg(µ, λ) = 12λ(−3λ+ µ+ λ2µ+ λµ2) .

We consider now 3 cases in a search for admissible zones to enforce unimodal-
ity of Ẽdeg.

1. ∆̃ < 0. Here N
′

deg has no real roots over (0, 1). Since cdeg2 > 0, clearly
N
′

deg > 0 over (0, 1) - note here Ndeg(0) < 0 and Ndeg(1) > 0. The latter
inequality amounts to (with ∆deg = (∆̃deg/12λ and λ > 0)

∆deg = −3λ+ µ+ λ2µ+ λµ2 < 0 . (25)

In order to decompose Ω into subregions Ω− (with ∆deg < 0), Ω+ (with ∆deg >
0) and Γ0 (with ∆deg ≡ 0) we resort to Mathematica functions InequalityPlot,
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Fig. 1. Decomposition of Ω into subregions: (a) over which ∆deg > 0 (i.e. Ω+), ∆deg =
0 (i.e. Γ0) or ∆deg < 0 (i.e. Ω−), (b) only for λ small.

ImplicitPlot and Solve. Figure 1(a) shows the resulting decomposition and Fig-
ure 1(b) shows its magnification for λ small. The intersection points of Γ0 and
boundary ∂Ω (found by Solve) read: for µ = 1 it is a point (1, 1) (already ex-
cluded though analyzed - see dotted point in Figure 1), for µ = −1 it is a point
(−1, 0) (excluded as λ > 0) and for λ = 0 it is a point (0, 0) /∈ Ω (also excluded
as λ > 0).

The admissible subset Ωok ⊂ Ω of parameters (µ, λ) (for which there is one
local minimum of Ẽdeg and thus a unique global one) satisfies Ω− ⊂ Ωok. The
complementary set to Ω\Ω− forms a potential exclusion zone i.e. Ωex ⊂ Ω\Ω−.
Next we limit furthermore an exclusion zone Ωex ⊂ Ω (currently not bigger than
shaded region in Figure 1).

2. ∆̃deg = 0. There is only one root û01 ∈ R of N
′

deg(s1) = 0. As already
explained, irrespectively whether û01 ∈ (0, 1) or û01 /∈ (0, 1) this results in exactly
one root ŝ1 ∈ (0, 1) of Ndeg(s1) = 0, which in turn yields exactly one local
minimum for Ẽdeg (turning out to be a global one). Hence Ω− ∪ Γ0 ⊂ Ωok.

3. ∆̃deg > 0. There are two different roots û±1 ∈ R of N
′

deg(s1) = 0. They are
either (in all cases we use Vieta’s formulas):

(a) of opposite signs: i.e. (cdeg0 /cdeg2 ) < 0 or

(b) non-positive: i.e. (cdeg0 /cdeg2 ) ≥ 0 and (−cdeg1 /cdeg2 ) < 0 (here û−1 < û+1 as
cdeg2 > 0) or

(c) non-negative: i.e. (cdeg0 /cdeg2 ) ≥ 0 and (−cdeg1 /cdeg2 ) > 0 - split into:
(c1) û+1 ≥ 1: i.e.
(c2) 0 < û+1 < 1 (recall û−1 < û+1 ).
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Evidently cases a), b) and c1) yield up to one root û1 ∈ (0, 1) ofNdeg′

i (s1) = 0.
Hence as already explained there is only one root ŝ1 ∈ (0, 1) of Ndeg

i (s1) = 0,
which is the unique critical point of Ẽcdeg over (0, 1) (in fact a global minimum).

In the next step we show that the inequalities from a) or b) or c1) extend
(contract) the admissible (exclusion) zone to Ωok = Ω (to Ωex = ∅). Indeed:
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Fig. 2. Extension of admissible zone Ωok by cutting from exclusion zone Ωex: (a) Ω1,
(b) Ω2.

a) the constraint (cdeg0 /cdeg2 ) < 0 upon using (24) reads (as λ > 0 and cdeg2 >
0):

3λ2 − µλ < 0 ≡ λ < µ

3
. (26)

Figure 2 a) shows Ω1 (over which (26) holds) cut out from the exclusion zone
Ωex of parameters (µ, λ) ∈ Ω (again Mathematica InequalityPlot is used here).
Thus Ω− ∪ Γ0 ∪ Ω1 ⊂ Ωok. The intersection Γ1 ∩ ∂Ω = {(0, 0), (1, 1/3)} (here
Γ1 = {(µ, λ) ∈ Ω : 3λ − µ = 0}) and Γ0 ∩ Γ1 = {(0, 0)} (we invoke here Solve
function).

b) the constraints (cdeg0 /cdeg2 ) ≥ 0 and (−cdeg1 /cdeg2 ) < 0 combined with (24)
yield:

λ ≥ µ

3
and ((6µλ− 6λ2) > 0 ≡ λ < µ) . (27)

Again with the aid of ImplicitPlot and InequalityPlot we find Ω2 ∪ Γ1 (to be
cut out of Ωok) as the intersection of three sets determined by (27) and ∆ > 0
(for Ω2 see Figure 2 b) - a set bounded by Γ 1

0 , Γ1). Thus the admissible set
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Ωok satisfies Ω− ∪ Γ0 ∪ Ω1 ∪ Ω2 ∪ Γ1 ⊂ Ωok (see Figure 2 b)). Note that for
Γ2 = {(µ, λ) ∈ Ω : µ− λ = 0} the intersection of curves Γ0 ∩Γ2 = {(0, 0), (1, 1)}
and Γ1∩Γ2 = {(0, 0)}, and of Γ2 with the boundary ∂Ω {(0, 0), (1, 1)}} (use e.g.
Solve). The exclusion zone Ωex must now satisfy Ωex ⊂ Ω1

+ (see Figure 2 b)).
c1) the constraints (cdeg0 /cdeg2 ) ≥ 0, (−cdeg1 /cdeg2 ) > 0 and u+1 ≥ 1 combined

with (24) render (as cdeg2 > 0):

λ ≥ µ

3
, λ > µ ,

√
∆̃deg ≥ 6(1− λµ) . (28)

As we are only interested in reducing Ω1
+ one intersects first the corresponding

two sets (determined by the first two inequalities in (28)) with Ω1
+ which clearly

yields Ω1
+. To complete solving (28) it suffices to find the intersection of Ω1

+ with
the set determined by the third inequality of (28). Note that for (µ, λ) ∈ Ω1

+

we have µ > 0. Indeed, by inspection or by applying the Mathematica function
Solve to ∆̃deg(µ, λ) = 0 (with µ(λ) treated as variable and λ as parameter) by
(25) we have

µ±(λ) =
−1− λ2 ±

√
1 + 14λ2 + λ4

2λ
.

A simple verification shows that µ+ > 0 as 12λ2 > 0 (since λ > 0 over Ω1
+).

Similarly µ− < −1 as −
√
1 + 14λ2 + λ4 < (1− λ)2 holds. Thus for a fixed pair

(µ, λ) ∈ Ω1
+ (where ∆̃deg(µ, λ) > 0) we must have µ(λ) ∈ (−∞, µ−)∪ (µ+,+∞).

The latter intersected with µ ∈ [−1, 1] yields that 0 < µ for all pairs (µ, λ) ∈ Ω1
+.

We show now that the third inequality in (28) results in Ωex = ∅. Indeed note
that

√
∆̃deg ≥ 6(1− λµ) is satisfied if 1− λµ < 0 which is equivalent (as µ > 0

- shown to hold over Ω1
+) to λ > 1/µ (for µ ∈ (0, 1]). The case when 1 − λµ ≥

0 yields λ ≤ 1/µ which gives the set not intersecting with Ω1
+. Mathematica

function InequalityPlot yields the region Ω5 = Ω3 ∪ Ω4 ∩ Γ 2
0 (bounded by the

curve Γ3 = {(µ, λ) ∈ Ω : 1− µλ = 0, µ > 0} and the boundary ∂Ω - see Figure
3). Clearly as Ω4 = Ω1

+ we can cut out from Ωex the set Ω1
+ and thus Ωex = ∅

(or Ωok = Ω). Hence there is only one critical point of Ẽdeg0 over (0, 1).
The last geometric argument exploits the observation that Γ 2

0 is positioned
above Γ3. To show the latter algebraically one solves ∆̃deg = 0 in λ(µ) (use e.g.
NSolve) by treating λ as variable and µ as a parameter. We obtain then (see
(25))

λ±(µ) =
3− µ2 ±

√
9− 10µ2 + µ4

2µ
.

Note that the expression inside the square root is always non-negative. It suffices
to show now that λ±(µ) > λ1(µ) = 1/µ for all (µ, λ) ∈ (0, 1] × (1,+∞). The
inequality λ+(µ) > λ1(µ) holds as for µ > 0 it amounts to√

9− 10µ2 + µ4 > µ2 − 1 .
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Fig. 3. (a) Cutting from Ωex the set Ω5 = Ω3 ∪ Ω4 ∪ Γ 2
0 , (b) The graphs of two

functions λ1(µ) and λ+(µ).

The latter holds as µ2 − 1 < 0 for µ 6= ±1 - µ = −1 excluded and µ = 1 results
in λ+(1) = 1 which also is excluded as (1, 1) /∈ Ω. The second function λ−(µ)
cannot be bigger that λ1(µ) and thus is excluded. Indeed for µ ∈ [0, 1) the latter
would amount to

−
√
9− 10µ2 + µ4 ≥ µ2 − 1 .

As both sides are non-positive we have

(9− 10µ2 + µ4) ≤ (µ2 − 1)2

which is false as 8(1 − µ2) ≤ 0 does not hold for µ ∈ [0, 1). Recall that µ = 1
would result here in λ−(µ) = 1, which gives already excluded pair (1, 1).

Thus for the degenerate case we proved that there is always exactly one
critical point of Ẽdeg over (0, 1). However if we wish to have global minimum of
Ẽdeg to be close to cumulative chord ŝcc1 (which optimizes special case of co-linear
data) then the perturbation analysis (similar to the generic and non-generic case
of Leap-Frog algorithm - see [6, 7]) can be invoked. Note also if Decartes’s sign
rule is applied to Ndeg(s1) = 0 (see (20)) since bdeg0 > 0 and bdeg3 < 0 a sufficient
condtion for one positive rule is that bdeg1 bdeg2 ≥ 0. A simple verification shows
that this condtion does not yield unique critical point of Ẽ ′deg for arbitrary data
{x̃0, x̃1, x̃2}.

4 Experiments

We illustrate now the theoretical results from Section 3 in the following example.
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Example 2. Consider first three ordered co-linear points x̃2 = (−1,−3), x̃0 =
kx̃2 = (3, 9) (with k = −3) x̃1 = 0. The cumulative chord ŝcc1 = |k|/(1 + |k|) =
3/4 is expected to be the global minimum (also the only critical point) of Ẽdeg at
which the energy vanishes. Indeed the corresponding formula for Ẽdeg (see (16))
reads here as:

Ẽdeg(s) =
30(4s− 3)2

(s− 1)2s2
.

The Mathematica Plot function (used here for all tests in this example) renders
the graph of Ẽdeg with global minimum attained at ŝ = ŝcc1 satisfying Ẽdeg(ŝcc1 ) =
0 (see Figure 4 a)).

A slight perturbation of the co-linearity conditions with x̃0 = (3, 10) and x̃2
unchanged yields the energy Ẽdeg (see (16))

Ẽdeg(s) =
3(109− 284s+ 185s2)

(s− 1)2s2
.

Again Mathematica Plot function renders the graph of Ẽdeg with one global min-
imum at ŝ1 ≈ 0.76748 (see Figure 4 b) and c)). Cumulative chord, which reads
here ŝcc1 ≈ 0.767524, together with ŝ1 satisfy 0.509341 ≈ Ẽdeg(ŝ1) < Ẽdeg(ŝcc1 ) ≈
0.509375.
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Fig. 4. The graphs of Ẽdeg for (a) co-linear data x̃0 = (3, 9), x̃1 = (0, 0) and x̃2 =
(−1,−3) vanishing at a global minimum ŝcc1 = 3/4, (b) slightly non-co-linear data
x̃0 = (3, 10), x̃1 = (0, 0) and x̃2 = (−1,−3) non-vanishing at a global minimum at
ŝ1 = 0.76748 6= ŝcc1 = 0.767524, (c) as in (b) but with visible Êdeg(ŝ1) = 0.509341 > 0.

On the other hand adding a large perturbation to the co-linearity by taking
e.g. x̃0 = (4,−15) and x̃2 unchanged yields the corresponding energy Ẽdeg (see
(16))

Ẽdeg(s) =
3(241− 400s+ 169s2)

(s− 1)2s2
.

Again Mathematica Plot function renders the graph of Ẽdeg with one global min-
imum at ŝ1 ≈ 0.695985 (see Figure 5 a) and b)). Cumulative chord which reads
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here ŝcc1 ≈ 0.830772, together with ŝ1 satisfy 2979.8 ≈ Ẽdeg(ŝ1) < Ẽdeg(ŝcc1 ) ≈
3844.87. The value Ẽdeg(ŝ1) = 2979.8 >> 0 (see Figure 5 a) and b)).

Finally, for x̃0 = (0.05,−1) and x̃2 unchanged the corresponding energy Ẽdeg
(see (16)) reads

Ẽdeg(s) =
15.3075(0.196472 + 0.763351s+ s2)

s2(s− 1)2
.

Again Mathematica Plot function renders the graph of Ẽdeg with one global
minimum at ŝ1 ≈ 0.357839 (see Figure 5 c)). Cumulative chord which reads
here ŝcc1 ≈ 0.240481, together with ŝ1 satisfy 173.264 ≈ Ẽdeg(ŝ1) < Ẽdeg(ŝcc1 ) ≈
200.916. Again, the value Ẽdeg(ŝ1) = 173.264 > 0 (see Figure 5 c)). ut
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Fig. 5. The graphs of Ẽdeg for (a) strongly non-co-linear data x̃0 = (4,−15), x̃1 =
(0, 0) and x̃2 = (−1,−3) non-vanishing at a global minimum ŝ1 ≈ 0.695985 6= ŝcc1 ≈
0.830772, (b) as in (a) but with visible Ẽdeg(ŝ1) = 2979.8 >> 0, (c) non-co-linear data
x̃0 = (0.05,−1), x̃1 = (0, 0) and x̃2 = (−1,−3) non-vanishing at a global minimum
ŝ1 ≈ 0.357839 6= ŝcc1 ≈ 0.240481, here Ẽdeg(ŝ1) = 173.264 > 0.

5 Conclusions

In this work the unimodality of optimization task (2) to fit reduced data Mn

is proved for for n = 2. The latter constitutes a degenerate variant of (1) in-
vestigated earlier for n ≥ 3 in the context of using Leap-Frog algorithm. This
scheme forms an iterative numerical tool to compute the substitutes of the un-
known interpolation knots for n ≥ 3 while minimizing (1) - see [3, 4, 6, 7, 9]. In
contrast to the degenerate case of reduced data i.e. to M2, local iterative uni-
variate functions of Leap-Frog are not in general unimodal though some specific
sufficient conditions enforcing the latter are established in [6, 7]. Minimizing the
univariate and unimodal function (2) makes any numerical scheme to compute
the unique global minimum (i.e. an optimal knot t1) insensitive to the choice of
initial guess which e.g. can be taken e.g. as cumulative chord. More information
on Leap-Frog in the context of other applications can be found among all in [14,
15].
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