
Constrained aerodynamic shape optimization
using neural networks and sequential sampling

Pavankumar Koratikere1, Leifur Leifsson1[0000−0001−5134−870X], Slawomir
Koziel2,3[0000−0002−9063−2647], and Anna

Pietrenko-Dabrowska3[0000−0003−2319−6782]

1 School of Aeronautics and Astronautics, Purdue University, West Lafayette,
Indiana 47907, USA

{pkoratik@purdue.edu, leifur@purdue.edu}
2 Engineering Optimization & Modeling Center, Department of Engineering,

Reykjav́ık University, Menntavegur 1, 102 Reykjav́ık, Iceland
koziel@ru.is

3 Faculty of Electronics Telecommunications and Informatics, Gdansk University of
Technology, Narutowicza 11/12, 80-233 Gdansk, Poland

anna.dabrowska@pg.edu.pl

Abstract. Aerodynamic shape optimization (ASO) involves computa-
tional fluid dynamics (CFD)-based search for an optimal aerodynamic
shape such as airfoils and wings. Gradient-based optimization (GBO)
with adjoints can be used efficiently to solve ASO problems with many
design variables, but problems with many constraints can still be chal-
lenging. The recently created efficient global optimization algorithm with
neural network (NN)-based prediction and uncertainty (EGONN) par-
tially alleviates this challenge. A unique feature of EGONN is its ability
to sequentially sample the design space and continuously update the NN
prediction using an uncertainty model based on NNs. This work pro-
poses a novel extension to EGONN that enables efficient handling of
nonlinear constraints and a continuous update of the prediction and pre-
diction uncertainty data sets. The proposed algorithm is demonstrated
on constrained airfoil shape optimization in transonic flow and com-
pared against state-of-the-art GBO with adjoints. The results show that
the proposed constrained EGONN algorithm yields comparable optimal
designs as GBO at a similar computational cost.

Keywords: Aerodynamic shape optimization · global surrogate model-
ing · neural networks · sequential sampling

1 Introduction

The goal of aerodynamic design is to find a shape (or adjusting an existing
one) in airflow (such as as airfoils, wings, helicopter rotor blades, wind tur-
bine blades, and the external shape of aircraft) that improves a given quantity
of interest (QoI) (such as the drag force), while adhering to appropriate con-
straints (such as a specified lift force) [10,25,21]. Computational aerodynamic
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design involves the use of computer simulations of the airflow past the shape,
using computational fluid dynamics (CFD), to numerically evaluate the QoI and
the associated constraints [22]. Aerodynamic shape optimization (ASO) is the
automation of computational aerodynamic design by embedding the computer
simulations within an optimization framework to search for the constrained op-
timal shape [8]. Key challenges of ASO include (1) time-consuming simulations,
(2) a large number of design variables, (3) a large number of constraints, and
(4) many model evaluations.

The state-of-the-art ASO is gradient-based optimization (GBO) with adjoints
[7]. The main advantage of the adjoint approach is that the cost of a gradient
calculation can be made nearly independent of the number of design variables.
In the context of solving ASO problems with GBO and adjoints, this means
that for each design evaluation the objective function and constraints need to
be computed, which involves one primal computer simulation and one adjoint
simulation for the objective and each constraint. For example, if there is one
objective and two constraints, GBO with adjoints needs one primal computer
solution and three adjoint solutions. Typically, the time per one primal CFD
solution is roughly the same as one adjoint CFD solution [23]. This means, for the
given example, that each design evaluation involves four simulations which yields
the objective function value, the constraint function values, and the gradients
of the objective and constraints. This is independent of the number of design
variables, which renders the approach scalable to high-dimensional problems. It
should be noted, however, that the computational cost grows quickly with the
number of constraints.

Another way to solve ASO problems is to use surrogate-based optimization
(SBO) where a surrogate replaces the time-consuming simulations in the com-
putation of the objective and constraint functions (as well as its gradients, if
needed) [26]. SBO has been around for a long time. A widely used approach is
the efficient global optimization (EGO) algorithm [9]. In EGO, the design space
is sampled initially using design of experiments [26], such as Latin hypercube
sampling, and an initial surrogate model is constructed using kriging [2]. The
kriging surrogate is then iteratively improved by sequentially sampling the de-
sign space using both the prediction and prediction variance. The key advantage
of using kriging is that it can improve the surrogate accuracy for a given number
samples since the samples can be assigned to regions where the surrogate shows
poor accuracy (exploration) or where a local minimum is found (exploitation).
A key disadvantage of kriging is that the computational cost grows quickly with
the number of samples [15].

Neural network (NN) regression modeling [5], on the other hand, scales more
efficiently for large data sets [20,29]. A major limitation, however, is that un-
certainty estimates are not readily available for a single prediction [20], and it
is necessary to make use of an ensemble of NNs with a range of predictions
[18,32,4] or use dropout to represent model uncertainty [3]. These algorithms
are, however, computationally very intensive.
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A recently created EGO algorithm with neural network (NN)-based predic-
tion and uncertainty (called EGONN) partially alleviates these challenges [14].
In EGONN, a NN model is utilized to approximate nonlinear high-dimensional
objective functions. The unique feature of EGONN is its ability to sequentially
sample the design space and continuously update the NN-based prediction with
a prediction uncertainty which is modeled by a second NN.

In this paper, a novel extension to EGONN is proposed that enables efficient
handling of nonlinear constraints. Furthermore, the utilization of data for the
prediction and prediction uncertainty is made more efficient by a continously
updating all data sets. The EGONN algorithm only sequentially updated the
prediction data set. The proposed constrained EGONN (cEGONN) algorithm is
demonstrated on an airfoil shape optimization problem in transonic flow involv-
ing one objective, two constraints, and thirteen design variables. The proposed
algorithm is compared against state-of-the-art GBO with adjoints.

The next section describes ASO using state-of-the-art GBO and the proposed
cEGONN algorithm. The following section presents the numerical results of the
constrained airfoil shape optimization problem using those algorithms. The last
section provides concluding remarks and possible next steps in this work.

2 Aerodynamic shape optimization

This section states the ASO problem formulation, and then describes its solution
with GBO and adjoints and with the proposed cEGONN algorithm.

2.1 Problem formulation

ASO involves minimization of the drag coefficient (Cd) of a baseline airfoil at
a fixed free-stream Mach number1 (M∞) and Reynolds number (Re∞) with
respect to design variables (x) controlling the shape, subject to inequality con-
straints on the lift coefficient (Cl), and the airfoil cross-sectional area (A). Specif-
ically, the constrained nonlinear minimization problem is formulated as:

min
x

Cd(x)

subject to
Cl(x) ≥ Clref

A(x) ≥ Aref

(1)

and
xl ≤ x ≤ xu

where xl and xu are the lower and upper bounds, respectively, Clref is a refer-
ence lift coefficient, and Aref is the cross-sectional area of the baseline airfoil
nondimensionalized with the square of the chord length.

The design variable vector usually consists of the shape parameterization
variables and the angle of attack of the free-stream to the airfoil chordline. The
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shape of the airfoil can be parameterized using various methods such as free
form deformation (FFD) [27], class-shape transformation (CST) [16], PARSEC
[30], and hicks-henne bump function [6]. In this work, the CST parametrization
method is used with a total of twelve variables, six for the upper surface and six
for the lower surface.

The next two subsections describe the algorithms to solve the ASO problem,
specifically, the GBO algorithm with adjoints, and proposed cEGONN algorithm.

2.2 Constrained GBO algorithm with adjoints

The extended design structure matrix (XDSM) [17] diagram shown in figure 1
outlines the GBO with adjoints algorithm implemented in this work. There are
five major modules in the process which are arranged in the diagonal of the
matrix. The input to the process (topmost row) are airfoil coordinates, volume
mesh, and starting point, and output (leftmost column) is the optimized design.
The coordinate file consists of points describing shape of the baseline airfoil in
selig format. A structured surface mesh is created using the coordinate file and
pyHyp [28] is used for creating an o-mesh grid by extruding the generated surface
mesh outwards using hyperbolic mesh marching method.

The first module in the process is an optimizer which drives the entire pro-
cess. The starting point for optimizer is essentially CST coefficients for baseline
airfoil and angle of attack at which lift constraint is satisfied. In this work, se-
quential quadratic programming is used as optimizer which is implemented in
pyOptSparse [33].

Starting point Airfoil coordinates Volume mesh

Optimized

design
Optimizer

Updated CST

coefficients

Updated angle

of attack

Value of area

and its derivative

Geometry

parameterization

Updated surface

coordinates

Volume mesh

deformation

Updated volume

mesh

Value of Cd and Cl Flow solver State variables

Derivative of Cd and Cl Adjoint solver

Fig. 1: Extended design structure matrix for gradient-based optimization with ad-
joints.

The second module consists of pyGeo [11] which provides CST parameteriza-
tion and is initialized using the airfoil coordinate file. The third module performs
mesh deformation using IDWarp [28] and uses volume mesh generated earlier for
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initialization. The flow solver module consists of ADflow [23] which is a finite-
volume structured multiblock mesh solver. In this work, Approximate Newton
Krylov method [34] is used to start the sovler and reduce the residual norm to
a value of 10−6, relative to initial value, and then full Newton Krylov method is
employed to further reduce the residual norm to 10−14, relative to initial norm.
Last module consists of a jacobian free discrete adjoint (computed using algo-
rithmic differentiation) method which is implemented within ADflow [12]. The
generalized minimal residual method is used for solving the adjoint equations
with termination criteria set to a value of 10−11, relative to initial norm.

The process starts with updated design variables from pyOptSparse. pyGeo
receives updated CST coefficients and updates the surface coordinates, it also
returns the cross-sectional area of updated airfoil shape and its derivative with
respect to the variables. The updated surface coordinates are then passed to
IDWarp which deforms volume mesh and sends it to flow solver. With the up-
dated angle of attack and mesh, ADflow computes various field variables like
pressure, velocity, density, etc. It also computes integral quantities like Cd, Cl,
Cm. The converged results are then passed on to adjoint solver which calculates
the derivative of objectives and constraints with respect to the design variables.
This process is continued until one of the convergence criteria is met within opti-
mizer. Each iteration involves one primal solution (which gives Cd, Cl, Cm) and
multiple adjoint solutions (which give derivatives of Cd, Cl, Cm with respect to
the design variables) depending on the number of objectives and constraints.

2.3 Constrained EGONN algorithm

Algorithm 1 describes the proposed cEGONN algorithm for aerodynamic shape
optimization. Two different data sets are generated using CFD which contain
the objective function values Y and the constraint function values G for the
sampling plan X. In the first step, a neural network (NNy) learns the mapping

between X and Y in the first data set. Then, NNy is used to get prediction Ŷ

and Ŷu at X and Xu, respectively. Following that the squared prediction error
for both the predictions are computed as

S =

√
(Y − Ŷ)2, (2)

and

Su =

√
(Yu − Ŷu)2. (3)

The samples, and the values of the prediction errors and constraints are combined
to get a larger data set. A second neural network (NNu) learns the mapping be-

tween the combined input X̃ and the prediction error S̃. A third neural network
NNg learns the mapping between the combined input X̃ and the combined con-

straint values G̃. Once the NN models are trained, the expected improvement,
computed by

EI(x) =

{
[y(x∗)− ŷ(x)]Φ(Z) + s(x)ϕ(Z) if s(x) > 0

0 if s(x) = 0,
(4)
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Algorithm 1 Constrained EGONN

Require: initial data sets (X,Y,G) and (X,Y,G)u
repeat
fit NNy to data (X,Y)

use NNy to get Ŷ at X and Ŷu at Xu

compute prediction error: S←
√
(Y − Ŷ)2 and Su ←

√
(Yu − Ŷu)2

combine data: X̃← X ∪Xu, S̃← S ∪ Su and G̃← G ∪Gu

fit NNu to data (X̃, S̃)

fit NNg to data (X̃, G̃)

P← argmaxEI(x) such that Ĝ(x) ≤ 0
X← X ∪P
get observations Y and G
Y ← Y ∪ Y and G← G ∪G

until convergence
y∗ ← min(Y) such that constraints are satisfied
x∗ ← argmin(Y)
return (x∗, y∗)

is maximized to get a new infill point P, where ŷ(x) is the NNy prediction and
s(x) is NNu prediction. The Z is a standard normal variable, and Φ and ϕ are
cumulative distribution function and probability density function of standard
normal distribution, respectively. CFD analysis is performed at the new point P
to obtain the objective function Y and constraint functions G, which are then
appended to the first data set. This process is continued until the convergence
criteria is met. Unlike GBO, there is no need for adjoint solutions. Compared to
the original EGONN, two data sets are utilized in a more efficient manner in the
process. Moreover, the algorithm is adapted to handle constrained optimization
problems instead of an unconstrained one. The neural networks in cEGONN are
implemented within Tensorflow [1].

The next section gives the results of applying GBO algorithm with adjoints
and the proposed cEGONN algorithm to the ASO of an airfoil in transonic flow.

3 Results

The general ASO problem formulation is given in (1). In this work, the baseline
airfoil is the RAE 2822 (shown in Fig. 2) with the nondimensional reference
cross-sectional area Aref = 0.777. The free-stream Mach number is fixed at
0.734 and the Reynolds number at 6.5 × 106. The reference lift coefficient is set
to Clref = 0.824.

The airfoil shape is parameterized using CST [16] with a total of twelve
coefficients, six for the upper surface and six for the lower surface. Thus, the
design variable vector x consists of 13 elements in total, the angle of attack and
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x/c

0.075
0.050
0.025
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y/
c

RAE 2822
design space

Fig. 2: The baseline RAE 2822 airfoil shape and the design space.

twelve shape variables. The upper and lower bounds for shape variables are set
to +30% and -30% perturbations, respectively, of the fitted CST coefficients for
the baseline RAE 2822 airfoil, and the angle of attack is bounded between 1.5◦

and 3.5◦. Figure 2 shows the design space obtained with these bounds on the
shape variables.

An O-mesh grid around the airfoil is created using pyHyp. Table 1 shows
the result of grid convergence study for the mesh. The y+ plus value for all the
levels is less than 1 and the mesh is extruded until 100c. In this work, all the
computations are performed using the L1 mesh. Figure 3 shows the generated
far-field and surface L1 mesh.

(a) (b)

Fig. 3: Computational mesh for the airfoil flow simulation: (a) the far-field, and (b) a
zoom in near the airfoil surface
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Table 1: Grid convergence study for the RAE 2822 at M∞ = 0.734, Re = 6.5 × 106,
and Cl = 0.824.

Level
Number of

cells
Cd (d.c.) Cm,c/4 α(degree)

L0 512,000 195.58 -0.096 2.828

L1 128,000 200.55 -0.094 2.891

L2 32,000 213.26 -0.091 3.043

L3 8,000 235.05 -0.086 3.278

The initial data sets required for the cEGONN algorithm are generated using
a Latin hypercube sampling plan [24] with the bounds described earlier. The first
data set contains 50 samples and second data set contains 25 samples, hence,
a total of 75 CFD simulations are performed initially. The convergence criteria
is set to a maximum of 100 iterations. The NNy consists of two hidden layers
having eight and six neurons, respectively. The NNu contains two hidden layers,
each having eight neurons. The total number of neurons in NNu is slightly higher
than NNy to avoid underfitting since it trains on a larger data set. The NNg

also contains two hidden layers but with four and three neurons, respectively.
The area constraint is computed based on the airfoil shape using numerical
integration, while NNg provides values for the Cl constraint. In all the NNs,
the hyperbolic tan is used as activation function and the number of epochs
is set to 5000. The hyperparameters are tuned in such a manner that all the
NNs slightly overfit the data since adding more data during sequential sampling
will make the NN fit good. All the NNs are trained using the Adam optimizer
[13] with a learning rate of 0.001. For maximizing the expected improvement,
differential evolution [31] is used with a population size of 130. The mutation
and recombination is set to 0.8 and 0.9, respectively, with a maximum of 100
generations. The constraints are handled explicitly using the strategy described
in Lampinen [19].

Table 2 summarizes the result of optimization for GBO and cEGONN. Fig-
ure 4 shows the convergence history for GBO where a total of 37 iterations
were needed for convergence. At each iteration, 1 primal solution and 2 adjoint
solutions are computed which totals to 111 solutions.

Figure 5 shows the convergence history for cEGONN. A green dot shows a
feasible sample, a red dot shows an infeasible sample, and the gray region denotes
the initial samples. The line shows variation of Cd with respect to iterations.

Figure 6 shows the baseline and the optimized airfoil shapes. In both the
results, optimized shape has less curvature on the top which reduces the flow
speed on upper surface. This decreases the strength of the shock which can
be clearly noted in the pressure plot shown in Fig. 7. Due to the decrease in
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Table 2: Characteristics of the baseline and optimized airfoil shapes and the number
of CFD simulations for each algorithm.

RAE 2822 GBO cEGONN

Primal - 37 175

Adjoint - 74 0

Cd (d.c.) 200.55 110 114

Cl 0.824 0.824 0.830

α 2.89◦ 2.83◦ 2.80◦

A 0.777 0.777 0.779

5 10 15 20 25 30 35
Iterations

10 13

10 11

10 9

10 7

10 5

10 3

|f(
x(i)

)
f(x

(i
1)

)|

(a)

5 10 15 20 25 30 35
Iterations

10 7
10 6
10 5
10 4
10 3
10 2
10 1
100

||x
(i)

x(i
1)

||

(b)

Fig. 4: Convergence history for gradient based optimization showing the change be-
tween iterations of: (a) the objective function, and (b) the design variable vector.

curvature, the lift generated also decreases which is compensated by an increase
in the aft curvature of the lower surface.

In Fig. 5 it is observed that in the early stages of sequential sampling, many
infeasible samples are added, but as the iteration progresses the number of fea-
sible samples increase. This is attributed to the fact that the number of samples
in the initial data set is low which leads to inaccurate constraint predictions.
As more samples are added, the constraint fitting improves and the number of
feasible infills increase. Figure 8 shows the Mach contours for the baseline and
the optimized shapes at the given free-stream conditions. In the baseline contour
Fig. 8a, it can seen that there is a strong shock on the upper surface, whereas
in the contour plots of optimized shapes, Figs. 8b and 8c, shock is not present.
This shows the capability of the proposed cEGONN for ASO.
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Fig. 5: Optimization convergence history for cEGONN showing the sampling and the
drag coefficient values variation with the iterations.
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0.06
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0.00
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y/
c

RAE 2822
cEGONN
GBO

Fig. 6: The baseline and optimized airfoil shapes.

4 Conclusion

In this work, a novel extension to the efficient global optimization with neural
network (NN)-based prediction and uncertainty (EGONN) algorithm is pro-
posed which enables the handling of nonlinear constraints. A unique feature of
the proposed constrained EGONN algorithm is its ability to perform sequen-
tial sampling of the design space and updating the NN predictions of nonlinear
objective and constraint functions.
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RAE 2822
cEGONN
GBO

Fig. 7: Coefficient of pressure for the baseline and optimized airfoils.

A demonstration example involving airfoil shape optimization in transonic
flow with one objective, two constraints, and twelve design variables shows that
the proposed algorithm can obtain comparable optimal designs as gradient-based
optimization with adjoints with similar computational cost.

The future steps in this work include extending the algorithm to automat-
ically tune the NNs when additional samples are being gathered. This will be
important because the optimal hyperparameters of the NN architecture may
change as the number of training points increases. Another important future
step is demonstrate and characterize the proposed algorithm on aerodynamic
shape optimization problems with a large number of design variables, and a
large number of constraints.
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