
Optimization of asynchronous logging kernels for
a GPU accelerated CFD solver

Paul Zehner[0000−0002−4811−0079] and Atsushi Hashimoto[0000−0003−4428−0406]

JAXA, 7-44-1, Jindiaiji Higashi-machi, Choufu, 182-0012 Tokyo, Japan
zehner.paul@jaxa.jp, hashimoto.atsushi@jaxa.jp

Abstract. Thanks to their large number of threads, GPUs allow massive
parallelization, hence good performance for numerical simulations, but
also make asynchronous execution more common. Kernels that do not
actively take part in a computation can be executed asynchronously in
the background, in the aim to saturate the GPU threads. We optimized
this asynchronous execution by using mixed precision for such kernels.
Implemented on the FaSTAR solver and tested on the NASA CRM case,
asynchronous execution gave a speedup of 15% to 27% for a maximum
memory overhead of 4.5% to 9%.

Keywords: asynchronous · CFD · GPU · mixed precision · OpenACC.

1 Introduction

General-Purpose computing on GPU (GPGPU) allows massive parallelization
thanks to its large number of threads, and is considered a promising path to
exascale computing (1018 FLOP s=1) [18, 22]. Its use in Computational Fluid
Dynamics (CFD) allows to perform more complex, more precise, and more
detailed simulations, but requires either to adapt existing codes or to create
new ones [3], with the help of specific techniques such as CUDA, OpenCL or
OpenACC [17]. CFD codes can not only benefit from the computational power of
Graphical Processing Units (GPUs), but also from their asynchronous execution
capabilities.

The asynchronous execution of kernels stems from the capacity of the Stream-
ing Multiprocessor (SM) to execute different instructions on its different warps
[8,15]. The programmer specifies an asynchronous execution by using streams for
CUDA (with a fourth argument to the triple chevron <<<>>> syntax), or by using
the async clause for OpenACC. Uncommon among traditional High Performance
Computing (HPC) paradigms, asynchronous execution offers interesting uses.

Its immediate benefit is to allow kernels execution and memory transfers to
overlap. Multi-GPU performance is improved by this approach, as it allows to hide
network transfers. Micikevicius [13], on a CUDA-accelerated three-dimensional
structured finite difference code, used asynchronous execution along with non-
blocking Message Passing Interface (MPI) calls. He proposed a two-step algorithm:
for each timestep, the first step consists in computing only the boundary cells; the

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_32

https://dx.doi.org/10.1007/978-3-031-36024-4_32
https://dx.doi.org/10.1007/978-3-031-36024-4_32

2 Paul Zehner and Atsushi Hashimoto

second step consists in computing all the other cells and, at the same time, trans-
ferring the boundary cells. McCall [12] accelerated an artificial compressibility
Navier–Stokes structured solver using OpenACC. The same approach was used,
but reversely: the first step consists in calculating the artificial compressibility and
numerical damping terms on the interior cells and, at the same time, transferring
the boundary cells with MPI; the second step consists in calculating the remaining
cells. McCall considered that this overlapping technique improved weak scaling
significantly. Shi et al. [20], accelerating an incompressible Navier–Stokes solver
with CUDA, also used streams to overlap computations and non-blocking MPI

communications. Choi et al. [2] used a more aggressive approach with an overde-
composition paradigm which uses Charm++ instead of MPI. Charm++ [11] is a
C++ library which allows to decompose a problem in several tasks, named chares,
that are executed asynchronously by processing elements and communicate with
messages. In their paper, Choi et al. applied this technique to a test Jacobi solver,
and obtained a weak scaling performance gain of 61% to 65% on 512 nodes,
compared to a traditional MPI approach, and a strong scaling gain of 40% on
512 nodes.

Another benefit resides in the concurrent execution of independent kernels;
where each kernel operates on different arrays at the same time. Hart et al. [5],
for the OpenACC acceleration of the Himeno benchmark on the Cray XK6 super-
computer, overlapped data transfers and computation, and executed computation
and MPI data packing concurrently. Compared to synchronous GPU code, perfor-
mances were increased by 5% to 10%. The authors predicted that a higher gain
could be obtained for larger codes, as they considered Himeno simple. Searles et
al. [19] accelerated the wavefront-based test program Minisweep with OpenACC
and MPI, in order to improve the nuclear reactor modeling code Denovo. They
proposed to parallelize the Koch–Baker–Alcouffe algorithm, which consists in
different sweeps. They used asynchronous kernel execution to realize the 8 sweeps
simultaneously, in order to saturate the GPU threads. The authors reported good
performance.

Asynchronous execution also allows to run background tasks with low re-
sources, while a main task is running synchronously, in the objective to sat-
urate the GPU threads. The unstructured CFD solver FaSTAR, developed at
Japan Aerospace eXploration Agency (JAXA) [6, 7, 10] and accelerated with
OpenACC [28,29], uses this feature in order to run logging kernels asynchronously.
These kernels are executed with a certain number of OpenACC gangs, and require
memory duplication to avoid race conditions. This process allowed a speedup of
23% to 35%, but increased memory occupancy by up to 18%. In this paper, we
propose to optimize this process by reducing the memory overhead with lower
precision storage of floating point arrays.

This paper is organized as follows. We introduce the FaSTAR solver, its
current state of acceleration, and its asynchronous execution of logging kernels
in section 2. The use of mixed precision to reduce the memory overhead of the
asynchronous execution is presented in section 3. Then, we validate and check

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_32

https://dx.doi.org/10.1007/978-3-031-36024-4_32
https://dx.doi.org/10.1007/978-3-031-36024-4_32

Optimization of async. logging kernels for a GPU accelerated CFD solver 3

the performance of this improvements on the NASA Common Research Model
(NASA CRM) test case in section 4. To finish, we conclude in section 5.

2 Description of the FaSTAR solver

2.1 Solver introduction

The FaSTAR code solves the compressible Reynolds-Averaged Navier–Stokes
(RANS) equations on unstructured meshes. It consists in 80,000 lines of Fortran
code, has an Array of Structures memory layout, is parallelized with MPI, and
uses Metis for domain decomposition. The Cuthill–McKee algorithm is used to
reorder cells. The solver was designed to run a simulation of 10 million cells on
1000 Central Processing Unit (CPU) cores within 2min [6].

2.2 Acceleration of the solver

The solver was partially accelerated with OpenACC in a previous work [29].
OpenACC was selected in favor of CUDA, as we wanted to keep CPU compatibility
without having to duplicate the source code.

Parts of the code that were accelerated so far are the modified Harten-Lax-van
Leer-Einfeldt (HLLEW) scheme [16], the Lower-Upper Symmetric Gauss–Seidel
(LU-SGS) [27] and the Data-Parallel Lower-Upper Relaxation (DP-LUR) [26]
implicit time integration methods, the GLSQ algorithm [21] (a hybrid method of
Green-Gauss and Least-Square), the Hishida slope limiter (a Venkatakrishnan-
like limiter that is complementary with difference of neighboring cell size) and
the Monotonic Upstream-centered Scheme for Conservation Laws (MUSCL) re-
construction method. During execution, all of the computation takes place on
the GPU, and data movements between the CPU and the GPU memories are
minimized.

2.3 Asynchronous execution of logging kernels

Some kernels only used for logging purpose can take a significant computation
time, while their result is not used anywhere in the computation. Such kernels
are run asynchronously in the background [28], and use just enough resources to
saturate the GPU threads. In the case of FaSTAR, the kernel to log the right-hand
side (RHS) values of the Navier–Stokes equation and the kernel to compute the
L2 norm of residuals are concerned by this optimization. These two kernels are
called at different times during the iteration, respectively after the computation
of the RHS term, and after the time integration.

The subroutine hosting such a kernel is separated in two parts: one computing
the values, offloaded on the GPU, and another one writing the values (on disk or
on screen), executed by the CPU. A module stores the value between the two
subroutines:

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_32

https://dx.doi.org/10.1007/978-3-031-36024-4_32
https://dx.doi.org/10.1007/978-3-031-36024-4_32

4 Paul Zehner and Atsushi Hashimoto

1 module store

2 real :: value(n_value)

3 end module store

4

5 module compute

6 contains

7 subroutine compute_value(array)

8 use store , only: value

9 ...

10

11 !$acc kernels async(STREAM) &

12 !$acc copyout(value) &

13 !$acc copyin (...)

14 ! compute value from array

15 !$acc end kernels

16 end subroutine compute_value

17

18 subroutine write_value

19 use store , only: value

20

21 !$acc wait(STREAM)

22 print "(’value (1) = ’, g0)", value (1)

23 ...

24 end subroutine write_value

25 end module compute

As seen on line 11, the kernel in the compute part is executed asynchronously with
the OpenACC async clause in a specific STREAM, while the write part is called as
late as possible and, on line 21, waits for the asynchronous kernel to end with
the wait directive. At the same time, other kernels are executed synchronously.
The write part (for each logging subroutine in the case of FaSTAR) is called at
the end of the iteration.

In order to avoid read race conditions as the main synchronous kernels may
modify the memory, arrays used by the logging kernel must be duplicated. The
following modifications are added to the code:

1 module store

2 ...

3 real , allocatable :: array_d (:)

4 end module store

5

6 module compute

7 contains

8 subroutine compute_value(array)

9 use store , only: array_d

10 ...

11

12 !$acc kernels

13 array_d (:) = array (:)

14 !$acc end kernels

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_32

https://dx.doi.org/10.1007/978-3-031-36024-4_32
https://dx.doi.org/10.1007/978-3-031-36024-4_32

Optimization of async. logging kernels for a GPU accelerated CFD solver 5

15

16 ...

17 end subroutine compute_value

18 ...

19 end module compute

In subroutine compute value, the memory duplication takes place before the
asynchronous kernel. This is however a costly operation in term of memory. The
complete process workflow for FaSTAR is sketched in fig. 1. The two asynchronous
kernels use the same stream to not be concurrent to each other.

Subroutines for write part

RHS Residual Async. kernels for compute part

Sync. kernels for copying data

Main sync. kernels

Fig. 1: Workflow of asynchronous execution of the two logging kernels.

Finding the optimal number of threads for the logging kernels is an optimiza-
tion problem, as too few dedicated threads makes its execution time too long
(hence increasing the simulation time), and too much slows down the synchronous
kernels (hence increasing the simulation time again). The number of cells of
the simulation as well as the hardware itself has an influence on this number
of threads. Some assumptions are used to simplify the problem. We consider
that the compute kernel represents enough operations to fill at least the threads
of one SM, which translates in one gang in the OpenACC terminology of gang
(SM), worker (Streaming Processor (SP)) and vector (thread). We consequently
investigate the number of gangs, instead of the number of threads, which can be
set with the OpenACC clause num gangs. We also consider that each iteration is
similar and takes the same amount of time to compute (with the same amount
of resources). The number of gangs can either be set by the user, or can be
automatically estimated with what we name a sloped descend gradient method:

n(n+1)
g = n(n)

g − sign
∆t(n) −∆t(n−1)

n
(n)
g − n

(n−1)
g + ϵ

, (1)

where n
(n+1)
g , respectively n

(n)
g and n

(n−1)
g , is the number of gangs for the next

iteration (or group of iterations), respectively for the current iteration and the
previous iteration, ∆t(n), respectively ∆t(n−1), is the duration of the current
iteration, respectively of the previous iteration, and ϵ is a small value. We consider,
as for many Fortran implementations, that sign 0 = 1. This formulation is robust
and increases the number of gangs by ±1 for each evaluation, but has two
drawbacks: the optimal value may be slow to reach, depending on the initial value
to start the evaluation from, and the number of gangs can only fluctuate close to
this optimum. Using the iteration time to compute the number of gangs makes

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_32

https://dx.doi.org/10.1007/978-3-031-36024-4_32
https://dx.doi.org/10.1007/978-3-031-36024-4_32

6 Paul Zehner and Atsushi Hashimoto

this algorithm vulnerable to external factors, such as network flutters in case of
MPI parallelization, or input/output latency when writing intermediate results
to disk. This problem is mitigated by taking a group of iterations in eq. (1), by
default 100, instead of one, and by disabling the evaluation of the number of
gangs for iterations when results are outputted to a file.

3 Implementation of mixed precision kernels

The asynchronous execution process presented in the previous section has the
disadvantage to trade GPU memory for execution speed, while memory is limited
on this hardware. FaSTAR uses double precision floating point arrays, which
means by the Institute of Electrical and Electronics Engineers (IEEE) 754 norm [9]
that each element in an array is stored on 64 bits (8 bytes). Such a precision is
the standard in CFD, but is not required for logging purpose, where the order
of magnitude is usually enough as logs are read by a human. Consequently, we
propose to use a lower precision for the logging kernels, such as single precision
(32 bits per element), and even half precision (16 bits per element). This can
reduce the memory cost of the asynchronous execution process by respectively two
and four. Even if mixed precision is commonly used in a context of performance
gain [24], we only aim in this paper to reduce memory occupancy.

3.1 Single precision

We first implement the storage of duplicated arrays and the computation of
the value using single precision. As the selection of precision has to be decided
at compile time, we use preprocessor commands, which are only executed by
the compiler before converting the source code in binary instructions. Since
the Fortran standard does not specify a preprocessor, we use the traditional C
preprocessor syntax, which is commonly available in compilers.

We use a set of two preprocessor macros, that are substituted by the compiler
in the rest of the source code:

1 #if LOGGING_REDUCED_PRECISION == 4

2 # define TYPE 4

3 # define STORE(value) (real(value , TYPE))

4 #else

5 # define TYPE 8

6 # define STORE(value) (value)

7 #endif

The macro TYPE qualifies the kind of the floating point variables, and is used in
the declaration of the duplicated arrays and in the compute and write subroutines,
using the kind argument of type real. Line 2 defines it to single precision (for
most environments), and line 5 to double precision. STORE explicitly converts
variables to the desired precision using the real Fortran intrinsic function; it is
used when duplicating the arrays. At line 3, it converts values to single precision,
and at line 6 it is an invariance. Using mixed precision can be disabled completely
by the LOGGING REDUCED PRECISION macro at line 1.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_32

https://dx.doi.org/10.1007/978-3-031-36024-4_32
https://dx.doi.org/10.1007/978-3-031-36024-4_32

Optimization of async. logging kernels for a GPU accelerated CFD solver 7

3.2 Half precision

Half precision has several limitations that must be taken into consideration first.
The Fortran standard does not explicitly define which precision is available for
the programmer, and this choice is left to the compiler maker. Single and double
precision are usually always implemented, but half precision is less common,
hence not supported by all compilers. In this study, we chose to use the NVIDIA

HPC Software Development Kit (NVIDIA HPC SDK) compiler, as it is the most
common and mature OpenACC compiler available when writing this paper, and
as it has support for half precision. Also, half precision has an exponent range
limited to ±104, with any other value replaced by ±∞. This limitation may
be unacceptable if the values to manipulate fall outside of this range. Another
representation considered was bfloat16 [25], which has a larger exponent range of
±1038 while using the same amount of memory, but is not covered by the Fortran
standard [1]. Another shortcoming of half precision is that not all operations
may be implemented for this precision. Consequently, when using half precision,
only the duplicated arrays are stored using this precision, whereas work on these
arrays is done using single precision.

The set of preprocessor macros is extended with two other macros, TYPE
DUPLICATED and UNSTORE:

1 #if LOGGING_REDUCED_PRECISION == 2

2 # define TYPE 4

3 # define TYPE_DUPLICATED 2

4 # define STORE(value) (real(value , TYPE_DUPLICATED))

5 # define UNSTORE(value) (real(value , TYPE))

6 #if LOGGING_REDUCED_PRECISION == 4

7 # define TYPE 4

8 # define TYPE_DUPLICATED 4

9 # define STORE(value) (real(value , TYPE))

10 # define UNSTORE(value) (value)

11 #else

12 # define TYPE 8

13 # define TYPE_DUPLICATED 8

14 # define STORE(value) (value)

15 # define UNSTORE(value) (value)

16 #endif

The macro TYPE is now only used for the kind of arrays in the compute and
write subroutines. At line 2 it is defined for single precision. TYPE DUPLICATED is
only used for the kind of the duplicated arrays. At line 3 it is defined for half
precision, at lines 8 and 13 as the current TYPE. UNSTORE explicitly converts back
duplicated variables to the desired precision, and is used in the compute part. At
line 5, it converts values from half precision to single precision, at lines 10 and
15 it is an invariance. The LOGGING REDUCED PRECISION macro is used to select
the desired precision.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_32

https://dx.doi.org/10.1007/978-3-031-36024-4_32
https://dx.doi.org/10.1007/978-3-031-36024-4_32

8 Paul Zehner and Atsushi Hashimoto

4 Validation and performance

4.1 Description of the cases

Now mixed precision is implemented, we test the validity and the performance
of the modified solver on the NASA CRM test case [23]. This geometry aims
to propose a research model of a commercial airplane, it has a wing and a
cabin. We simulated a cruise flight at Mach number M = 0.85, angle of attack
α = 2.5◦, and Reynolds number Re = 5 · 106. The upstream temperature was
T∞ = 100 ◦F ≈ 310.93K and the air specific heat ratio was γ = 1.4.

Table 1: Number of cells for the different meshes.

Mesh Tetrahedron Pyramid Prism Hexahedron Total

Coarse 146,062 587,161 0 2,946,009 3,679,232
Medium 258,724 1,040,044 27,424 5,260,349 6,586,541
Fine 467,168 1,897,302 77,256 9,491,406 11,933,132
Extra-fine 1,633,430 6,554,906 147,004 38,410,538 46,745,878

We used a set of four meshes of increasing number of cells, as described
in table 1, created with HexaGrid. Minimum cell size was 5 in, 3.5 in, 2 in
and 1 in (1.27 · 10=1 m, 8.89 · 10=2 m, 5.08 · 10=2 m and 2.54 · 10=2 m) for the
coarse, medium, fine and extra-fine mesh respectively. Maximum cell size was
5 in (1.27 · 10=1 m), and the dimensionless wall distance was y+ = 1.00.

Methods cited in section 2.1 were used; the DP-LUR implicit time integration
method was used with 6 sub-iterations. We performed steady state simulations
of 10,000 iterations, using local time stepping and setting a Courant–Friedrichs–
Lewy (CFL) number CFL = 50. The solver was compiled using NVIDIA HPC

SDK version 22.7, simulations were executed on JAXA Supercomputer System
generation 3 (JSS3) [4] using NVIDIA V100 GPUs [14]. Cases were executed on
single GPU and multi-GPU using 2 and 4 domains. The extra-fine case memory
occupancy was too high for some executions: for single GPU and multi-GPU on 2
domains with double precision.

Compared to reference computations using synchronous logging kernels, we
aim to analyze the speedup and the memory overhead of the different implemen-
tations. Two batches of computations were executed: one for which the number
of gangs was automatically estimated by the algorithm presented in section 2.3,
another one with a fixed number of gangs based on the outcome of the first batch.

4.2 Accuracy analysis

Before analyzing performance, we analyze the accuracy of the results for com-
putations on the fine mesh on single GPU. We first made sure that solution
files were similar with an absolute tolerance of 10=5 for the different simulations.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_32

https://dx.doi.org/10.1007/978-3-031-36024-4_32
https://dx.doi.org/10.1007/978-3-031-36024-4_32

Optimization of async. logging kernels for a GPU accelerated CFD solver 9

Letting the algorithm estimate the number of gangs or setting it manually did
not change the results.

0 5,000 10,000

10−9

10−8

10−7

10−6

Iterations

∥ρ
∥ 2

Sync.

Async. double

Async. single

Async. half

Fig. 2: Evolution of the L2 norm of residual.

The evolution of the L2 norm of the residual of density ∥ρ∥2 is displayed
in fig. 2. Residual of computations using asynchronous execution with double,
single, or half precision are compared with a reference synchronous computation.
Results are indistinguishable. A closer analysis reveals that residual for single
and half precision are a bit lower than reference results, which can be explained
as they are both computed with single precision.

The evolution of the sum of the RHS terms, not displayed in this paper, was
also indistinguishable from the results of the synchronous execution. However,
some values were replaced by +∞ in results of the asynchronous execution using
half precision.

We conclude that using reduced precision when computing residual did not
affect the quality of the solution. The quality of the logging files was almost
identical when using single precision; on the other hand, half precision gave
almost identical results in most cases, but some values could not be represented.

4.3 Performance analysis

We analyze now the performance of the new implementations, both in term of
speedup and in term of memory overhead.

We define the speedup η as the ratio of wall clock times spent in the time
integration loop, which excludes the initial time for loading the mesh and the
final time for writing the solution:

η =
tsync
tasync

(2)

where tsync is related to the reference synchronous execution, and tasync is related
to the asynchronous execution of the different implementations. The speedup
is displayed in fig. 3 as a function of the number of cells, when the number of

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_32

https://dx.doi.org/10.1007/978-3-031-36024-4_32
https://dx.doi.org/10.1007/978-3-031-36024-4_32

10 Paul Zehner and Atsushi Hashimoto

106 107

1.15

1.2

1.25

Cells

η

1 2 4
Double

Single

Half

Fig. 3: Evolution of the speedup compared with synchronous execution.

0 5,000 10,000

8

10

Iterations

n
g

(a) Double precision.

0 5,000 10,000

Iterations

(b) Single precision.

0 5,000 10,000

Iterations

(c) Half precision.

Fig. 4: Evolution of the number of gangs for asynchronous execution on the fine
mesh on 1 domain.

gangs is automatically estimated. We represented speedups for 1 domain (single
GPU), 2 and 4 domains (multi-GPU) on the same graph. For any precision, the
overall tendency is that the speedup decreases as the number of cells increases.
As the number of cells increases, there are less idle threads to saturate, and the
asynchronous execution is hence less efficient. The speedup ranged from 1.15 to
1.21 for 1 domain, from 1.15 to 1.25 for 2 domains, and from 1.17 to 1.27 for
4 domains. Computations on 1 and 2 domains exhibited a similarly decreasing
speedup, whereas computations on 4 domains exhibited a more chaotic trend
with high variability, which can be explained by other factors contributing more
to the speedup, such as network latency. Executions with single precision had a
higher speedup compared with double precision by on average 1% for 1 domain
and 0.6% for 2 domains. Half precision had a higher speedup by on average 1.1%
for 1 domain and 0.9% for 2 domains. This can either be due to less time spent
in duplicating the memory, or by more resources available for the main kernels.
Using reduced precision had a limited influence on speedup.

When automatically estimated by the algorithm, the number of gangs sta-
bilized close to a single value. Figure 4 displays the evolution of the number of
gangs as a function of the number of iteration for the computations on the fine
mesh on single GPU only. Despite being specific to this mesh, the evolution of

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_32

https://dx.doi.org/10.1007/978-3-031-36024-4_32
https://dx.doi.org/10.1007/978-3-031-36024-4_32

Optimization of async. logging kernels for a GPU accelerated CFD solver 11

the number of gangs is representative of the other simulations. For all cases, the
initial number of gangs was set to 10. The optimum value was 8 for the different
precision values, meaning that the precision of the logging kernels did not have an
impact on the estimation of the number of gangs. Compared with the maximum
number of 84 gangs available on a V100 GPU, the number of gangs dedicated
to the logging kernels remained reasonable: 9%. For multi-GPU execution, the
number of gangs was usually the same on the different devices. However, for the
simulation of the coarse case on 4 domains using half precision, the number of
gangs on one device converged to a different value.

106 107

1.15

1.2

1.25

Cells

η

1 2 4
Double

Single

Half

Double auto.

Single auto.

Half auto.

Fig. 5: Evolution of the speedup compared with synchronous execution for a fixed
number of gangs.

The speedup for a fixed number of gangs is displayed in fig. 5. Speedup for
automatic estimation of the number of gangs is also represented for reference
with black empty markers. Using a fixed number of gangs improved speedup by
0.6% on average (=1.1% to 1.3%). The gain is very moderate, the automated
estimation gave satisfactory performance without any input from the user.

106 107

1.05

1.1

1.15

Cells

η
m

1 2 4
Double

Single

Half

Fig. 6: Evolution of the memory overhead compared with synchronous execution.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_32

https://dx.doi.org/10.1007/978-3-031-36024-4_32
https://dx.doi.org/10.1007/978-3-031-36024-4_32

12 Paul Zehner and Atsushi Hashimoto

We analyze now the performance in term of memory overhead. We define
the memory overhead ηm as the ratio of the GPU average memory used during
execution and reported by the job submission system on JSS3:

ηm =
masync

msync
(3)

where msync is the memory of the synchronous execution, and masync is the
memory of the asynchronous execution of the different implementations. Evolution
of the memory overhead is displayed in fig. 6 as a function of the number of cells.
Independently from the precision, the memory overhead of the the asynchronous
execution increases with the number cells up to 107 cells. Simulations on different
number of domains coincide well. Asynchronous execution using double precision
has a maximum memory overhead of 18%, while single precision has a maximum
overhead of 9% (i.e. a half of double precision), and half precision has an overhead
of 4.5% (i.e. a fourth of double precision). This is in agreement with theoretical
expectations. The overhead on the CPU memory was also analyzed, and was
close to 1 for all simulations.

0 0.5 1

RHS

Time integration

Gradient

Dupl. data RHS

RHS logging

Dupl. data resi.

Resi. logging

0.4

0.42

0.14

0.43

0.38

3.56 · 10−3

3.56 · 10−3

Time

(a) Double

0 0.5 1

0.4

0.42

0.15

0.43

0.38

2.9 · 10−3

4.24 · 10−3

Time

(b) Single

0 0.5 1

0.47

0.34

0.14

0.4

0.37

2.43 · 10−3

2.65 · 10−3

Time

(c) Half

Sync. kernels Async. kernels

Fig. 7: Timeline execution of the different parts of the solver for asynchronous
execution on the fine mesh on 1 domain.

We finalize this performance analysis by profiling the execution of the code
for a fixed number of 8 gangs for one iterations with NVIDIA Nsight Systems.
A synthetic timeline of the execution of the kernels is displayed in fig. 7 for the
asynchronous execution on the fine mesh on 1 domain, for the three precision
values. In the figure, the execution time is expressed as a ratio of the iteration
time. The asynchronous logging kernels (named RHS logging and resi. logging)
were executed concurrently with the other kernels, and the end of the second
logging kernel coincides with the end of the last group of main kernels (named
gradient), but occurs always a bit later. The timings for each kernels is similar for
any precision requested. The time spent in arrays duplication for asynchronous
execution (named dupl. data RHS and dupl. data resi.) was always negligible (less

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_32

https://dx.doi.org/10.1007/978-3-031-36024-4_32
https://dx.doi.org/10.1007/978-3-031-36024-4_32

Optimization of async. logging kernels for a GPU accelerated CFD solver 13

than 0.5% for any precision value). In the first iteration only, not shown in the
graph, a consequent time is spent in creating the pinned memory buffer when
preparing to transfer the computed logging values back to the host memory.

5 Conclusion

In this study, we improved the GPU execution of asynchronous logging kernels
used in the CFD solver FaSTAR that was initiated in a previous work. We
implemented mixed precision in the execution of the logging kernels in order to
reduce the memory overhead, by reducing the floating point precision of the arrays
they work on. The optimization was tested on four different meshes of the NASA

CRM case, ranging from 3.7 to 46.7 million cells, on single GPU and multi-GPU

(2 and 4 domains). Simulation results were identical, but a few logged values were
incorrectly rendered as +∞ using half precision. Asynchronous execution gave a
speedup of 15% to 27%, which decreased as the number of cells increased, as
there are less remaining threads to saturate. Simulations on 4 domains had more
variation in speedup. Using double precision for logging kernels had a maximum
memory overhead of 18%, single precision 9%, and half precision 4.5%; it did
not have a significant impact on the speedup.

We conclude from this study that background asynchronous execution of
logging kernels can improve the speedup of computations for an acceptable
memory cost. Single precision is enough to have good fidelity, while half precision
is a more aggressive approach that may not be suited for all computations. We
believe that the optimization technique presented in this paper can be beneficial
to other numerical solvers and improve their performance.

References

1. Bleikamp, R.: BFLOAT16 (Feb 2020), https://j3-fortran.org/doc/year/20/20-118.
txt

2. Choi, J., Richards, D.F., Kale, L.V.: Improving Scalability with GPU-Aware Asyn-
chronous Tasks. In: 2022 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW). pp. 569–578. IEEE, Lyon, France (May 2022).
https://doi.org/10.1109/IPDPSW55747.2022.00097

3. Duffy, A.C., Hammond, D.P., Nielsen, E.J.: Production Level CFD Code Accelera-
tion for Hybrid Many-Core Architectures. Tech. Rep. NASA/TM-2012-217770,
L-20136, NF1676L-14575, NASA (Oct 2012), https://ntrs.nasa.gov/citations/
20120014581

4. Fujita, N.: JSS3/TOKI Overview and Large-Scale Challenge Breaking Report. In:
Proceedings of the 53rd Fluid Dynamics Conference/the 39th Aerospace Numerical
Simulation Symposium. vol. JAXA-SP-21-008, pp. 95–100. JAXA, Online (Feb
2022), http://id.nii.ac.jp/1696/00048362/

5. Hart, A., Ansaloni, R., Gray, A.: Porting and scaling OpenACC applications
on massively-parallel, GPU-accelerated supercomputers. The European Physical
Journal Special Topics 210(1), 5–16 (Aug 2012). https://doi.org/10.1140/epjst/
e2012-01634-y

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_32

https://j3-fortran.org/doc/year/20/20-118.txt
https://j3-fortran.org/doc/year/20/20-118.txt
https://doi.org/10.1109/IPDPSW55747.2022.00097
https://doi.org/10.1109/IPDPSW55747.2022.00097
https://ntrs.nasa.gov/citations/20120014581
https://ntrs.nasa.gov/citations/20120014581
http://id.nii.ac.jp/1696/00048362/
https://doi.org/10.1140/epjst/e2012-01634-y
https://doi.org/10.1140/epjst/e2012-01634-y
https://doi.org/10.1140/epjst/e2012-01634-y
https://doi.org/10.1140/epjst/e2012-01634-y
https://dx.doi.org/10.1007/978-3-031-36024-4_32
https://dx.doi.org/10.1007/978-3-031-36024-4_32

14 Paul Zehner and Atsushi Hashimoto

6. Hashimoto, A., Ishida, T., Aoyama, T., Hayashi, K., Takekawa, K.: Fast Parallel
Computing with Unstructured Grid Flow Solver (May 2016), 28th International
Conference on Parallel Computational Fluid Dynamics, Parallel CFD’2016

7. Hashimoto, A., Ishida, T., Aoyama, T., Takekawa, K., Hayashi, K.: Results of Three-
dimensional Turbulent Flow with FaSTAR. In: 54th AIAA Aerospace Sciences
Meeting. American Institute of Aeronautics and Astronautics, San Diego, California,
United States of America (Jan 2016). https://doi.org/10.2514/6.2016-1358

8. Hennessy, J.L., Patterson, D.A.: Chapter Four: Data-Level Parallelism in Vector,
SIMD, and GPU Architectures. In: Computer Architecture: A Quantitative Ap-
proach, pp. 281–365. Morgan Kaufmann Publishers, Cambridge, Massachusetts,
United States of America, sixth edn. (2019)

9. IEEE: IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2019 (Revision
of IEEE 754-2008) pp. 1–84 (Jul 2019). https://doi.org/10.1109/IEEESTD.2019.
8766229

10. Ito, Y., Murayama, M., Hashimoto, A., Ishida, T., Yamamoto, K., Aoyama, T.,
Tanaka, K., Hayashi, K., Ueshima, K., Nagata, T., Ueno, Y., Ochi, A.: TAS Code,
FaSTAR, and Cflow Results for the Sixth Drag Prediction Workshop. Journal of
Aircraft 55(4), 1433–1457 (Jul 2018). https://doi.org/10.2514/1.C034421

11. Kale, L.V., Krishnan, S.: CHARM++: A portable concurrent object oriented system
based on C++. In: Proceedings of the Eighth Annual Conference on Object-oriented
Programming Systems, Languages, and Applications - OOPSLA ’93. pp. 91–108.
ACM Press, Washington, D.C., United States of America (1993). https://doi.org/
10.1145/165854.165874, http://portal.acm.org/citation.cfm?doid=165854.165874

12. McCall, A.J.: Multi-Level Parallelism with MPI and OpenACC for CFD Applica-
tions. Master of Science thesis, Virginia Tech (Jun 2017), https://vtechworks.lib.vt.
edu/handle/10919/78203

13. Micikevicius, P.: 3D finite difference computation on GPUs using CUDA. In: Pro-
ceedings of 2nd Workshop on General Purpose Processing on Graphics Processing
Units (GPGPU-2). pp. 79–84. ACM Press, Washington, D.C., United States of
America (Mar 2009). https://doi.org/10.1145/1513895.1513905

14. NVIDIA: NVIDIA V100 Datasheet. Tech. rep. (Jan 2020), https://images.nvidia.
com/content/technologies/volta/pdf/volta-v100-datasheet-update-us-1165301-r5.
pdf

15. NVIDIA: CUDA Toolkit Documentation (Mar 2022), https://docs.nvidia.com/
cuda/index.html

16. Obayashi, S., Guruswamy, G.P.: Convergence acceleration of a Navier-Stokes solver
for efficient static aeroelastic computations. AIAA Journal 33(6), 1134–1141 (Jun
1995). https://doi.org/10.2514/3.12533

17. OpenACC: OpenACC API 2.7 Reference Guide (Oct 2018), https://www.openacc.
org/sites/default/files/inline-files/API%20Guide%202.7.pdf

18. Riley, D.: Intel 4th Gen Xeon series offers a leap in data center per-
formance and efficiency (Jan 2023), https://siliconangle.com/2023/01/10/
intel-4th-gen-xeon-series-offers-leap-data-center-performance-efficiency/

19. Searles, R., Chandrasekaran, S., Joubert, W., Hernandez, O.: MPI + OpenACC:
Accelerating radiation transport mini-application, minisweep, on heterogeneous
systems. Computer Physics Communications 236, 176–187 (Mar 2019). https:
//doi.org/10.1016/j.cpc.2018.10.007

20. Shi, X., Agrawal, T., Lin, C.A., Hwang, F.N., Chiu, T.H.: A parallel nonlinear
multigrid solver for unsteady incompressible flow simulation on multi-GPU cluster.
Journal of Computational Physics 414, 109447 (Aug 2020). https://doi.org/10.
1016/j.jcp.2020.109447

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_32

https://doi.org/10.2514/6.2016-1358
https://doi.org/10.2514/6.2016-1358
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.2514/1.C034421
https://doi.org/10.2514/1.C034421
https://doi.org/10.1145/165854.165874
https://doi.org/10.1145/165854.165874
https://doi.org/10.1145/165854.165874
https://doi.org/10.1145/165854.165874
http://portal.acm.org/citation.cfm?doid=165854.165874
https://vtechworks.lib.vt.edu/handle/10919/78203
https://vtechworks.lib.vt.edu/handle/10919/78203
https://doi.org/10.1145/1513895.1513905
https://doi.org/10.1145/1513895.1513905
https://images.nvidia.com/content/technologies/volta/pdf/volta-v100-datasheet-update-us-1165301-r5.pdf
https://images.nvidia.com/content/technologies/volta/pdf/volta-v100-datasheet-update-us-1165301-r5.pdf
https://images.nvidia.com/content/technologies/volta/pdf/volta-v100-datasheet-update-us-1165301-r5.pdf
https://docs.nvidia.com/cuda/index.html
https://docs.nvidia.com/cuda/index.html
https://doi.org/10.2514/3.12533
https://doi.org/10.2514/3.12533
https://www.openacc.org/sites/default/files/inline-files/API%20Guide%202.7.pdf
https://www.openacc.org/sites/default/files/inline-files/API%20Guide%202.7.pdf
https://siliconangle.com/2023/01/10/intel-4th-gen-xeon-series-offers-leap-data-center-performance-efficiency/
https://siliconangle.com/2023/01/10/intel-4th-gen-xeon-series-offers-leap-data-center-performance-efficiency/
https://doi.org/10.1016/j.cpc.2018.10.007
https://doi.org/10.1016/j.cpc.2018.10.007
https://doi.org/10.1016/j.cpc.2018.10.007
https://doi.org/10.1016/j.cpc.2018.10.007
https://doi.org/10.1016/j.jcp.2020.109447
https://doi.org/10.1016/j.jcp.2020.109447
https://doi.org/10.1016/j.jcp.2020.109447
https://doi.org/10.1016/j.jcp.2020.109447
https://dx.doi.org/10.1007/978-3-031-36024-4_32
https://dx.doi.org/10.1007/978-3-031-36024-4_32

Optimization of async. logging kernels for a GPU accelerated CFD solver 15

21. Shima, E., Kitamura, K., Haga, T.: Green–Gauss/Weighted-Least-Squares Hy-
brid Gradient Reconstruction for Arbitrary Polyhedra Unstructured Grids. AIAA
Journal 51(11), 2740–2747 (Nov 2013). https://doi.org/10.2514/1.J052095

22. Trader, T.: How Argonne Is Preparing for Exascale in 2022.
HPCwire (Sep 2021), https://www.hpcwire.com/2021/09/08/
how-argonne-is-preparing-for-exascale-in-2022/

23. Vassberg, J., Dehaan, M., Rivers, M., Wahls, R.: Development of a Common
Research Model for Applied CFD Validation Studies. In: 26th AIAA Applied
Aerodynamics Conference. American Institute of Aeronautics and Astronautics,
Honolulu, Hawaii, United States of America (Aug 2008). https://doi.org/10.2514/6.
2008-6919

24. Walden, A., Nielsen, E., Diskin, B., Zubair, M.: A Mixed Precision Multicolor
Point-Implicit Solver for Unstructured Grids on GPUs. In: 2019 IEEE/ACM 9th
Workshop on Irregular Applications: Architectures and Algorithms (IA3). pp.
23–30. IEEE, Denver, Colorado, United States of America (Nov 2019). https:
//doi.org/10.1109/IA349570.2019.00010

25. Wang, S., Kanwar, P.: BFloat16: The secret to high performance on Cloud
TPUs (Aug 2019), https://cloud.google.com/blog/products/ai-machine-learning/
bfloat16-the-secret-to-high-performance-on-cloud-tpus

26. Wright, M.J., Candler, G.V., Prampolini, M.: Data-parallel lower-upper relaxation
method for the Navier-Stokes equations. AIAA Journal 34(7), 1371–1377 (Jul 1996).
https://doi.org/10.2514/3.13242

27. Yoon, S., Jameson, A.: An LU-SSOR scheme for the Euler and Navier-Stokes
equations. In: 25th AIAA Aerospace Sciences Meeting. American Institute of
Aeronautics and Astronautics, Reno, Nevada, United States of America (Mar 1987).
https://doi.org/10.2514/6.1987-600

28. Zehner, P., Hashimoto, A.: Asynchronous Execution of Logging Kernels in a GPU
Accelerated CFD Solver. In: Proceedings of the 54th Fluid Dynamics Conference/the
40th Aerospace Numerical Simulation Symposium. vol. JAXA-SP-22-007, pp. 331–
339. Japan Aerospace Exploration Agency (JAXA), Morioka, Japan (Jun 2022),
http://id.nii.ac.jp/1696/00049141/

29. Zehner, P., Hashimoto, A.: Acceleration of the data-parallel lower-upper relaxation
time-integration method on GPU for an unstructured CFD solver. Computers &
Fluids p. 105842 (Mar 2023). https://doi.org/10.1016/j.compfluid.2023.105842

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_32

https://doi.org/10.2514/1.J052095
https://doi.org/10.2514/1.J052095
https://www.hpcwire.com/2021/09/08/how-argonne-is-preparing-for-exascale-in-2022/
https://www.hpcwire.com/2021/09/08/how-argonne-is-preparing-for-exascale-in-2022/
https://doi.org/10.2514/6.2008-6919
https://doi.org/10.2514/6.2008-6919
https://doi.org/10.2514/6.2008-6919
https://doi.org/10.2514/6.2008-6919
https://doi.org/10.1109/IA349570.2019.00010
https://doi.org/10.1109/IA349570.2019.00010
https://doi.org/10.1109/IA349570.2019.00010
https://doi.org/10.1109/IA349570.2019.00010
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://doi.org/10.2514/3.13242
https://doi.org/10.2514/3.13242
https://doi.org/10.2514/6.1987-600
https://doi.org/10.2514/6.1987-600
http://id.nii.ac.jp/1696/00049141/
https://doi.org/10.1016/j.compfluid.2023.105842
https://doi.org/10.1016/j.compfluid.2023.105842
https://dx.doi.org/10.1007/978-3-031-36024-4_32
https://dx.doi.org/10.1007/978-3-031-36024-4_32

