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Abstract. A new surrogate-assisted, pruned dynamic programming-
based optimal path search algorithm – studied in the context of ship
weather routing – is shown to be both effective and (energy) efficient.
The key elements in achieving this – the fast and accurate physics-based
surrogate model, the pruned simulation, and the OpenCL-based spmd-
parallelisation of the algorithm – are presented in detail. The included
results show the high accuracy of the surrogate model (relative approxi-
mation error medians smaller than 0.2%), its efficacy in terms of comput-
ing time reduction resulting from pruning (from 43 to 60 times), and the
notable speedup of the parallel algorithm (up to 9.4). Combining these
effects gives up to 565 times faster execution. The proposed approach
can also be applied to other domains. It can be considered as a dynamic
programming based, optimal path planning framework parameterised by
a problem specific (potentially variable-fidelity) cost-function evaluator.

Keywords: simulation-based optimisation · surrogate model · ship weather
routing · optimal path planning · heterogeneous computing

1 Introduction

In international trade, approximately 80% of goods are transported by sea and
this number is likely to increase [25]. This is why, in 2018, the International
Maritime Organisation approved an agreement to reduce carbon emissions (from
fuel consumption) per transport unit by 40% by 2030 as compared with 2008. As
a result, fuel consumption reduction – one of the objectives in most ship route
optimisation tasks – and optimal navigation itself have become more important
than ever [19,23,6].

A model of fuel consumption usually assumes its dependence on the ship
propulsion system and hull characteristics, the sea state, and the ship speed
and its heading angle against the waves [13,30,8]. Any application of such a
complex model in an optimisation task in most cases leads to a simulation-
based algorithm, which in many instances can be computationally expensive.
This issue is of particular importance in the context of algorithms based on
dynamic programming, mostly due to search space size.

One way to address this is to parallelise the algorithm. In many scenarios,
however, it is at most a partial solution to the problem. This can be due to target
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computer system constraints, the intrinsic strong sequential component of the
algorithm, and/or the cost of a single simulation, which is often by far the most
computationally expensive part of the optimisation process.

Another option is to simplify the model (often significantly) so that the
computational cost of a single simulation is acceptable, or even no simulation
is required at all. Two examples of such simplifications are the assumption of a
constant ship speed along a single segment of a route [19,26] and the use of the
ship speed as the control input/signal [27]. But to ignore completely the ship
acceleration may lead to inaccurate results, especially from the fuel consumption
perspective. This approach also does not generalise to more complex, often multi-
objective ship route optimisation tasks, which require simulators based on ship
dynamics.

A surrogate-assisted algorithm could potentially address all the previously
mentioned issues [11,12]. But, to the best of our knowledge, surrogate-assisted
ship route optimisation based on dynamic programming has not been studied
yet. Our aim is to present such an algorithm.

The main contributions of the paper are:

1. effective, physics-based surrogate model of ship motion (with fuel consump-
tion included) defined in the spatial-domain rather than the time domain,
in which the ode-based (hi-fidelity) model is set (section 4.3),

2. admissible heuristic function used to accelerate (by search space pruning)
both the surrogate-based estimation and hi-fidelity model based simulation
(section 4.2),

3. surrogate-assisted, spmd-parallel, dynamic programming based ship route
optimisation algorithm, which incorporates a refinement of the search space
(section 4.4),

4. results which demonstrate three important aspects of the algorithm: the
accuracy of the surrogate-model, the pruning-related speedup, and the par-
allelisation capabilities (section 5).

The remainder of this paper is organised as follows. The next section presents
related research. Following that, the optimisation problem under consideration
is defined, and the proposed algorithm is described. After that, experimental
results are presented and discussed. The last section contains the conclusion of
the study.

2 Related research

Ship safety navigation and energy efficiency are crucial factors for enhancing
the competitiveness and sustainability of ship operations [6]. Consequently, an
increasing number of researchers work on ship route optimisation based on fac-
tors such as weather forecasts and sea conditions, which will significantly impact
the ship velocity, primary engine output, fuel oil consumption (FOC), and emis-
sions [19,23,5,6]. Typically, the ship route optimisation problem is reduced to a
sub-path search problem in two dimensions, taking into account only the position
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and assuming that either the ship velocity or primary engine output remains con-
stant [27,6]. The methods applied to solve such simplified ship weather routing
problem include [6]: the modified isochrone method [9], the isopone method for
the minimum-time problem [20], dynamic programming for ship route optimisa-
tion with minimising FOC [2], and Dijkstra’s algorithm taking into account the
weather forecast data [18]. Also, evolutionary algorithms were applied to find the
optimal ship route [22]. Nonetheless, in reality the long routes and severe fluctu-
ations in weather and sea conditions make it impossible to maintain a constant
sailing velocity and primary engine output for ships crossing the ocean [6].

The quest for a more realistic simulation of fuel consumption has led to the
proposition of a number of three-dimensional optimisation algorithms. In [16] a
real-coded genetic algorithm was used for weather routing optimisation taking
into account the weighted criteria of fuel efficiency and ship safety. An alter-
native strategy is to integrate the time factor into the existing two-dimensional
path search algorithm and solve the three-dimensional path search optimisation
problem. This can be accomplished, for example, by adapting algorithms like
the three-dimensional isochrones method with weighting factors [14].

Three-dimensional dynamic programming algorithms taking into account me-
teorological factors were also proposed by researchers. A novel three-dimensional
dynamic programming based method for ship weather routing, minimising ship
fuel consumption during a voyage was presented in [19]. In contrast to the ap-
proaches mentioned above, which modify only the ship heading while keeping
the engine output or propeller rotation speed constant, the method proposed
in [19] took into account both factors: the engine power and heading settings.
The ship heading and speed planning taking into account the weather condi-
tions (and some additional constraints and objectives) was realised using an
improved three-dimensional dynamic programming algorithm for ship route op-
timisation [6]. The model of ship route estimation based on weather conditions,
and additional constraints like the main engine rated power and ship navigation
safety was proposed in [5]. The model could analyse multiple routes taking into
account the indicators such as travel speed, fuel consumption, estimated time of
arrival (ETA), and carbon emissions.

The selected machine learning models were also applied to the ship weather
routing problem. The proposed approaches included training neural networks
and machine learning models using available ship navigation data for different
weather conditions. Such trained models were then used to predict FOC and
optimise the ship route, taking into account fuel consumption and time of ar-
rival [31]. Statistical models taking into account wave height, wave period, wind
speed, and main engine’s RPM data [17] were used to plan ship routes while
maintaining safety, on-time arrival and reducing fuel consumption.

The approaches based on multi-objective optimisation to solving the ship
route optimisation problem taking into account weather conditions were also pro-
posed. A new algorithm for solving the two-objective problem (minimising the
fuel consumption and the total risk) formulated as a nonlinear integer program-
ming problem was introduced in [26]. The authors considered time-dependent
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point-to-point shortest path problem with constraints including constant nomi-
nal ship speed and the total travel time.

Multi-objective evolutionary algorithms were also applied in several works
to solve the ship weather routing problem, taking into account several objec-
tives like estimated time of arrival, fuel consumption and safety [21,22,10]. The
preference-based multi-objective evolutionary algorithm with weight intervals for
ship weather routing optimisation was introduced in [23]. In the problem consid-
ered, the route consisted of control points. Each of them stored the information
about its location, estimated time of arrival (based on the previous part of the
route, weather forecast in the immediate vicinity, and speed of the ship), engine
settings, and ship heading.

Computer simulations are now extensively employed to validate engineer-
ing designs, to refine the parameters of created systems and in the optimal
search problems. Unfortunately, accurate (high-fidelity) simulation models for
such tasks tend to be computationally expensive, making them often difficult or
even unfeasible to apply in practice. When dealing with such situations, methods
that employ surrogates, simplified (low-fidelity) simulation models, are utilised.
Although these models are less complex than the original simulation model of a
system or process, they accurately represent it and are significantly more efficient
in terms of computation [11,12].

Broadly speaking, surrogate simulation models can be classified into two main
categories. The first type, called approximation-based models, involves construct-
ing a function approximation using data obtained from high-fidelity simulation
models that are precise. The second type, known as physics-based models, in-
volves building surrogates based on simplified physical models of systems or
processes [12].

The approximation-based models are usually developed with the use of radial
basis functions, Kriging, polynomial response surfaces, artificial neural networks,
support vector regression, Gaussian process regression, or multidimensional ra-
tional approximation [12,28]. Moreover, recently deep-learning based surrogate
models were proposed, for example, for characterisation of buried objects using
Ground Penetrating Radar [29], design optimisation procedure of a Frequency
Selective Surface based filtering antenna [15], and modelling of microwave tran-
sistors [3].

Physics-based surrogates typically incorporate simplified knowledge of the
system or processes, as they are based on low-fidelity models. As a result, they
usually only need a few high-fidelity simulations to be properly configured and
provide reliable results [12]. Physics-based surrogates possess inherent knowledge
about the simulated system or process, which gives them strong generalisation
abilities. Consequently, they are capable of producing high-quality predictions
of the accurate simulation model, even for system designs or configurations that
were not used during the training phase [12].

It appears that the surrogate-based approach can help solve the problems
that arise when using high-accuracy simulation models in the problem of opti-
mising the ship’s route when weather conditions are taken into account. These
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problems have so far limited the ability to use accurate simulation models, and
to the best of the authors’ knowledge, the surrogate-based approach has not
been used so far in the case of the ship weather routing problem.

Contrary to the above-mentioned approaches to the ship weather routing
problem, in this paper we propose the physics-based surrogate model of ship
motion, with fuel consumption included, defined in the spatial-domain. Fur-
thermore, the admissible heuristic function for search space pruning (used to
accelerate both the surrogate-based and hi-fidelity simulation model) is pro-
posed. Finally, surrogate-assisted, spmd-parallel, dynamic programming based
ship weather routing algorithm, which incorporates a refinement of the search
space, is introduced.

3 Problem formulation

Consider a ship sailing in the given area – SA, from point A to B, along the
path/route:

ÃB(t) =
(
x(AB)
1 (t), x(AB)

2 (t)
)T (1)

resulting from a specific control input:

u(t) = u(AB)(t) = (c(t), n(t))
T
, (2)

where: c denotes the ship course and n - the propeller speed of rotation (RPM).
Given the sea state1 at time tk (see Fig. 1), we can express the ship dynamics
in the following way:

ẋ(t) = a (x(t),u(t), tk) = a(k) (x(t),u(t)) (3)

with x(t) = (x1(t), x2(t), ẋ1(t), ẋ2(t))
T denoting the (ship) state vector.

The performance of the ship is evaluated in the following way:

Js = C1 tf + C2

∫ tf

0

fcr (x(t),u(t)) dt (4)

where: tf is the sailing duration (the final time), fcr - the ship fuel consumption
rate function, and C1, C2 are user-defined constants.

Problem statement. The route optimisation problem under consideration can be
defined as follows2: find an admissible control u∗ which causes the ship to follow
an admissible trajectory x∗ that minimises the performance measure Js.

Remark 1. We assume that the values of Js can be found only through simulation
and only on-board, off-line computers can be used.
1 either explicitly or derived (computed) from the wind vector field
2 u∗ denotes an optimal control and x∗ an optimal trajectory (they may not be unique)
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A B

Fig. 1. Conceptual diagram of the ship route optimisation problem under consideration
(source of the North Atlantic Ocean map: [24]).

4 Proposed solution

The approach we propose in this paper is based on the following two main steps:

1. transformation of the continuous optimisation problem into a (discrete)
search problem over a specially constructed graph;

2. application of surrogate-assisted, pruned dynamic programming to find the
approximation of the optimal control input sequence:

(uk)
N
k=1 =

(
[c1, n1]

T , [c2, n2]
T , . . . , [cN , nN ]T

)
. (5)

Remark 2. The sequence (ck)Nk=1 represents a continuous piecewise-linear sailing
path3, whilst (nk)

N
k=1 is the sequence of the propeller RPMs, which forms a

piecewise-constant function; in both cases t ∈ [0, tf ].

Remark 3. The above two steps repeated several times form an adaptive version
of the algorithm in which subsequent search spaces are generated through mesh
refinement making use of the best solution found so far.

The key elements of the proposed algorithm, i.e.:

1. 3D-graph based solution space and the spmd-parallel computational topol-
ogy it generates,

2. pruning-accelerated simulation and estimation,
3. fast and accurate estimator of the performance measure (surrogate model)

are discussed in the following sub-sections.
3 formed by the sequence of the graph edges that correspond to (ck)
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4.1 The solution space representation

Discretisation of the original problem domain may be seen as a two-phase pro-
cess. In the first phase, we construct a multi-stage graph (G2) that creates the
’route space’ (i.e., ck-space/spatial-dimension of (uk), see Remark 2). In most
instances, this graph is regular with equidistant nodes grouped in rows and
columns: nc columns and (nr − 2) regular rows, plus two special (single-node)
rows – one with point A and the other with point B (see Fig. 2).

row 0

column 0

A

B

A B

Fig. 2. Solution space representation.

In the second phase, each node of G2 (apart from the one corresponding to
point A) is replicated np times to add the nk-dimension to the solution space
(of control inputs), which can be seen as an addition of the ’third dimension’ to
G2. This new, ’3D-graph’ (G3):

– has np [nc(nr − 2) + 1] + 1 nodes,
– has ncnp [(nr − 3)ncnp + np + 1] edges,
– represents np(ncnp)

nr−2 different control input sequences.

Remark 4. The piecewise-linear approximation of the ship route simplifies the
problem significantly. Instead of one complex, continuous two-dimensional prob-
lem, we have a series of simple one-dimensional sub-problems – each correspond-
ing to a single route segment only.

4.2 Pruning in simulation and estimation

The evaluation of a single route segment, s, can be aborted as soon as we know
that the computation cannot lead to a better solution than the best one found
so far. This process can be based on any effective admissible heuristic4.

Such a heuristic can be derived in the following way (see Eq. 4):

Js ≤ J (adm)
s = C1

|s|
vmax

+ C2 f (min)
cr

|s|
vmax

=
(
C1 + C2 f (min)

cr

) |s|
vmax

(6)

4 an admissible heuristic never overestimates the actual value of performance measure
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where: f (min)
cr denotes the minimum fuel consumption rate and vmax is the max-

imum possible speed of the ship.

Remark 5. The values of f
(min)
cr and vmax can be either taken from the ship

characteristics or approximated during the segment estimation phase.

4.3 Surrogate-based performance measure estimator

The proposed estimator of the performance measure/cost of a single, straight
route segment AB (corresponding to one edge of G2) is an extended version of
the one introduced in [7,4], and based on the work-energy principle:∫ B

A

F⃗ · dr⃗ =
1

2
m(v2B − v2A),

This formula can be used to transform the original problem from time domain
to spatial domain, i.e.,

m
dv

dt
= mv

dv

ds
= F → mvdv = Fds = dW.

From this, we can find the distribution of the velocity along the sailing line:
s0 = sA,

v0 = vA,

v2i = v2i−1 +
2
mF (si−1, vi−1)∆si

(7)

where: i = 1, 2, . . . , iB , ∆si = si − si−1, and siB = sB . Knowing (vi)
iB
i=1 and

assuming a constant value of F in each sub-interval, we can find the sailing
duration and fuel consumption (see Appendix A and [7,4]).

Remark 6. Operating in the spatial domain is the key property of this estimator
because it takes a predetermined number of steps, Ns, stemming from the spatial
discretisation of a route segment. In the original, hi-fidelity model – given in the
time domain – the number of time-steps to be taken by the simulator (i.e., the
ODE solver) to reach the final point is unknown upfront. In some cases, it can
be several orders of magnitude larger than Ns.

4.4 The algorithm

Graph G3, representing the solution space, is directed, acyclic (DAG) and has
a layered structure5. Since, at the beginning of the search process, the cost of
each route segment is unknown, it has to be obtained from simulation. The cost
of reaching each node of G3 can be computed using the Principle of Optimality
[1]. It can be expressed for an example path A-Nr,c,n in the following way:

J∗
s (A → Nr,c,n) = min

cj ,nk

{
J∗ (A → Nr−1,cj ,nk

)
+ J

(
Nr−1,cj ,nk

→ Nr,c,n

)}
(8)

5 therefore, it is a multistage graph
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where: cj = 0, . . . , (nc − 1), nk = 0, . . . , (np − 1), Js (Ns → Ne) is the cost
corresponding to the path Ns → Ne (Ns – the start node, Ne – the end node),
J∗
s represents the optimal value of Js, and Nr,c,s is the node of G3 with ’graph

coordinates’ (row, column,RPM) = (r, c, n).
The structure of the computation (i.e., simulation flow) is reflected in the

spmd-structure of Algorithm 1 (see annotation @parallel). The computation
begins from point A in layer 1, taking into account the corresponding initial
conditions, and is continued (layer by layer) for the nodes in subsequent rows.
On the completion of the simulations for the last layer (i.e., reaching the end
node B), we get the optimal route and its cost.

Algorithm 1: Surrogate-assisted optimal route search
Input:
– G(AB)

3 : initial search space with start point A and target point B,
– Sst: sea state,
– hfm: ship simulator (high-fidelity model),
– lfm: surrogate (low-fidelity model).

Output: the optimal route and RPMs

1 foreach refinement rG of G(AB)
3 do

2 foreach layer lrG in rG do
3 @parallel foreach entry point ep of lrG do
4 (sk)

d
k=1 ← all segments ending in ep // d - the in-degree of ep

/* 1. pruned estimation using lfm, d1 ≤ d, Section 4.3 */
5 (sk, costestk )d1k=1 ← pruned estimation of (sk)dk=1

/* 2. pruned simulation using hfm, see Appendix A */
6 (sk, costsimk )d1k=1 ← pruned simulation of (sk, costestk )d1k=1

/* 3. saving the optimal ep-entry info, J∗
s (A→ ep) */

7 (smin
ep , costmin

ep )← min
by cost

(sk, costsimk )d1k=1

8 save (ep, (smin
ep , costmin

ep ))

Complexity analysis. Algorithm 1 average-case time complexity is determined
by the number of solution space refinements, ni, the average number of reduced
force evaluations6 for a single path/route segment, n̄F , and the number of such
segments, ncnp [(nr − 3)ncnp + np + 1] (see Section 4.1). For the sequential ver-
sion of the algorithm it can be expressed as:

Ts = Θ
(
ni nr n2

c n2
p n̄F

)
. (9)

6 values of F are used both in HFM and LFM; Runge-Kutta-Fehlberg 4(5) method,
used in the simulator, requires at each step six evaluations of F
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In the spmd-parallel version of the algorithm, the evaluations for all nodes in a
given row can be performed in parallel (using p processing units), thus:

Tp = Θ

(
ni nr nc np

⌈
nc np

p

⌉
n̄F

)
. (10)

The Algorithm 1 space complexity formula, Θ (nr nc np), arises from the
solution space representation.

Remark 7. Significant reduction of the average-case of computational cost of the
algorithm is important for at least two reasons. Firstly, we often need to know
the solution as soon as possible (sometimes for safety). Secondly, since we only
use on-board computers, energy efficiency is critical while at sea.

5 Results and discussion

To demonstrate the effectiveness of the algorithm, a series of experiments was
carried out using a MacBook Pro7 with macOS 12.6.3 and OpenCL 1.2. This sys-
tem has one operational OpenCL-capable device: Intel Iris Graphics 6100, 1536
MB (the integrated GPU). The aim of the experiments was to investigate three
important aspects of the algorithm: the accuracy of the surrogate-model, the
pruning-related computational time cost reduction, and the spmd-parallelisation
efficiency. The results are presented in the subsequent paragraphs.

The accuracy of the surrogate-model. This element has a direct and significant
impact on the computational cost reduction since it is strictly related to pruning
efficiency. Indeed, the more accurate the estimator is, the more simulations can
be aborted (or even completely omitted). The results are given in the form of
a violin plot in Fig. 3. The plot shows the distributions of relative estimation
errors, i.e.:

err(Js|estsim) =

∣∣∣∣∣J (est)
s − J

(sim)
s

J
(sim)
s

∣∣∣∣∣ (11)

for route segments from the solution spaces corresponding to nc = 16, 32, 64,
and 128.

Remark 8. In all cases, the medians of relative estimation errors were smaller
than 0.002 (i.e., 0.2%), which confirms the very high accuracy of the proposed
surrogate-based segment cost estimator.

Efficacy of the surrogate-based pruning. Having verified the accuracy of the
surrogate-model, we can test the computation speedup resulting from surrogate-
based pruning applied both in the simulation and estimation phases. The corre-
sponding results are given in Table 1 and Fig. 4.
7 Retina, 13-inch, Early 2015, with 16GB of DDR3 1867 MHz RAM
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16

32

64

128

0.00 0.01 0.02 0.03 0.04 0.05

relative estimation error

n
c

Fig. 3. Distributions of relative errors of the performance measure/cost estimate (see
Eq. 11) for solution spaces with different nc, with outliers (e > ē+3 σe, if any) excluded.

Table 1. Efficacy of surrogate-based pruning: execution times (in seconds), and the
pruning-related speedup for different nc. The solution space (one refinement) with
nr = 32, np = 8. Statistics from ten runs.

nc

execution times (tsim)
speedupbase model surrogate-assisted

min max avg sd min max avg sd
16 271.1 272.6 271.8 0.52 6.2 6.3 6.2 0.05 43.5
32 1077.3 1080.7 1078.9 1.25 18.5 18.7 18.6 0.08 58.0
64 4399.9 4424.3 4410.8 7.24 74.5 75.5 74.7 0.22 59.1

128 17494.2 17609.7 17559.3 39.62 292.4 294.3 292.7 0.59 60.0

spmd-parallelisation efficiency. Parallelisation is another way of lowering the
total computation time. Contemporary mobile/on-board computers are usually
equipped with more than one type of processor, typically one CPU and at least
one GPU. OpenCL makes it possible to use these heterogeneous platforms effec-
tively, since the same code can be executed on any OpenCL-capable processor.
The execution times for different sizes of the solution space and the correspond-
ing parallel-speedups are presented in Table 2 and Fig .4. Its maximum recorded
value was 9.4 (see Table 2 and Fig. 4). With reference point set as the sequential
search based on the full simulation, it gives in total 565.4 times faster execution.

6 Conclusions

It has been shown that the surrogate-assisted, pruned dynamic programming
based ship route optimisation algorithm can be both effective and (energy)
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Table 2. spmd-parallelisation efficiency: execution times, tsim (in seconds) and (par-
allel) speedup for different nc. The remaining parameters as in Table 1.

nc
execution times (tsim)

speedup
min max avg sd

16 4.0 4.0 4.0 0.02 1.6
32 6.9 6.9 6.9 0.01 2.7
64 15.1 15.1 15.1 0.02 4.9

128 31.0 31.1 31.1 0.02 9.4

60 9.4

43.5 1.6

58 2.7

59.1 4.9

565.4

292.5

156.9

67.9

16

32

64

128

2
0

2
2

2
4

2
6

2
8

speedup

n
c

speedup factors: parallelisation surrogate−based pruning

Fig. 4. Total speedup (boxed numbers at the end of each bar) and its factors: surrogate-
based pruning (dark-grey part) and spmd-parallelisation (light-grey part) for different
nc. The remaining parameters as in Table 1.

efficient. The key elements in achieving this have been the fast and accurate
physics-based surrogate model, the pruned simulation, and the OpenCL-based
spmd-parallelisation of the algorithm.

The results show the high accuracy of the surrogate model (the medians of
relative approximation errors were smaller than 0.2%, see Fig. 3), its efficacy in
terms of the reduction of computing time resulting from pruning (from 43 to 60
times, see Table 1 and Fig. 4), and the notable speedup of the parallel algorithm
(its maximum observed value was 9.4, see Fig. 4). Combining these effects has
given up to 565 times faster execution time (see Fig. 4).

The proposed approach can also be applied to other scenarios. In fact, it can
be considered as a dynamic programming-based, optimal path planning frame-
work parameterised by a problem specific (potentially variable-fidelity) cost-
function evaluator.
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Future research work could concentrate on verification of the proposed al-
gorithm with a more accurate ship simulator and different types of surrogate
models (e.g., data-driven deep learning based).

Appendix A The ship simulation model

1. The ship equation of motion along a straight route segment:

(M +MA)
dvs
dt

= Tp(t)− (RT (t) +RAW (t)) (12)

where: M denotes the ship mass, MA - the ’added’ mass, vs - speed of ship,
Tp - trust force of the propeller, RT - frictional resistance, and RAW - wave-
making resistance; in addition: MR = M +MA = 43 341 239,

2. Trust force:

Tp(t) = 425

(
1− 4.45

vs(t)

n

)
n2 (13)

3. Frictional resistance:

RT (t) = 11000 (vs(t))
2 (14)

4. Wave-making resistance:

RAW (t) = 562.5

[
2π

0.75vw(t)

(
1− 2π

0.75vw(t)
vs(t) cosµ

)
vs(t)

]2
(15)

where: vw is wave speed, vs - ship speed, and µ is the ’encountering angle’,
i.e., the angle between the direction of wave travel and the direction of ship
heading, which is measured in a clockwise manner from the direction of wave
travel,

5. Fuel consumption (for a single route segment):

FOCs =

∫ tf

0

max

{
2
RT (t) +RAW (t)

MR
vs(t), 0.0625

}
dt (16)

6. Weights of the objectives (see Eq. 4):

C1 = C2 = 0.5 (17)
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