
Dynamic core binding for load balancing of
applications parallelized with MPI/OpenMP

Masatoshi Kawai1, Akihiro Ida2, Toshihiro Hanawa3, and Kengo Nakajima3,4

1 Nagoya University, Japan kawai@cc.nagoya-u.ac.jp
2 Research Institute for Value-Added-Information Generation (VAiG), Japan

3 The University of Tokyo, Japan
4 Riken, Japan

Abstract. load imbalance is a critical problem that degrades the per-
formance of parallelized applications in massively parallel processing.
Although an MPI/OpenMP implementation is widely used for paral-
lelization, users must maintain load balancing at the process level and
thread (core) level for effective parallelization. In this paper, we propose
dynamic core binding (DCB) to processes for reducing the computation
time and energy consumption of applications. Using the DCB approach,
an unequal number of cores is bound to each process, and load imbalance
among processes is mitigated at the core level. This approach is not only
improving parallel performance but also reducing power consumption
by reducing the number of using cores without increasing the computa-
tional time. Although load balancing among nodes cannot be handled by
DCB, we also examine how to solve this problem by mapping processes
to nodes. In our numerical evaluations, we implemented a DCB library
and applied it to the lattice H-matrixes. Based on the numerical eval-
uations, we achieved a 58% performance improvement and 77% energy
consumption reduction for the applications using the lattice H-matrix.

Keywords: Dynamic Core Binding, Dynamic Load Balancing, Power-
aware, Hybrid Parallelization, Simulated Annealing, Lattice H-matrix

1 Introduction

Load balancing is one of the most important issues in parallelizing applications
for massively parallel processing. Load imbalance results in poor application
performance and power wastage due to the long waiting for barrier synchro-
nizations. Nevertheless, there are many algorithms for which load balancing is
difficult, such as the particle-in-cell (PIC) method, lattice Boltzmann method,
and hierarchical matrix (H-matrix) method. In the case of the PIC and lattice
Boltzmann methods, the amount of computation per unit area exhibits dras-
tic variations with respect to time. In the H-matrix method, it is difficult to
estimate the load bound to each process before creating the matrix. Moreover,
hybrid programming by MPI (process) and OpenMP (thread) is widely used for
parallelization, and the load must be equal at both the process and thread levels.
Considering load balancing on multiple levels might be very complex work.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_30

https://dx.doi.org/10.1007/978-3-031-36024-4_30
https://dx.doi.org/10.1007/978-3-031-36024-4_30

2 M. Kawai et al.

Dynamic load balancing is a well-known concept for reducing such load im-
balance. Task parallelism emphasizes a parallelized nature in the applications,
but it may cause poor performance due to the large overhead. To achieve good
performance, a specialized approach for each application is used. The disadvan-
tage of the specialized approach is required cumbersome jobs for optimization
because of low portability. Therefore, we need an effective load balancing ap-
proach with low overhead, low implementation costs, and good portability.

In this study, we propose a dynamic core binding (DCB) approach that sup-
ports effective and simple load balancing. Whereas in the standard MPI/OpenMP
hybrid parallelization environment, an identical number of cores is bound to all
processes, in the DCB environment, the number of cores bound to each process
is changed to absorb load imbalance among processes inside of a node. DCB
can achieve improving the parallel performance of reducing power consumption
by the different core binding policies. To improve the performance of the ap-
plications, it binds all cores to processes so that the loads per core are similar.
Depending on the process with the maximum load, it reduces the cores mapped
to the other processes; as a result, the energy consumption can be reduced with-
out changing the computation time. This approach is suitable for many-core ar-
chitectures, which have recently become more general. Load balancing by DCB
has low overhead and high versatility as it only involves changing the number
of bound cores. For supporting the DCB environment, an appropriate system
call(not required administrator permission) is required. Then we implement the
DCB library to black box this system call.

In addition, to maintain the effectiveness of the DCB approach, we consider
the load imbalance among nodes. The DCB library only supports load balancing
inside a node. Therefore, loads among nodes must be balanced using another
method. The load balancing problem among nodes is similar to the job scheduling
problem [12], which is a type of combinatorial optimization problem (COP).
Job scheduling problems are categorized as nondeterministic polynomial-time
complete (NP-complete) [12], and it is difficult to find the optimal solution to
these problems with many jobs and machines. Studies on job scheduling problems
discussed the use of simulated annealing (SA) to find appropriate approximate
solutions [1,6] and have reported good results. Therefore, we also use the SA to
absorb the load imbalance among nodes. In order to use the results obtained from
the SA, the DCB library has a mechanism to generate a new MPI communicator,
which is balanced loads among nodes.

The originality of this study is that it proposes a single approach (changing
the cores bound to each process) to reduce the computation time and/or energy
consumption of applications based on load balancing. In addition, we consider
load imbalance among nodes using a metaheuristic approach to improve the ef-
fectiveness of DCB. Two existing studies [2, 4] proposed ideas similar to ours.
By changing the number of cores, one study [2] achieved performance improve-
ment of hybrid parallelized applications, while the other study [4] reduced the
energy consumption of applications parallelized using OpenMP. Our proposed
approach integrates these studies [2,4] and also considers load balancing among

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_30

https://dx.doi.org/10.1007/978-3-031-36024-4_30
https://dx.doi.org/10.1007/978-3-031-36024-4_30

Title Suppressed Due to Excessive Length 3

nodes. Various studies achieved a reduction in the computation time of hybrid
parallelized applications by dynamic load balancing. In one study [14], the im-
balance among threads caused by communication hiding was solved by the task
parallelization of OpenMP. Another study [5, 11] proposed load balancing with
task parallelization by original libraries in MPI/OpenMP or MPI-parallelized
applications. Our proposed approach fundamentally differs from the aforemen-
tioned studies, and performance improvement can be achieved using a simple
interface. Studies have also been conducted on power awareness [3, 13, 15] by
throttling core and memory clocks to reduce energy consumption. In particular,
one study [13] focused on applications parallelized with MPI/OpenMP. The dif-
ference between our proposed approach and these studies is that we achieve a
reduction in energy consumption by changing the cores bound to each process;
furthermore, our approach supports performance improvement and reduction in
energy consumption simultaneously.

We discuss the effectiveness and usability of the DCB library based on a sam-
ple implementation and numerical evaluations with a practical application using
a lattice H-matrix [9, 10]. The lattice H-matrix method is utilized to approx-
imate naive dense matrices and focuses on reducing communication overhead
during parallel computation. However, this improvement increases load imbal-
ance among the processes. Therefore, the lattice H-matrix is a suitable target
for evaluating the effectiveness of the DCB library.

2 Dynamic Core Binding(DCB)

In this section, we introduce a method for improving parallel performance and/or
reducing energy consumption using DCB. In addition, we indicate an overview
of the interfaces of the DCB library that provide the DCB approach and describe
its use.

The basic concept of the DCB approach is to equalize loads among cores by
changing the number of cores bound to each process. The target of the DCB
is parallelized applications based on OpenMP/MPI hybrid. In the general hy-
brid parallelization environment, the number of cores bound to each process is
identical. Balancing the loads at the core level leads to reducing computational
time and/or energy consumption. Then, as shown in Fig. 1(a), if ”Process 1”
has a three times larger amount of computation than ”Process 2”, the allocated
amount of computation to cores 1∼4 is also three times larger than cores 5∼8.
By the basic concept of DCB, we expect to reduce the load imbalance among
the cores.

In OpenMP, there is a function ”omp set num threads” for changing the num-
ber of threads. However, this function does not change the number of usable cores
for each process. When users increase the number of threads such that they ex-
ceed the number of cores, some threads are bound to the same core. When the
number of threads is less than the number of cores, the threads can be moved
among the cores by controlling the operating system. Changing the number of
cores bound to each process requires a system call such as ”sched set affinity” or

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_30

https://dx.doi.org/10.1007/978-3-031-36024-4_30
https://dx.doi.org/10.1007/978-3-031-36024-4_30

4 M. Kawai et al.

(a) Without DCB (General
environment)

(b) DCB-RC (Reduce
computational time)

Core1

Core8

Core7

Core6

Core5

Core4

Core3

Core2Process1

Process2

Inside of node

Amount of computation

No task (deep sleep)

No task (deep sleep)

(c) DCB-PA (Reduce en-
ergy consumption)

Fig. 1: Policies of dynamic core binding(DCB) library for core binding

alternative functions with unique arguments. The DCB library internally calls
these system calls, allowing users to easily benefit from an environment with an
unequal number of cores bound to each process. The permission of the system
calls inside of the DCB library is not limited to the super-user, and the DCB
library can be used with normal permissions.

The DCB library determines the number of bound cores based on a parameter
received from the user. The DCB library implements two core-binding policies
to reduce computational time and/or energy consumption. In Section 2.2, we
introduce these two policies. The DCB library focuses on load balancing inside
each node, and load imbalance among nodes must be addressed using a different
approach. In Section 2.3, we describe the use of SA to solve load imbalance
among nodes.

2.1 Concept of DCB

2.2 Binding policy

In the DCB library, we implement two policies for improving parallel perfor-
mance or reducing the energy consumption of applications. The policies of the
DCB library change how the cores are bound to each process.

One policy of the DCB library focuses on reducing the computation time
of the application (referred to as the RC policy). In the RC policy, all cores
are bound to a process based on the load.Here we explain how to determine the
number of cores bound to each process using the RC policy. The bound cores are
determined by an argument lp, which denotes the load executed by processes p,
passed to the DCB library by the user. The optimal lp depends on the application
and is assumed to include the amount of computation and memory transfer for
each process. Then, we consider a system whose nodes have c cores, and the IDs
of nodes constructed the system are denoted as set Na. The IDs of all processes
denotes as set Pa, and the IDs of the processes launched on the node n as set Pn.
The DCB library with the RC policy determines the number of cores cp bound
to process p launched on node n as follows:

cp =

⌊
lp

Σp̃∈Pn
lp̃

(c− |Pn|)
⌋
+ 1 (1)

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_30

https://dx.doi.org/10.1007/978-3-031-36024-4_30
https://dx.doi.org/10.1007/978-3-031-36024-4_30

Title Suppressed Due to Excessive Length 5

In this equation, the term c−|Pn|+1 guarantees binding more than one core to
all processes. If there are remaining cores (c−

∑
p∈Pn

cp ̸= 0), the DCB library
bounds one more core (cp = cp+1) in order to the value β = (lp/Σp̃∈Pn lp̃) c− cp
until there are no more cores remaining. When we apply the RC policy in the
state Fig. 1(a), six cores are bound to ”Process 1” and two cores are bound to
”Process 2” as shown in Fig. 1(b). In this situation, the values of (1) are l1 = 3,
l2 = 1, c = 8, P1 = 2, respectively. The expected minimum computation time
by using DCB is as follows:

tdcb = tcmp

(
lm
cm

)
/

(
maxLn

c

)
+ toth, Ln =

{∑
p∈Pn

lp : n ∈ Na

}
(2)

Here, tcmp denotes the time of computations that are parallelized with OpenMP
in the applications, and toth denotes the time of the other part of the application
such as the communication and sequential computational part. m denotes the
ID of the process that has the largest load in the node n which has the largest
sum of load. In (2), tdcb is calculated as the ratio of the maximum load allocated
to the core with and without DCB on the node which has the largest sum of the
loads. (2) also shows that the performance improvement of the DCB is capped by
the load imbalance among the node. If the loads among the nodes are equalized,
maxLn is minimized, and the effectiveness of DCB is maximized.

The second policy of the DCB library focuses on reducing energy consump-
tion. In the PA policy, the DCB library reduces the number of cores bound to
a process based on the largest load of the process. Fig 1(c) illustrates the result
of applying the PA policy to the state Fig. 1(a). In this example, two cores are
not mapped to any process, and their power status is changed to ”deep sleep”.
The energy consumption of the deep sleeping cores is drastically reduced relative
to cores in the running state.The number of bound cores with the PA policy is
determined as follows:

cp =

⌈
lp

maxLa
c

⌉
, La = {lp : p ∈ Pa} (3)

The bound cores cp by PA policy are simply decided as the ratio of lp and
maximum load in all processes. The expected reduction ratio ρ of the energy
consumption is calculated as follows:

ρ = (Jg − Jidle)

∑
p∈Pa

cp

c× |Na|
+ Jidle (4)

Here, Jg and Jidle denote the energy consumption of the application without
DCB and the idle CPU state, respectively. The ratio ρ is expressed as the ratio
of actually bound cores to all cores that construct the target system. In contrast
to the RC policy, the effectiveness of DCB with the PA policy is not capped by
the load imbalance among nodes.

2.3 Load balancing among nodes

DCB only supports load balancing within a node. Load balancing among nodes
must be maintained by another approach. Load balancing among nodes can be

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_30

https://dx.doi.org/10.1007/978-3-031-36024-4_30
https://dx.doi.org/10.1007/978-3-031-36024-4_30

6 M. Kawai et al.

considered a massive COP; this COP is similar to a job scheduling problem and
is categorized as NP-complete. Solving the COP with the existing libraries for
classical computers takes a long time and is impractical. Then we consider solving
the COP by using SA, which can be easy to solve. SA has a lot of experience in
solving complex COPs, and various companies provide services that enable the
use of SA. In order to solve the COP using SA, it is necessary to convert the
COP into a quadratic unconstrained binary optimization (QUBO) and submit
it to SA.

Then, a requirement and constraints of COPs for load balancing among the
nodes are as follows:

Item.1 The loads among nodes are equalized
Item.2 Every process is mapped to one of the node
Item.3 Every node has more than one process

These requirements are expressed as the following Hamiltonian of the QUBO
model:

H =

|Na|∑
n=1

∑|Pa|
p=1 lp

|Na|
−

|Pa|∑
p=1

lpxp,n

2

︸ ︷︷ ︸
Item.1

+ λ


|Pa|∑
p=1

1−
|Na|∑
n=1

xp,n

2

︸ ︷︷ ︸
Item.2

+

|Na|∑
n=1

⌈log2 m⌉∑
s=0

2sys −
|Pa|∑
p=1

xp,n

2
︸ ︷︷ ︸

Item.3

(5)

In this Hamiltonian, the first, second, and third terms express the Item.1, Item.2,
and Item.3 of the requirements, respectively. Here, xp,n denotes the binary values
appearing in the mapping. If xp,n = 1, process p is mapped to node n. Also,
binary values ys denote sticky bits for expressing inequality of Item.3. λ denotes
the penalty term for expressing the constraints. The objective of SA is looking
for a combination of xp,n when Hamiltonian H becomes zero. (5) is constructed
such that H is zero if all conditions are satisfied. We use pyQUBO [16], a Python
module, for handling, and Fujitsu Digital Annealer (FDA) [8] to solve the QUBO
model.

3 DCB library

In this section, we introduce the implementation of and how to use the DCB
library.

3.1 Interface

Important functions of the DCB libraries are two, ”DCB init” and ”DCB balance.
Users must call the ”DCB init” function before calling ”DCB balance”. ”DCB

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_30

https://dx.doi.org/10.1007/978-3-031-36024-4_30
https://dx.doi.org/10.1007/978-3-031-36024-4_30

Title Suppressed Due to Excessive Length 7

Standard MPI/OpenMP hybrid paral-
lelization

Socket0 Socket1

Each socket has
two processes.

(a) Without DCB

– DCB BIND MOCE=node
– DCB PROCESS ON DIFFERENT

SOCKETS=1
Socket0 Socket1

A process(green)
is splitted into
sockets.

(b) Active pattern

– DCB BIND MODE=socket
– DCB PROCESS ON DIFFERENT

SOCKETS=0
Socket0 Socket1

Processes are
immured in each
socket.

(c) Immure pattern

– DCB BIND MOCE=node
– DCB PROCESS ON DIFFERENT

SOCKETS=0
Socket0 Socket1

Two processes are
swapped between
sockets.

(d) Passive pattern

Fig. 2: Mapping pattern of cores on node controlled by numerical environment.
Two sockets are on the node and four processes are mapped to the node. The
loads lp (passed parameters from the user) of each process are as follows : Pro-
cess0:20, Process1:30, Process2:50, Process3:60

balance” is the main function, and the number of cores bound to each process is
changed by referencing lp that is passed as an argument of the function. After
calling the ”DCB balance” function, users can use the DCB environment inside
”#pragma omp parallel” regions. If the load of each process is expected to vary
significantly from one OMP parallel region to another, calling ”DCB balance”
can maintain a uniform amount of computation for each process in a node.

– DCB MODE POLICY = (”compute” or ”power”): change the binding pol-
icy of the DCB

– DCB DISABLE = (0 or 1): disable the DCB
– DCB PROCESS ON DIFFERENT SOCKETS = (0 or 1): map a process

on a different socket
– DCB BIND MODE= (”node” or ”socket”): Bounding processes to the whole

node or a socket domain

DCB MODE POLICY is used to change the policies of the DCB library. If users
set DCB MODE POLICY=compute or DCB MODE POLICY=power, the DCB
library uses the RC or PA policy, respectively. DCB DISABLE=1 disables the
DCB library. DCB PROCESS ON DIFFERENT SOCKETS and DCB BIND
MODE are used to control the patterns of the core bounds on systems with the
NUMA domain. Fig. 2 presents the relationship between the numerical environ-
ments and mapping patterns on the NUMA domain. In this figure, there are two
sockets and four processes mapped to a node. The four processes have 20, 30,
50, and 60 loads, respectively. Fig. 2(b) presents the mapping pattern with the

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_30

https://dx.doi.org/10.1007/978-3-031-36024-4_30
https://dx.doi.org/10.1007/978-3-031-36024-4_30

8 M. Kawai et al.

numerical environments DCB BIND MODE=node and DCB PROCESS ON D
IFFERENT SOCKET=1. This is the most active pattern for obtaining balanced
loads among the cores. One process is mapped to different sockets depending on
the process loads, as illustrated in Fig. 2(b). If users set BIND MODE=socket
and DCB PROCESS ON DIFFERENT SOCKET=0, the process is mapped
as displayed in Fig. 2(c). With this pattern, the core bound to the process is
immured to the inside of each socket. Fig. 2(d) presents the mapping pattern
with the numerical environments DCB BIND MODE=node and DCB PROCE
SS ON DIFFERENT SOCKET=0. Although this pattern is similar to the most
immure pattern (Fig. 2(c)), it permits moving the process among sockets.

3.2 Creation of load-balanced communicator

In this section, we describe applying the approximate solution obtained by SA
to the execution of the application. A common approach for changing the map-
ping of processes to nodes is to spawn processes and move them by internode
communication. This approach requires many application-side implementation
tasks and a large overhead. Here, we focus on applications where the operations
allocated to each process are determined by the rank ID. In these applications,
we achieve load balancing among nodes by creating a new MPI communicator
that has a new rank ID derived from the solution of the COP. Hereafter, this
communicator is referred to as a load-balanced communicator. In the DCB li-
brary, load balancing among nodes is achieved by process spawning using the
usual MPI functions and the result of the COP. Based on the result of the COP,
”MPI Comm spawn multiple” is called inside the DCB library to spawn a dif-
ferent number of additional processes on each node. There are unused processes
created when launching the program; thus, these processes wait at a barrier syn-
chronization until the end of the program. In addition, one core is allocated as
if it were a process not used for the operation, and all processes are allocated
to that core. The core bound to unused processes is not mapped to the used
processes for computation. Within the DCB library, a new communicator con-
taining all the processes used for computation is generated and returned to the
user.

4 Numerical evaluations

In this section, we demonstrate the effectiveness of DCB using numerical evalu-
ations.

4.1 Target application

In this section, we introduce the target application and its load imbalance.
We consider a lattice H-matrix-vector multiplication (LHMVM) using the

MPI/OpenMP hybrid programming model for distributed memory systems. Its

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_30

https://dx.doi.org/10.1007/978-3-031-36024-4_30
https://dx.doi.org/10.1007/978-3-031-36024-4_30

Title Suppressed Due to Excessive Length 9

1.0E+5

1.0E+6

1.0E+7

1.0E+8

1 10 100 1000 10000

A
m

o
u

n
t

o
f

co
m

p
u

ta
ti

o
n

Process ID

γ=20, num_procs=256
γ=5, num_procs=256
γ=20, num_procs=4096
γ=5, num_procs=4096

g =20, num_procs=256
g =5, num_procs=256
g =20, num_procs=4096
g =5, num_procs=4096

Fig. 3: load imbalance among processes
(problem = 1188kp25)

1.0E+5

1.0E+6

1.0E+7

1.0E+8

1 10 100 1000
Node ID

normal, num_procs=256
load-balance(node), num_procs=256
normal, num_procs=4096
load-balance(node), num_procs=4096

A
m

o
u

n
t

o
f

co
m

p
u

ta
ti

o
n

Fig. 4: Result of applying obtained re-
sult of simulated annealing(SA) (prob-
lem = 1188kp25, parameter γ = 5)

efficient communication patterns ensure that communication costs remain con-
stant even as the number of MPI processes increases. The parallel scalability
of the LHMVM should be significantly improved if the DCB resolves the load
imbalance among MPI processes.

The load imbalance of the lattice H-matrix depends on the number of lattice
blocks into which the target dense matrix is divided. Basically, the large number
of lattice blocks leads the better load balancing. However, the reduction of mem-
ory usage and amount of computation due to approximation becomes smaller.
Fig.3 illustrates the amount of computation bound to each process in 256 and
4,096 processes parallelization with a particular model(1188kp25), which is ap-
proximated by the lattice H-matrix. A parameter γ in fig.3 is used to control
the number of lattice blocks. The amount of computation with γ = 5 is smaller
than γ = 20, but the load imbalance of the γ = 5 among the node is larger than
γ = 20. This trend is observed regardless of the number of processes. Therefore,
the advantage of the lattice H-matrix can be maximized if the load imbalance
is absorbed by approximating with smaller γ.

The evaluation was performed by 50 LHMVMs. To use the DCB library
in LHMVM, we use the amount of computation executed by each process as
the argument lp. Target problems utilizing the lattice H-matrix are ”1188kp25”
and ”human-1x100”(models for the surface charge method of an electromagnetic
simulation)

4.2 Environments and conditions

For the numerical evaluations, we used the Oakbridge-CX (OBCX) and Wisteria
/BDEC-01 Odyssey (WO) systems at the Information Technology Center at
the University of Tokyo. Tables 1 and 2 present the system specifications and
compiler information, respectively. On the OBCX, the turbo boost technology
is enabled.

In the numerical evaluations, we set four processes per node to bring out the
effectiveness of DCB. This condition is the same in the evaluation without the
DCB library. In advance evaluations of the original LHMVM implementation,
we have confirmed that the performance of four processes per node is better

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_30

https://dx.doi.org/10.1007/978-3-031-36024-4_30
https://dx.doi.org/10.1007/978-3-031-36024-4_30

10 M. Kawai et al.

Table 1: System specifications

Specifications Oakbridge-CX
Wisteria/BDEC-01

Odyssey

CPU

Model
Xeon Platinum 8280

A64FX
(Cascade Lake)

Number of cores 56 (2 Sockets) 48
Clock 2.7GHz 2.2GHz

L2-cache 1kB/core 8MB/CMG

Memory
Technology DDR4 HBM2

Size 192GB 32GB
Bandwidth 281.6GB/sec 1,024B/sec

Network
Interconnect Omni-Path Tofu Interconnect D
Topology Full-bisection Fat Tree 6D mesh / Torus
Bandwidth 100Gbps 56Gbps

Table 2: Compiler and options on each system

Oakbridge-CX mpiifort 2021.5.0 -xHost -O3 -ip -qopt-zmm-usage=high

Wisteria/BDEC-01
mpifrtpx

4.8.0 -O3 -Kfast,lto,openmp,zfill,A64FX
Odyssey tcsds-1.2.35 -KARMV8 A,ocl,noalias=s

than that of one process per node. We have confirmed that the performance of
FlatMPI is slightly better than that of four processes per node, but we do not
use flatMPI. This is because LHMVM has a sequential execution part and it
requires a large amount of memory when handling large problems.

To measure the energy consumption of the application, we used the ”power-
stat” command on OBCX and the PowerAPI [7] library on WO. The result of
energy consumption shows a sum of CPUs and memory in the nodes in OBCX,
and the sum of all modules in the nodes in WO. In the WO system, before mea-
suring the energy consumption and computation time, we enabled the retention
feature of every core. The retention feature provides a type of deep sleep in an
A64FX CPU.

4.3 Effectiveness of the load-balancing among nodes using SA

We evaluated the effect of load balancing among nodes by applying the approx-
imate solution of SA. Fig. 4 illustrates the effectiveness of load balancing from
the approximate solution in the 1188kp25 problem with 256 and 4,096 processes
and parameter γ = 5. By applying the approximate solution of SA, the maxi-
mum load was reduced for each condition. We observed similar effectiveness for
the other conditions and problems.

When applying the approximate solution of SA, the method of generating
the load-balanced communicators described in Section 3.2 was used. Then, we
executed LHMVM with one process per node initially, and spawned the required
processes when creating the load-balanced communicator. In the WO system,
the Fujitsu MPI does not support a non-uniform number of processes spawning.
Thus, we spawned the same number of processes on all nodes corresponding to
the node requiring the most number of processes.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_30

https://dx.doi.org/10.1007/978-3-031-36024-4_30
https://dx.doi.org/10.1007/978-3-031-36024-4_30

Title Suppressed Due to Excessive Length 11

4.4 Performance improvement

Figs. 5 and 6 display the computation time of 50 LHMVMs with and without
the DCB library, including the results using the load-balanced communicator
(denoted as ”RC (node-balanced)” in the figures). The core-binding pattern
used for execution with the load-balanced communicator was the active pattern
(Fig. 2(b)). The figures also display the estimated computation time with the
DCB library (2) and the best cases (denotes no load imbalances among nodes).
As the computation node of OBCX is a two-socket NUMA domain, we evaluated
all mapping patterns of the cores on the node to the processes in Fig. 2. For WO,
we only evaluated the active patterns. For all problems and parameters on all sys-
tems, the DCB library improved the computation performance. The performance
improvement of DCB tended to be larger at smaller-parallelism and smaller at
larger-parallelism. This is because the performance in the high-parallel condi-
tion was degraded by the load imbalance among nodes. When using the load-
balanced communicator, the further performance improvement was obtained on
OBCX. The effectiveness of the load-balanced communicator was maximum at
64 processes, and the computation time with the load-balanced communicator
was close to the estimated time on OBCX. By using the DCB library with-
out the load-balanced communicator, we achieved a performance improvement
of 31%–52% for 16 processes and 9%–31% for 1,024 processes. With the load-
balanced communicator, we achieved a performance improvement of 39%–58%
compared with the result without DCB. Compared with using DCB (active),
we achieved a 33%–50% performance improvement for 256 processes. However,
on WO, we could not achieve performance improvement using the load-balanced
communicator with high-parallel conditions. This was due to the increase in com-
munication overhead, as illustrated in Fig. 7. The communication pattern among
the processes became complex when applying the load-balanced communicator.
The communication pattern among processes was not considered when we con-
structed the COP of load balancing among nodes. In particular, the network
topology of WO is a six-dimensional torus, and the communication overhead is
large in complex communication patterns.

We also examined the effect of the DCB library on the parameter γ of the
lattice H-matrix. Without the DCB library, the computation time with γ = 5
was longer than that with γ = 20 in spite of lower memory usage and amount of
computation. This was due to load imbalance, as displayed in Fig. 3. In contrast,
using the DCB library, the computation time with γ = 5 was shorter than or
similar to that with γ = 20. This indicates that the use of the DCB library
improved the benefits of the lattice H-matrix.

The computation time of the PA policy was expected to be similar to that in
conditions without the DCB library. In OBCX, the computation time of the PA
policy was slightly lower than that without DCB. This was because the number
of cores used for each node was reduced. This created a margin for memory
access, and resources for accessing memory by processes that had a large load
were obtained. In WO, the computation time of the PA policy was similar to
that without DCB, as we expected.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_30

https://dx.doi.org/10.1007/978-3-031-36024-4_30
https://dx.doi.org/10.1007/978-3-031-36024-4_30

12 M. Kawai et al.

0

50

100

150

200

10 100 1000

C
o

m
p

u
ta

ti
u

o
n

al
 t

im
e[

s]

Number of processes

estimated dcb
estimated best
DCB disable
DCB RC (Active)
DCB RC (Immure)

(a) human 1x100, γ = 20

0

50

100

150

200

10 100 1000

C
o

m
p

u
ta

ti
u

o
n

al
 t

im
e[

s]

Number of processes

DCB RC (Passive)
DCB PA
DCB RC (node-balanced)

(b) human 1x100, γ = 5

0

20

40

60

80

100

120

10 100 1000

C
o

m
p

u
ta

ti
u

o
n

al
 t

im
e[

s]

Number of processes

(c) 1188kp25, γ = 20

0

20

40

60

80

100

120

140

10 100 1000
C

o
m

p
u

ta
ti

u
o

n
al

 t
im

e[
s]

Number of processes

(d) 1188kp25, γ = 5

Fig. 5: Computatinal time of LHMVM with DCB on Oakbridge-CX

0

20

40

60

80

100

120

100 1000 10000

C
o

m
p

u
ta

ti
o

n
al

 t
im

e
 [

s]

Number of processes

DCB estimated

DCB disable

DCB RC(Active)

(a) human 1x100, γ = 20

0

20

40

60

80

100

120

100 1000 10000

C
o

m
p

u
ta

ti
o

n
al

 t
im

e
[s

]

Number of processes

DCB PA

DCB RC (node-balanced)

(b) human 1x100, γ = 5

0

20

40

60

100 1000 10000

C
o

m
p

u
ta

ti
o

n
al

 t
im

e
[s

]

Number of processes

(c) 1188kp25, γ = 20

0
10
20
30
40
50
60
70

100 1000 10000

C
o

m
p

u
ta

ti
o

n
al

 t
im

e
[s

]

Number of processes

(d) 1188kp25, γ = 5

Fig. 6: Computation time of LHMVM with DCB on Wisteria/BDEC-01 Odyssey

0

40

80

120

no DCB DCB RC DCB
LB(node)

no DCB DCB RC DCB
LB(node)

no DCB DCB RC DCB
LB(node)

C
o

m
p

u
ta

ti
o

n
al

ti
m

e
[s

]

Number of processes

Computation
Communication

256 1024 4096

Fig. 7: Breakdown of execution time in WO (1188kp25, γ = 20)

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_30

https://dx.doi.org/10.1007/978-3-031-36024-4_30
https://dx.doi.org/10.1007/978-3-031-36024-4_30

Title Suppressed Due to Excessive Length 13

0.0E+00

1.0E+06

2.0E+06

3.0E+06

4.0E+06

10 100 1000
Number of processes

estimated dcb
DCB disable
DCB RC (Active)
DCB PA

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 [

J]

(a) human 1x100, γ = 20

0.0E+00

2.0E+06

4.0E+06

6.0E+06

10 100 1000
Number of processes

En
er

gy
C

o
n

su
m

p
ti

o
n

 [
J]

(b) human 1x100, γ = 5

0.0E+00

5.0E+05

1.0E+06

1.5E+06

2.0E+06

10 100 1000
Number of processes

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 [

J]

(c) 1188kp25, γ = 20

0.0E+00

5.0E+05

1.0E+06

1.5E+06

2.0E+06

2.5E+06

10 100 1000
Number of processes

En
er

gy
C

o
n

su
m

p
ti

o
n

 [
J]

(d) 1188kp25, γ = 5

Fig. 8: Energy consumption of LHMVM with DCB on Oakbridge-CX

4.5 Reducing energy consumption

This section evaluates the effectiveness of the PA policy in reducing energy
consumption. Figs. 8 and 9 display the energy consumption for the number
of processes in each system. A reduction in energy consumption using the PA
policy of the DCB library was observed in all conditions. In OBCX, the energy
consumption tended to decrease with high parallelism. This was because the load
imbalance among processes increased with high parallelism, and many cores were
not used for computation due to the DCB library. In OBCX, we achieved a 47%–
63% reduction in energy consumption with 1,024 processes. In WO, we achieved
a 61%–77% reduction in energy consumption with 256 processes and a 46%–56%
reduction in energy consumption with 4,096 processes.

In OBCX, the energy consumption of the RC policy of the DCB library
was higher than that without the DCB, even though the computation time was
shorter. We are assumed to be due to the turbo boost. That is also why the
energy consumption with the PA policy was higher than estimated. In WO, the
energy consumption was higher than estimated because the energy consumption
of the network modules and assistant cores was not considered.

5 Conclusion

In this paper, we propose the DCB approach to reduce load imbalance among
processes. By this approach, we can expect to reduce the computation time
and/or energy consumption for applications for which load balancing is difficult.
In the DCB environment, the load imbalance among processes is rectified by
changing the number of cores bound to each process to equalize the loads of the
cores. We also use SA to consider load balancing among nodes, which cannot

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_30

https://dx.doi.org/10.1007/978-3-031-36024-4_30
https://dx.doi.org/10.1007/978-3-031-36024-4_30

14 M. Kawai et al.

0.0E+00

1.0E+06

2.0E+06

3.0E+06

4.0E+06

100 1000 10000
Number of processes

DCB estimated
DCB disable
DCB RC(Active)
DCB PA

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 [

J]

(a) human 1x100, γ = 20

0.0E+00

1.0E+06

2.0E+06

3.0E+06

4.0E+06

5.0E+06

6.0E+06

100 1000 10000
Number of processes

En
er

gy
C

o
n

su
m

p
ti

o
n

 [
J]

(b) human 1x100, γ = 5

0.0E+00

1.0E+06

2.0E+06

3.0E+06

4.0E+06

100 1000 10000
Number of processes

En
er

gy
C

o
n

su
m

p
ti

o
n

 [
J]

(c) 1188kp25, γ = 20

0.0E+00

1.0E+06

2.0E+06

3.0E+06

4.0E+06

5.0E+06

100 1000 10000
Number of processes

En
er

gy
C

o
n

su
m

p
ti

o
n

 [
J]

(d) 1188kp25, γ = 5

Fig. 9: Energy consumption of LHMVM with DCB on Wisteria/BDEC-01
Odyssey

be achieved using DCB. The results of applying DCB to the lattice H-matrix
demonstrate a reduction in computation time of more than 50% and a reduction
in energy consumption of more than 70% for OBCX and WO.

In this study, core binding to processes was determined based on the param-
eters received from the user in the DCB library. In addition, the number of using
cores is based on the ideal condition that the bottleneck is only load balancing.
In practice, it is necessary to consider the computer architecture and NUMA.
However, it is difficult to create a realistic model that takes into account the com-
plexity of the computer architecture and the characteristics of the applications.
Therefore, in the future, we will study an algorithm for automatically determin-
ing core binding based on a CPU performance counter and other information.
The load of each process with the lattice H-matrix was determined when the
matrix was generated. There are many applications in which the process loads
are changed dynamically in runtime, and we will consider applying DCB to these
applications. Then, the small overhead of changing the core binding is important
to minimize; therefore, we will attempt to reduce this overhead by examining
system calls and other aspects.

For load balancing among nodes, we did not consider the communication pat-
terns among processes. Therefore, we could not achieve performance improve-
ment using the load-balanced communicator. In future work, we will consider the
communication patterns among processes and the network topology of systems
to improve the effectiveness of DCB. We will also investigate an approach for
automatically changing the process mapping to nodes to support dynamic load
balancing. For this investigation, we will refer to research on fault tolerance.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_30

https://dx.doi.org/10.1007/978-3-031-36024-4_30
https://dx.doi.org/10.1007/978-3-031-36024-4_30

Title Suppressed Due to Excessive Length 15

Acknowledgment
This work was supported by JSPS KAKENHI Grant Number 18K18059, 21H03447,
and 19H05662. This work is also supported by ”Joint Usage/Research Center for Inter-
disciplinary Large-scale Information Infrastructures (JHPCN)” in Japan (Project ID:
jh230058).

References

1. Attiya, I., et al.: Job scheduling in cloud computing using a modified harris hawks
optimization and simulated annealing algorithm. Computational intelligence and
neuroscience 2020 (2020)

2. Corbalan, J., et al.: Dynamic load balancing of mpi+openmp applications. In:
International Conference on Parallel Processing, 2004. ICPP 2004. pp. 195–202
vol.1 (2004)

3. Curtis-Maury, M., et al.: Online power-performance adaptation of multithreaded
programs using hardware event-based prediction. In: Proceedings of the 20th an-
nual international conference on Supercomputing. pp. 157–166 (2006)

4. Curtis-Maury, M., et al.: Prediction-based power-performance adaptation of multi-
threaded scientific codes. IEEE Transactions on Parallel and Distributed Systems
19(10), 1396–1410 (2008)

5. Garcia, M., et al.: A dynamic load balancing approach with smpsuperscalar and
mpi. In: Facing the Multicore-Challenge II, pp. 10–23. Springer (2012)

6. Garza-Santisteban, F., et al.: A simulated annealing hyper-heuristic for job shop
scheduling problems. In: 2019 IEEE Congress on Evolutionary Computation
(CEC). pp. 57–64 (2019)

7. Grant, R.E., et al.: Standardizing power monitoring and control at exascale. Com-
puter 49(10), 38–46 (Oct 2016)

8. Hiroshi, N., et al.: Third generation digital annealer technology (2021).
URL https://www.fujitsu.com/jp/documents/digitalannealer/researcharticles/
DA WP EN 20210922. pdf

9. Ida, A.: LatticeH-matrices on distributed-memory systems. In: IEEE International
Parallel and Distributed Processing Symposium (IPDPS). pp. 389–398 (2018)

10. Iwashita, T., et al.: Software framework for parallel bem analyses with h-matrices
using mpi and openmp. Procedia Computer Science 108, 2200–2209 (2017)

11. Klinkenberg, J., et al.: Chameleon: reactive load balancing for hybrid mpi+ openmp
task-parallel applications. Journal of Parallel and Distributed Computing 138, 55–
64 (2020)

12. Korte, B.H., et al.: Combinatorial optimization, vol. 1. Springer (2011)
13. Li, D., et al.: Strategies for energy-efficient resource management of hybrid pro-

gramming models. IEEE Transactions on parallel and distributed Systems 24(1),
144–157 (2012)

14. Nakajima, K., et al.: Communication-computation overlapping with dynamic loop
scheduling for preconditioned parallel iterative solvers on multicore and manycore
clusters. In: 2017 46th International Conference on Parallel Processing Workshops
(ICPPW). pp. 210–219 (2017)

15. Suleman, M.A., et al.: Feedback-driven threading: power-efficient and high-
performance execution of multi-threaded workloads on cmps. ACM Sigplan Notices
43(3), 277–286 (2008)

16. Zaman, M., et al.: Pyqubo: Python library for mapping combinatorial optimization
problems to qubo form. IEEE Transactions on Computers 71(4), 838–850 (2022)

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_30

https://dx.doi.org/10.1007/978-3-031-36024-4_30
https://dx.doi.org/10.1007/978-3-031-36024-4_30

