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Abstract. Design of modern antenna systems heavily relies on numerical opti-

mization methods. Their primary purpose is performance improvement by tun-

ing of geometry and material parameters of the antenna under study. For relia-

bility, the process has to be conducted using full-wave electromagnetic (EM) 

simulation models, which are associated with sizable computational expendi-

tures. The problem is aggravated in the case of global optimization, typically 

carried out using nature-inspired algorithms. To reduce the CPU cost, popula-

tion-based routines are often combined with surrogate modeling techniques, 

frequently in the form of machine learning procedures. While offering certain 

advantages, their efficiency is worsened by the curse of dimensionality and 

antenna response nonlinearity. In this article, we investigate computational ad-

vantages of combining population-based optimization with variable-resolution 

EM models. Consequently, a model management scheme is developed, which 

adjusts the discretization level of the antenna under optimization within the 

continuous spectrum of acceptable fidelities. Starting from the lowest practi-

cally useful fidelity, the resolution converges to the highest assumed level 

when the search process is close to conclusion. Several adjustment profiles are 

considered to investigate the speedup-reliability trade-offs. Numerical results 

have been obtained for two microstrip antennas and particle swarm optimizer 

as a widely-used nature-inspired algorithm. Consistent acceleration of up to 

eighty percent has been obtained in comparison to the single-resolution version 

with minor deterioration of the design quality. Another attractive feature of our 

methodology is versatility and easy implementation and handling. 

Keywords: Antenna design, global optimization, variable resolution models, 

EM-driven design, nature-inspired optimization. 
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1 Introduction 

Contemporary antenna systems are developed to satisfy stringent performance require-

ments imposed by existing and emerging applications (internet of things (IoT) [1], body 

area networks [2], 5G technology [3], implantable devices [4], etc.), enable a range of 

functionalities (multi-band [5] and MIMO operation [6], reconfigurability [7], beam scan-

ning [8]), and, in many cases, feature compact physical dimensions [9]. Fulfilling such 

performance demands leads to topologically intricate structures, whose parameters neces-

sitate meticulous tuning. At the same time, they can be reliably evaluated solely using 

full-wave electromagnetic (EM) analysis. As a matter of fact, EM simulation tools are 

indispensable at all design stages, starting from geometry evolution, through parametric 

studies, to final tuning of antenna parameters. 

 Given the complexity of modern antennas but also the need for handling multiple 

objectives and constraints, performance-oriented parameter adjustment has to be car-

ried out using rigorous numerical optimization methods [10]. The most problematic issue 

thereof is high computational cost, which may be troublesome even for local tuning. 

Global optimization entails incomparably higher expenses, yet it is recommended in a 

growing number of situations, e.g., design of frequency-selective surfaces [11], array pat-

tern synthesis [12], EM-driven miniaturization [13], re-design of antennas over broad 

ranges of operating frequencies. 

 Nowadays, global optimization is primarily conducted using nature-inspired methods 

[14], [15]. Some of the popular techniques include evolutionary algorithms [16], particle 

swarm optimizers (PSO) [17], differential evolution (DE) [18], or firefly algorithm 

[19]. New methods are reported on almost daily basis (e.g., [20]-[22]), yet the differ-

ences between them are often cosmetic. The global search capability is arguably a result 

of exchanging information between candidate solutions processed by the algorithm 

[23], using exploratory/exploitative operators, as well as mimicking social or biological 

phenomena [24]. Popularity of nature-inspired methods stems from their simplicity, 

both in terms of implementation and handling. The downside is remarkably poor com-

putational efficiency. Typical running costs measured in thousands of objective func-

tion evaluations are prohibitive from the perspective of EM-driven design. A possible 

workaround is the incorporation of surrogate modeling [25]-[27]. Shifting the computa-

tional burden into a fast metamodel enables acceleration. In practice, iterative procedures, 

often referred to as machine learning [28], are utilized, where the surrogate serves as pre-

dictor which undergoes refinement using the accumulated EM simulation data. The strat-

egies for generating the infill points may be based on parameter space exploration (iden-

tifying the most promising regions), exploitation (pursuing the optimum) or combination 

of both [29]. In the context of global optimization, the employment of metamodels is 

impeded by the curse of dimensionality, broad ranges of geometry parameters and fre-

quency, as well as antenna response nonlinearity. These can be alleviated by domain con-

finement [30], [31], variable-fidelity approaches [32], or feature-based methodologies 

[33], [34]. 

 The mitigation methods mentioned above address some of the problems pertinent to 

global EM-based antenna design but are not free for the issues on their own. These in-

clude, among others, limited versatility and implementation complexity. From this per-

spective, the employment of variable-resolution models seems to be the simplest yet of-

fering sizable computational benefits. In most cases, it utilizes two levels of fidelity 
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(equivalent networks vs. EM analysis [35]) or resolution (coarse- and fine-discretization 

EM simulations [36]). Using a continuous range of model resolutions might be a more 

flexible option. In the realm of nature-inspired procedures, this idea has been pursued in 

[37]; however, it was demonstrated mainly using analytical functions. 

 This article investigates potential merits of incorporating variable-resolution EM anal-

ysis into nature-inspired optimization of antenna systems. A model management scheme 

is developed, which establishes the model fidelity from a continuous spectrum of resolu-

tions. The latter is controlled by a discretization density of the computational model of 

the antenna under design. The search process starts from the minimum usable resolution 

and gradually increases it as the algorithm reaches convergence. The speedup-reliability 

trade-offs can be worked out by adjusting the model selection profile. Numerical experi-

ments have been conducted using two microstrip antennas and a particle swarm optimizer 

(PSO) as a representative nature-inspired optimization routine. The results demonstrate 

that the search process can be considerably expedited with cost savings of up to eighty 

percent as compared to the single-fidelity PSO version. At the same time, design quality 

degradation is practically negligible. The proposed approach is straightforward to imple-

ment and handle, and can be incorporated into any population-based metaheuristic.  

2 Antenna Optimization. Variable-Resolution Models 

In this section, formulation of the antenna optimization problem and introduction of 

variable-resolution computational models are recalled. The latter are illustrated using a 

microstrip antenna example. 

 

2.1 EM-driven Design. Problem Formulation 

In this work, we use the following formulation of the simulation-based antenna optimi-

zation task. Given the parameter vector x, the aim is to minimize a scalar objective 

function U quantifying the design quality. The optimum parameter vector x* is found 

as  
* argmin ( )U

x
x x                                                      (1) 

Representative examples of optimization scenarios and the associated objective 

function can be found in Fig. 1. Therein, f stands for the frequency, whereas |S11(x,f)|, 

G(x,f), and AR(x,f) are the reflection coefficient, gain, and axial ratio at design x and 

frequency f; A(x) is the antenna size (e.g., the footprint area). Note that in all cases, the 

primary objective is directly optimized, whereas secondary objectives are cast into con-

straints handled using the penalty function approach.  

 

2.2 Variable-Resolution EM Models 

In the design of antennas and microwave components, variable-resolution EM simula-

tions have been already employed for expediting simulation-driven design optimization 

procedures [35], [39]. Yet, in majority of frameworks, only two levels of resolution are 

utilized, i.e., coarse (low-fidelity) and fine (high-fidelity). The performance of any var-

iable-fidelity procedure strongly depends on the evaluation cost and accuracy of the 

low-fidelity model, whose appropriate selection is a challenging task of fundamental 

importance [40]. 
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Fig. 1. Representative antenna design optimization scenarios. 
 

 

 
Fig. 2. Multi-resolution EM models: (a) exemplary broadband monopole antenna, (b) average 

simulation time versus LPW (the vertical lines indicate the values of LPW for the high-fidelity 

model (—) and the lowest practically useful low-fidelity model (- - -)); (c) reflection responses 

corresponding to various discretization densities.  

 

 Here, the low-fidelity EM models are realized using coarse-discretization EM anal-

ysis, which a usual approach in the case of antenna structures. Other possibilities, e.g., 

equivalent networks or analytical models, are not readily obtainable and difficult to 

parameterize. In our approach, a major mechanism employed to accelerate the simula-

tion process is a reduction of the model discretization level. Our numerical experiments 

are carried out using CST Microwave Studio [41], one of the most popular commercial 

EM solvers. Therein, the discretization density is controlled with the use of a single 

parameter, LPW (lines per wavelength).  

 Figure 2 presents an exemplary antenna: its geometry and reflection response |S11| 

evaluated for various values of the LPW parameter. Both evaluation accuracy and the 

simulation cost increase with an increase of the LPW value. The acceptable range of 

model resolutions should be cautiously selected, because below a certain LPW value, 
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the model is no longer usable due to largely inaccurate rendition of antenna character-

istics as shown in Fig. 2. In practice, a visual inspection of family of antenna responses 

suffices to assess the admissible range of LPW: from Lmin, being the lowest value suit-

able for carrying out antenna optimization, up to Lmax, i.e., the highest value represent-

ing the model of the maximum fidelity. The former is normally estimated as the value 

for which the respective model accounts for all meaningful features of the antenna re-

sponse, such as the resonances. Whereas the latter corresponds to the accuracy level 

deemed adequate by the designer. It is most often estimated as the LPW value increas-

ing of which does not bring in any further changes to antenna responses.  

3 Population-Based Optimization with Variable-Fidelity EM 

Models 

The aim of this section is to outline the metaheuristic-based antenna optimization tech-

nique considered in this work. Section 3.1 delineates a generic structure of nature-inspired 

optimization procedures, whereas its integration with variable-resolution model manage-

ment is provided in Section 3.2. Demonstration experiments are delineated in Section 4. 

 

3.1 Nature-Inspired Algorithms. Generic Structure 

Let us first define the main entities, which are conventionally utilized in virtually any 

given nature-inspired algorithm. In the kth iteration, we have the population P(k) = [P1
(k) 

… PN
(k)] of size N, which, depending on algorithm type, may also be referred to as a 

swarm or pack. The assumed number of iterations kmax defines the computational 

budget, which, in turn, decides upon algorithm termination. The aim is to minimize the 

cost function E(P), which quantifies the solution quality. Here, we will use a shortened 

symbol Ek.j instead of a full notation E(Pj
(k)). In particle swarm optimization algorithm 

[17], utilized in this work as a base search engine, the best particle found so far is passed 

over throughout the subsequent iterations (this feature is referred to as elitism).  

The particular ways of creating a new population P(k+1) from the previous one vary 

between different nature-inspired algorithms. For example, in PSO [17] (but also in DE 

[18], and firefly algorithm [19]), the replacement of the individuals is, in general, not 

performed. Instead, the individuals are repositioned in the search space according to the 

assumed rules, usually, by random modifications biased in the direction of the best local 

and global solutions identified in the previous iterations. In PSO, a velocity vector gov-

erning the transfer to a new location is assigned to each particle. The said vector is 

modified with the use of a linear combination of three factors: (i) a random factor, (ii) 

a vector in the direction of the best location of a given particle, and (iii) a vector pointing 

into the direction of the global optimum.  

 

3.2 Variable-Resolution Model Management 

We aim at accelerating metaheuristic-based optimization procedure delineated in Section 

3.1 by exploiting variable-resolution EM models of Section 2.2. In our algorithm, the 

model resolution L is to be continuously modified (from the minimum value Lmin to the 

highest one Lmax) based on the iteration count k  kmax, where kmax is the maximum number 

of iterations. The following adjustment scheme is employed [38] 
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Fig. 3. Accelerated nature-inspired algorithm incorporating multi-resolution EM models: pseu-

docode. The steps specific to the adopted acceleration mechanism: Step 2 (initialization of the 

model resolution level), Step 9 (adjustment of the current model resolution level), and Step 11 

(re-evaluation of the best individual identified so far using the new resolution level). The remain-

ing steps are common for both the basic and accelerated version of the algorithm. 

 

 

min max min

max

( ) ( )

p

k
L k L L L

k

 
    

 
                                      (2) 

where p denotes power parameter. The resolution adjustment scheme (2) is sufficiently 

flexible: (i) for p > 1, L ≈ Lmin throughout majority of optimization course, when close 

to convergence L quickly increases towards Lmax; (ii) for p < 1, Lmin is used only at the 

beginning of the optimization process, with L ≈ Lmax utilized throughout the rest of the 

optimization course.  

A pseudocode of an expedited population-based algorithm employing variable-res-

olution EM models is shown in Fig. 3. At the onset of the optimization process, we set 

L = Lmin (Step 2). Next, the individuals are evaluated at the current resolution level L(k) 

adjusted according to (2) (Step 9). At the end of the current iteration, the best solution 

Pbest is re-evaluated using an updated resolution level, and it is subsequently compared 

(Step 13) to the best solution from the current population (to ensure that the comparison 

is carried out at the same resolution level). This is because the individual being the best 

at previous fidelity level is not necessarily the best at new resolution.  
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Clearly, it is to be anticipated that the higher the p, the higher are potential savings. 

As a matter of fact, these saving may be assessed a priori. The computational expendi-

tures TI of the basic single-fidelity algorithm using the fine EM model of resolution 

Lmax may be expressed as  

max max( )IT N k T L                                                    (3) 

where T(Lmax) refers to the evaluation time of the antenna structure under design at the 

highest resolution level Lmax (for any given model fidelity L, we denote the correspond-

ing evaluation time as T(L)). Whereas the cost of the proposed multi-fidelity optimiza-

tion procedure equals to 

 min max( ) ( 1) ( (1)) ( 2) ( (2)) ... ( 1) ( ( ))IIT N T L N T L N T L N T L k              (4) 

which may be approximated as  
max

0

( 1) ( ( ))
k

II

k

T N T L k


                                                  (5) 

In (5), the multiplier N + 1 stems from the necessity of re-evaluating the best individual 

using current L in Step 11.  

Let us analyse the algorithm running times predicted using (5) for the antenna of Fig. 

2 (see Table 1). The control parameters of the core PSO algorithm are: the population 

size N = 10, with the maximum iteration number kmax = 100. Observe that both N and 

kmax are kept low (for a typical population-based algorithm). The reason is the necessity 

to curb the optimization cost as the responses of the antenna structures are evaluated 

using expensive full-wave EM simulations. Despite the fact that the antenna shown in 

Fig. 2 is relatively simple, the computational expenses provided in Table 1 are still high 

(over five days). Such cost level is, however, unavoidable in simulation-driven antenna 

design. Potential savings due to the proposed accelerated algorithm with respect to 

basic procedure depend on the power factor p. Even for the lowest value of p = 1, the 

anticipated savings reach 50 percent. Whereas for p = 3 savings of over 70 percent may 

be obtained. Decreasing the computational cost to such degree is highly desirable. Yet, 

the reliability of the proposed multi-fidelity procedure remains to be verified. It is es-

pecially of interest, whether and to what extent the computational speedup might be 

detrimental to the design quality. This is going to be verified in Section 4. 
 

Table 1.  Estimated cost of a generic metaheuristic-based algorithm for antennas of Fig. 2 

 

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_29

https://dx.doi.org/10.1007/978-3-031-36024-4_29
https://dx.doi.org/10.1007/978-3-031-36024-4_29


8 

 
Fig. 4. Antennas used for verification of the introduced porcedure: (a) Antenna I [42],and (b) 

Antenna II [43] (ground-plane metallization is marked using light grey color). 

 
Table 2.  Verification antenna structures 
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(a) 

 

(b) 

Fig. 5. Relationship of simulation time on EM model fidelity for antennas of Fig. 4: (a) Antenna 

I, and (b) Antenna II. The resolutions Lmin (the minimum usable resolution) and Lmax (the maxi-

mum resolution of high-fidelity model) are marked using (- - -) and (—) values, respectively. 

4 Demonstration Experiments 

The introduced multi-resolution metaheuristic-based antenna optimization algorithm 

delineated in Section 3 is validated using a triple-band antenna (Antenna I), as well as 

a wideband monopole antenna (Antenna II). The core optimization procedure is the 

particle swarm optimizer (PSO) [41], which has been selected as a widely utilized pop-

ulation-based technique.  

 

4.1 Test Cases 

The test antenna structures utilized for numerical validation of our approach are shown 
in Fig. 4, whereas the relevant details on their parameters, design space (delimited by 
the vectors l and b, i.e., the lower and upper bounds for antenna dimensions, respec-
tively) and objectives, as well as the setup of variable-resolution EM models are pro-
vided in Table 2. Antenna I, presented in Fig. 4(a), is a triple band U-slotted patch using 
L-slot defected ground structure (DGS) [42]. Whereas Antenna II of Fig. 4(b) is a com-
pact ultra-wideband (UWB) monopole antenna with radiator slots [43]. For both struc-
tures, the design goal is to minimize the maximum in-band reflection levels; the formu-
lation of the design problems follows that of the second row of Fig. 1. 

Antenna characteristics are evaluated using the transient solver of CST Microwave 

Studio. The model of Antenna II includes the SMA connector [44]. Table 2 presents 

the setup of variable-resolution EM models for both antennas: the lowest applicable 

resolution (Lmin) and the highest one (Lmax), along with the corresponding simulation 

times. The relationships between the model fidelity and the simulation time for both 

antennas are given in Fig. 5. The time evaluation ratios (fine/coarse model) equals 3.5 
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for Antenna I and 15 for Antenna II. This implies higher possible speedup to be ob-

tained for the latter structure.  

 

4.2 Setup and Numerical Results 

Both verification structures have been optimized with the use of the PSO algorithm 

(swarm size N = 10, kmax = 100, the standard values of the control parameters,  = 0.73, 
c1 = c2 = 2.05, cf. [41]). Benchmarking included four versions of the proposed multi-
fidelity algorithm (for the power factor p = 1, 2, 3, and 4), as well as single-fidelity 
basic PSO algorithm. 

The results are provided in Table 3. Each algorithm has been run fifteen times inde-
pendently. The algorithm performance is assessed using the following indicators: the 
average value of the merit function (i.e., the maximum in-band reflection), and its 
standard deviation, which serves to quantify solution repeatability. Algorithm cost-ef-
ficacy is assessed in terms of the overall execution time, as well as the savings w.r.t 
single-fidelity PSO algorithm. Figures 6 and 7 present the representative optimized an-
tenna responses. 

 

 

Fig. 6. Optimized designs of Antenna I for the representative runs of the single-fidelity procedure 

(—), as well as the proposed variable-fidelity algorithm: p = 1 (- - -), p = 2 (), p = 3 (- o -), p 

= 4  (- x -). Target operating frequencies are indicated using vertical lines. 
 

 

Fig. 7. Optimized designs of Antenna II for the representative runs of the single-fidelity proce-

dure (—), as well as the proposed variable-fidelity algorithm: p = 1 (- - -), p = 2 (), p = 3 (- o -

), p = 4  (- x -). Target operating frequencies are indicated using vertical lines. 

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_29

https://dx.doi.org/10.1007/978-3-031-36024-4_29
https://dx.doi.org/10.1007/978-3-031-36024-4_29


11 

Table 3.  Optimization results 

 

 To verify the sample normality, we performed a Kolmogorov-Smirnov test for the 

merit function values rendered by consecutive algorithm runs: the null hypothesis that 

the results follow a normal distribution of the mean and standard deviation provided in 

Table 3 has not been rejected at the 5% significance level. Moreover, the typical p-

values vary from 0.4 to 0.9. This corroborates that the (normalized) distribution of the 

merit function values is close to normal. This also indicates that the mean and standard 

deviation allow for reliable assessment of the algorithm performance.  

 

4.3 Discussion 

The following summary of the numerical results of Table 3 may be formulated: 

• Considerable computational speedup w.r.t the single-fidelity procedure has 

been achieved through the employment of variable-resolution EM models into 

PSO optimization procedure. The actual level of cost-efficacy depends on the 

value of the power factor p. The lowest savings have been obtained for p = 1 

(around 48 percent on average), whereas the highest ones have been reached 

for p = 4 (around 68 percent on average).   

• The optimization process is reliable for the values of the power factor up 3. 

For higher p, the standard deviation of the merit function value increases, 

which implies deterioration of solution repeatability. Moreover, for both an-

tennas, the p > 3 leads to degradation of the average merit function value.  

• Observe that in this work, the computational budget for PSO algorithm is rel-

atively low (1,000 objective function evaluations), even though the presented 

tasks are quite challenging. The reason for such a low budget is the necessity 

of maintaining practically acceptable CPU cost of the optimization procedure. 

Overall, the employment of variable-resolution models leads to a considerable re-

duction in computational cost of the metaheuristic-based search without degrading de-

sign quality.  Thus, the introduced algorithm may constitute an attractive alternative to 

direct metaheuristic-based optimization of antenna structures. The main advantages of 

our approach are simplicity of implementation and practically acceptable cost. At the 
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same time, it should be emphasized that the procedure is generic because the arrange-

ment and handling of variable-resolution models is straightforward, here, realized using 

a single parameter of the EM solver selected for antenna evaluation. 

5 Conclusion 

This article investigated a possibility of reducing computational costs of nature-inspired 

antenna optimization by incorporating variable-resolution EM models. A simple model 

management scheme has been developed to adjust the fidelity of the antenna analysis. 

The search process starts with the lowest practically useful fidelity and gradually con-

verges towards the high-fidelity representation upon the conclusion of the algorithm 

run. Different adjustment profiles have been tested. The proposed approach has been 

validated using several microstrip antennas. Extensive numerical experiments demon-

strate up to eighty percent reduction of the computational costs with regard to the sin-

gle-resolution algorithm without degrading the design quality. 
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