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Abstract. In the field of Evolutionary Strategy, parameter estimation
for functions with multiple minima is a difficult task when interdepen-
dencies between parameters have to be investigated. Most of the current
routines that are used to estimate such parameters leverage state-of-the-
art machine learning approaches to identify the global minimum, ignor-
ing the relevance of the potential local minima. In this paper, we present
a novel Evolutionary Strategy routine that uses sampling tools deriving
from the Bayesian field to find the best parameters according to a certain
loss function. The Bayesian Recursive Global Optimizer (BaRGO) pre-
sented in this work explores the parameter space identifying both local
and global minima. Applications of BaRGO to 2D minimization prob-
lems and to parameter estimation of Red Blood Cell model are reported.

Keywords: Bayesian inference · Markov-Chain-Monte-Carlo · Cell model.

1 Introduction

Estimating parameters of computational cell models from experimental measure-
ments is often a difficult task that may involve handling large number of degrees
of freedom, high computational costs, and scarcity of data. The estimation is
typically performed by manually changing the values of the parameters, which
can become laborious and time consuming.

With the developments in the machine learning field, researchers have adapted
optimization routines to provide fast and automatic approaches for parameter
estimation [1, 5]. In this context, the idea of finding the global minimum of
some objective function through a Bayesian-like approach that relies on Markov-
Chain-Monte-Carlo (MCMC) method was introduced in reference [2]. Building
on similar assumptions about the probability distribution of the population be-
havior, we propose a Bayesian Recursive Global Optimizer (BaRGO), a novel
Bayesian evolutionary strategy for performing parameter estimation. BaRGO
combines the reliability of Markov-Chain-Monte-Carlo (MCMC) approaches to
estimate the posterior parameters together with probabilistic cluster analysis to
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find multiple minima by assuming a mixture of probability distributions that are
estimated in the routine by an Expectation-Maximization algorithm [4]. In this
sense, BaRGO explores all the minima it encounters in the domain, to find the
best set of parameters for the objective function that are considered to match
the experimental data [13] which can provide deeper insight and understanding
of dependencies between parameters.

Following a brief introduction to Evolutionary Strategy using a statisti-
cal Bayesian perspective in section 2, we present the algorithmic procedure
of BaRGO in section 3. In section 4, we evaluate performance of BaRGO on
2D minimization problems and parameter estimation of Red Blood Cell (RBC)
model.

2 Bayesian inference on population parameters in
evolutionary optimization

Evolutionary Strategies (ES) are a subfamily of stochastic optimization algo-
rithms that investigate a potential solution space using biologically inspired
mechanisms such as selection, mutation, and gene crossover. As a result, in ES,
iterations are referred to as generations, and the set of values evaluated at each
generation is referred to as the population [6].

The main steps in the optimization process are as follows. Given the loss
function f and the solution space S, the goal of the ES algorithm is to to find
x∗ ∈ S such that x∗ = argminx f(x). Assuming that λ different elements are
sampled from the solution space (population), only k are saved (selection). These
are considered to be the best elements that minimize the loss function f . Such
elements are then recombined (via crossover and mutation) to sample additional
λ elements that will represent the new population (the next generation).

From a probabilistic perspective, the operations of crossover and mutation
can be performed by sequentially updating the parameters of the distributions
from which the population is sampled. From the Bayesian perspective of con-
tinuously updating prior beliefs, it is possible to design a MCMC approach that
infers the parameter’s population through sampling using the previous genera-
tion parameters as priors (see [9] for an overview on Bayesian inference).

In this regard, let’s assume that a population xg of size λ, at generation g,
for g = 1, . . . , G, is multivariate Normally distributed in d dimensions with mean
βg and covariance matrix Σg, where

xg =


x1,g

x2,g

...
xλ,g

 βg =


β1,g

β2,g

...
βd,g

 Σg =


σ2
1 σ1,2 . . . σ1,d

σ1,2 σ2
2 . . . σ2,d

...
...

...
σ1,d σ2,d . . . σ2

d

.

From an ES perspective, we can consider βg to be the candidate value which
minimizes f (i.e. βg ≈ x∗) whereas Σg quantifies the uncertainty we have in
proposing that candidate.
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Using the previous generation parameters as prior beliefs, it is possible to up-
date such parameters for the current generation βg and Σg in a Bayesian fashion
through a Gibbs sampler routine that sequentially samples from the full condi-
tional distributions. Indeed, this involves defining semi-conjugate priors for the
mean and for the covariance matrix. A convenient one for βg is the multivariate
normal distribution p(βg) ∼ Nd(µg−1, Λg−1). By selecting the k < λ population
elements which minimize the loss function value within all the generations, the
full conditional distribution for the mean will then be a multivariate Normal
distribution with the following updated parameters:

p(βg | x1, . . . , xk, Σg) ∼ Nd(µg, Λg),

µg = (Λ−1
g−1 + nΣ−1

g )−1(Λ−1
0 µg + nΣ−1

g x̄),

Λg = (Λ−1
g−1 + nΣ−1

g )−1,

where x̄ is the sample average of the current generation. Similarly, an appropri-
ate semi-conjugate prior for Σg is the the inverse-Wishart distribution p(Σ) ∼
inv-Wis(vg−1, S

−1
g−1). Thus, the full conditional distribution is

p(Σg | x1, . . . , xk) ∼ inv-Wis(vg, S−1
g ),

vg = vg−1 + λ,

Sg = Sg−1 + Sβ ,

where Sβ is the residual sum of squares from the population mean βg.
From the full conditional distributions, it is possible to construct a Gibbs

sampler routine that generates posterior samples for βg and Σg. Given a set of
starting conditions, namely {µg−1, Λg−1, vg−1, Sg}, the Gibbs sampler generates
at iteration t, for t = 1, . . . , T , {β(t+1)

g , Σ
(t+1)
g } from {β(t)

g , Σ
(t)
g } according to

the following two steps:

1. sample β(t+1)
g from its full conditional distribution:

– update µg and Λg through x1, . . . , xk and Σ
(t)
g ;

– sample β(t+1)
g ∼ Nd(µg, Λg);

2. sample Σ
(t+1)
g from its full conditional distribution:

– update Sg through x1, . . . , xk and β(t+1)
g ;

– sample Σ
(t+1)
g ∼ inv-Wis(vg, S−1

g ).

Therefore, after a sufficient amount of iterations to ensure the convergence
of the chain, it is possible to have estimates for the parameters of the posterior
by computing the empirical average across the sampled values:

β̂g = E[βt=1...T
g ],

Σ̂g = E[Σt=1...T
g ].

Thus, having updated the new parameters, it is possible to generate a new
population xg+1 by sampling from a multivariate Normal with the posterior
estimates β̂g and Σ̂g.
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3 Bayesian Recursive Global Optimizer (BaRGO)

We propose a Bayesian Recursive Global Optimizer (BaRGO), a routine that
leverages on Bayesian MCMC described above, to iteratively converge at x∗ that
minimizes f . BaRGO provides posterior estimates for each generation g, using
previous generation information as prior beliefs.

At every generation, g, βg and Σg are updated considering the k-best popula-
tion elements encountered following the Bayesian inference approach introduced
in Section 2. For functions with a unique global minimum, after every generation
we can expect a decay in the uncertainty Σg → 0 as βg converges to x∗. However,
when functions exhibit multiple minima x̃∗

1, . . . , x̃
∗
m, the best values selected for

computing the posteriors may belong to different minima, which may result in
the update of βg as the weighted average of the priors and the minima captured
by the k-best elements selected. As a consequence, since there are multiple min-
ima, Σg values will never converge to 0. To solve this issue, BaRGO splits the
non-convex problem into small local convex problems and solves them separately.
Specifically, once the KullBack Leiber divergence [10] between the multivariate
Normal densities of two subsequent generations is smaller than a predefined
threshold, the algorithm realizes that there are multiple minima x̃∗

1, . . . , x̃
∗
m

which are not allowing BaRGO to fully converge. As a consequence, we can
consider this case as the result of population data being generated by a mixture
of multivariate Gaussian distributions. The k-best population elements can then
be re-grouped into m distinct clusters using an Expectation-Maximization (EM)
approach [4, 15]. Once the clustering is deployed, BaRGO is recursively applied
to each cluster, producing a local result for each of them β1, ...,βm. Local results
are then compared, while the best one is returned as global minimum.

The upside of using a model-based approach to cluster data is the ability
to use information criteria such as the Bayesian Information Criterion (BIC) to
perform model selection on the most suited number of clusters given the current
population. Indeed, the EM step is applied multiple times on a grid of a potential
number of clusters. On each of these, the BIC is evaluated and the one with the
lowest score on average is selected as the most suited one.

From implementation perspective, ES are in general highly parallelizable,
which makes them perfectly suitable for the parameter estimation of computa-
tionally intensive models. Specifically, the evaluation of the population elements
can be performed in parallel, hence the computational time of a single generation
can be reduced to the computational time of single population element. Each
population element can in turn be evaluated in parallel, exploiting HPC solvers.

4 Applications of BaRGO

4.1 Estimating function parameters in 2D minimization problems

The current state-of-the-art ES method, the Covariance Matrix Adaptation Evo-
lutionary Strategy (CMA-ES) [8], exploits a similar idea as it samples directly
from a multivariate Normal distribution [7]. In preliminary studies, we compare

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_27

https://dx.doi.org/10.1007/978-3-031-36024-4_27
https://dx.doi.org/10.1007/978-3-031-36024-4_27


BaRGO 5

performance of BaRGO and CMA-ES in a 2D minimization problem setup on
three traditional functions: Sphere (also known as the cone), Schwefel and Ras-
tring functions. The peculiarities of these functions are entailed in their number
of minima: the Sphere function exhibits a single minimum, whereas Rastring and
Schwefel have multiple minima. Obtained results are reported in Figure 1. The
evolution of the mean and the standard deviation of the sampling distributions
N2(Xg, Σg) with X = [X1, X2] and Σg with standard deviations σ1 and σ2, are
reported to compare the speed of convergence of both algorithms. In order to
perform proper comparisons, since CMA-ES only search for the global optima,
we apply the recursive call of BaRGO only to the cluster which exhibits the best
candidate value, which means that we do not explore all the possible minima. In
all three cases BaRGO converges with smaller number of function evaluations
than CMA-ES, which translates to faster convergence properties, as seen from
the decay-rate of standard deviations in Figure 1. These preliminary studies
demonstrate interesting properties of BaRGO that deserve further investigation
and analysis.

Fig. 1: Performance comparison between CMA-ES and BaRGO on Sphere (upper
row), Rastring (middle row) and Schwefel (lower row) functions.
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4.2 Estimating the RBC model parameters using data from optical
tweezers experiment

Optical tweezers is an experimental technique based on optical or laser traps
that is used to stretch cells in one or more directions by trapping beads that are
strategically attached to the cell surface [3]. The different deformations in the
axial and transverse diameter of the cell (Figure 2), resulting from the stretching
force applied, provide information regarding the elastic properties of the cell.
For this application, using experimental data from [14], we tested BaRGO by
estimating the parameters of the RBC model from [16]. In this coarse-grained
model, which we implemented in LAMMPS [12], the cell membrane is modeled
using surface triangulation with Nv = 5000 vertices connected with Worm Like
Chain (WLC) links. The parameters of the model that we estimate are the WLC
persistence length, p, the membrane bending coefficient, kbend, as well as the area
and volume conservation coefficients, ka and kv. These parameters play a key
role in defining the elastic properties of the RBC model. For detailed description
of the model and its parameters we refer to reference [16]. In order to speed up
convergence the search space of each coefficient is constrained. Specifically, we
limit the search for the persistence length between 0 and 0.512 X 10−7 (the later
value is equal to maximum length of the links in the WLC model, lmax [16]),
kbend between 0 and 1000, and both kv and ka between 0 and 1000000.

Transverse diameter
Axial diameter

0pN 90pN 180pN

Fig. 2: (Left) Optical tweezers experiment: RBC shape evolution at different
stretching forces (0, 90, and 180 pN). (Right) Estimation RBC model’s param-
eters

Similar to experiment, we apply in simulations stretching force and mea-
sure the cell deformation by computing the deformation along the axial (x) and
transverse diameter (y). With xF and yF , we refer to the axial and transverse
diameters measured after applying a stretching force F . Six different values of
stretching force are considered to perform the fitting of parameters, with corre-
sponding values for axial and transverse diameters taken from experimental data
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from reference [14]. Thus, the loss function to minimize is defined as follows:

Loss =
∑

F∈[16,38,88,108,150,192]

|x̃F − xF |+ |ỹF − yF |.

where x̃F and ỹF are the deformations in the axial and transverse diameter
computed in simulation.

In the optimization process, BaRGO managed to find multiple minima, re-
ported in Table 1. The values of the loss function in µm are also reported for each
minima in the table. The overall cell stiffness is mainly defined by the WLC po-
tential used in the RBC model. Specifically, the values of the persistence length,
p are very similar in all minima, while the values of bending coefficient kbend
and the coefficients for the constant area and volume, ka and kv, can vary sig-
nificantly without affecting the simulation results (Figure 2). We note that the
surface area and volume are well conserved in all cases with the average fluctua-
tions of 0.5% and 0.1%, respectively. The non uniqueness of the set of parameters
that minimizes the loss function either might be due to the experiment itself or
to the selected measurements, axial and transverse diameters, which may not
be not sufficient to capture the detailed behaviour of the RBC membrane. Re-
lated discussion can be found in [11], where additional data are proposed to be
collected in optical tweezers experiments.

Parameters 1stminima 2ndminima 3rdminima 4thminima 5thminima 6thminima 7thminima Params from [16].

p 4.14x10−9 4.15x10−9 4.17x10−9 4.11x10−9 4.23x10−9 4.13x10−9 4.11x10−9 3.43x10−9

kbend 362 438 486 674 602 372 625 200
ka 752794 597984 525380 663420 722226 513549 743761 6000
kv 262911 698463 471066 186937 108131 328961 83505 6000

Loss 2.85 2.89 2.9 2.88 2.83 2.89 2.87

Table 1: Parameters resulted from of the optimization process

5 Conclusions

We propose BaRGO, a novel Evolutionary Strategy algorithm that follows a
Bayesian approach and by recursively calling itself is able to find multiple min-
ima of loss function f . Convergence performance of BaRGO was shown to be
comparable to the current state-of-the-art CMA-ES model in preliminary stud-
ies. Finally, we have applied BaRGO for estimating RBC model parameters using
data from the optical tweezers experiment.

One of the drawbacks of BaRGO is its computational intensity, requiring
an MCMC cycle at each iteration. Despite this, it can still be a useful tool in
cases where complex models require parameter estimation and multiple minima
need to be explored to better understand the model and dependencies among
parameters.
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