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Abstract. Epidemics of acute respiratory infections, such as influenza
and COVID-19, pose a serious threat to public health. To control the
spread of infections, statistical methods and mathematical models are
often used to estimate and forecast epidemic indicators. The assessment
of values of these indicators might be impacted by the uncertainty in
the initial data used for model calibration. The dependence of modeling
results on accuracy of the data can be huge, and the lack of its con-
sideration, which is typical for most works on modeling the spread of
epidemic ARIs, makes it difficult to correctly predict the effectiveness
of anti-epidemic measures. In this research, we present methods and al-
gorithms for uncertainty estimation in retrospective analysis and fore-
casting of the incidence of epidemic ARIs. The uncertainty assessment is
performed by replicating simulated incidence curves with assumed ran-
dom errors which distribution is defined by the variance of the original
incidence dataset. The application of the methods is demonstrated on
an example, with influenza outbreak in St. Petersburg, Russia, as a case
study.
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1 Introduction

Epidemics of acute respiratory viral infections, with influenza and COVID-19
being the leading ones, pose a serious threat to public health and the economic
development of the affected countries [13]. To contain the epidemic spread, health
authorities use comprehensive measures, such as quarantine and vaccination. To
provide adequate justification to the planned interventions, health organs often
rely on statistical and mechanistic models calibrated to disease incidence data.
One of the most popular approaches is connected with so called compartmen-
tal models. Compartmental models have been a powerful tool in mathematical
modeling of epidemiological processes for many years. During the COVID-19
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they were actively used to predict the evolution of the pandemic and to estimate
the effect of health interventions. Comparing to the prediction and decision sup-
port systems based on machine learning methods, such as deep neural networks,
the output of the compartmental models is much easier to interpret. Using in-
terpretable models is beneficial for decision makers compared to ’black box’
approaches, which contributes to the popularity of classical mechanistic models
in analysing epidemic dynamics. A comparison of the strengths and weaknesses
of the mentioned approaches can be found in [21].

Modeling of epidemiological processes is often a challenging task, considering
the fact that the epidemiological data is prone to errors. As a consequence, the
modeling output might not properly represent the real situation, which leads
to subpar policies in epidemic containment. It is crucial to employ the systems
that consider and unite all potential sources of uncertainty to increase the trust
to decisions made on their basis. Main difficulties that can cause a misleading
prognosis by the models are described in [27]. Since one of the main components
of the modeling framework is input data, its quality and quantity influences the
uncertainty in the output of the model.

The aim of this work is to characterize uncertainty in ARI incidence data,
estimate the confidence intervals for model parameters and assess the corre-
sponding variation in disease dynamics forecasts. For this purpose, we use an
influenza epidemic model employed in our earlier research [8]. This model is de-
scribed in detail in Section 2. Section 3 provides a description of experiments for
parameter uncertainty estimation using the computational approach presented
by Chowell et al [3]. The results are discussed in Section 4.

2 Methods

2.1 Incidence data

The dataset used in the study was based on the data provided by the Research
Institute of Influenza. By combining ARI incidence data in 2010–2011 for Saint
Petersburg, Russia, and the results of virological testing performed during the
same season, we found the numbers for weekly clinically registered cases of ARI
attributed to different influenza strains [15]. Although in this research only one
season was used in the experiments, the described algorithm is versatile enough
to be applied to any other epidemic season in a given Russian city which has
sufficient volume of reported incidence and virological testing.

2.2 Modeling framework

The epidemic model used in this study is a SEIR–type discrete compartmental
model represented by a system of difference equations. This model has a flexible
structure which allows to distinguish infections caused by different influenza
strains [15] and track them separately in different age groups [14]. In this paper,
we use the simplest version of the model structure, in which we do not regard
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age groups and specific strains. The following system of equations is used in the
model:
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where x
(h)
t+1 corresponds to the fraction of susceptible individuals at the time

moment t+1 with exposure history h ∈ 1, 2, yt+1 corresponds to the amount of
newly infected individuals at the time moment t+1, yt corresponds to the total

amount of infected by the time t. A group x
(1)
t of susceptible individuals with

exposure history state h = 1 is composed of those individuals who were subjected

to infection in the previous epidemic season, whereas a group x
(2)
t with exposure

history state h = 2 is regarded as naive to the infection. The parameter α(h)

is a fraction of population exposed to the infection in the preceding epidemic
season, h ∈ 1, 2. The variable µ ∈ [0; 1) reflects the fraction of population which
do not participate in infection transmission. The piece-wise constant function
gτ reflects the change in individual infectiousness over time from the moment
of infection. The parameter β is the intensity of effective contacts, ρ is the
population size. Due to immunity waning, the individuals with the history of
exposure to influenza virus in the preceding season might lose immunity in the
following epidemic season. We assume that the fraction a of those individuals,
a ∈ (0; 1), becomes susceptible, whereas 1− a individuals retain their immunity
by the moment of the modeled epidemic. We also assume that α(1) = 1−α(2) = α,
with the proportion α of people exposed to our generic influenza virus strain
being a free parameter. More details about the model can be found in [8].

2.3 Calibration algorithm

Model calibration procedure consists in finding parameter values which deliver
the optimum for the optimization function (1). In this function, weighted sum
of squared residuals is minimized. The residuals are calculated as the difference
between the incidence data (Z(dat)) and the simulated incidence values (Z(mod))
for each week. In the previous studies [16], we estimated a plausible range for
the epidemiological parameters, which is given in Table 1.

F
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Z(mod), Z(dat)
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Table 1: Estimated epidemiological parameters for model fitting
Definition Description Value range

α Individuals with the history of exposure in the previous
season

(0.005, 0.9)

β Intensity of infectious contacts (0.03, 0.24)
a Fraction of previously exposed individuals who will lose

immunity in the following epidemic season
(0.0, 1.0)

µ Fraction of population which do not participate in the
infection transmission

0.9

The weights wi included in the formula (1) are used to reflect the ’impor-
tance’ of fitting the model curve to the particular data points. In case of seasonal
influenza, the data closer to the peak have higher plausibility, because the lab-
oratory sample sizes tend to become bigger during a full-fledged outbreak and
thus the proportion of different virus strains in the overall ARI incidence is cal-
culated more precisely. Thus, for weight estimation we use the formula wi = σ−d,
where d is the distance of the current data point from the peak in time units
(weeks), σ is a parameter related to decreasing rate with growing distance from
the peak. More details on model calibration could be found in [14].

The time step of the model is one day, whereas the incidence data has a time
step of one week, so to be able to compare the incidences we derive simulated
weekly incidence by summing and interpolating the obtained daily values.

To align the simulation timeline t = 0, 1, . . . with the dates of the epidemic
dataset, we assume that the maximum weekly incidence should be attributed to
the same time moment in real and simulated data, which gives us a reference
point for matching in time the model with data.
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Fig. 1: (a) The model calibration to incidence data of the single epidemic season
of ARI in St. Petersburg, Russia. Green circles represent the reported weekly
case incidence, red line shows the model trajectory, R2 stands for the coefficient
of determination. (b) The plot of residuals, CV stands for the coefficient of
variation.
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Figure 1 displays the obtained model best fit. The pattern of the residuals
justifies that our model offers a fairly adequate match for the epidemic data.

2.4 Forecasting

In addition to the epidemic indicators that are assessed by retrospective analysis
of the full incidence dataset, we aim to assess the forecasting uncertainty. The
prediction algorithm is based on model calibration on incomplete data which
was implemented by the authors in earlier research [17]. In the present study, we
modified the prediction algorithm to make it suitable for the current model, and
added a new method of aligning in time the simulated curve with the incidence
dataset.

In overall, the calibration algorithm on incomplete data which produces a
prediction curve does not differ much from the procedure of calibration on com-
plete data. The only difference is in the fact that we do not know a day of
the maximum incidence which we used to align the model time frame with real
time. To solve this issue, two types of prediction algorithms were proposed with
distinct alignment procedures:

– Primary algorithm, in which we loop through possible time moments of
maximum incidence tn to tn+k, where tn is the last known incidence from
the incomplete dataset and k = const is a calibration parameter. During
each iteration, we assume that the regarded point tn+i is the time moment
of maximum incidence and we perform the model calibration based on that
assumption. As a result, instead of one calibration run in case of the com-
plete dataset we have to perform k calibrations. In the end, we compare
the obtained k values of function (1) and select the parameter values which
deliver the optimum for (1).

– Auxiliary algorithm, in which we assume that the time moment t = 0
corresponds to the first date of the incidence dataset, thus we replace the
alignment by peak with the alignment by the first day of the epidemic. In
general case, due to the uncertainty in detection of the influenza epidemic
onset in the ARI dataset [17], it is hardly possible to establish the starting
date in an incidence dataset with certainty, so the auxiliary algorithm cannot
be employed. At the same time, this algorithm is suitable in case of COVID-
19 outbreaks when the starting moment of each wave is more or less defined,
and, as it will be discussed later, for making predictions on bootstrapped
data. Since for any incidence dataset the first day may be clearly defined,
there is no need in looping through possible time alignment alternatives (i.e.
only one calibration run is needed), which makes the auxiliary algorithm
much faster compared to the primary algorithm. The described algorithm
might be also used without changes for the model calibration on complete
data (i.e for the retrospective analysis).
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2.5 Uncertainty quantification

Sources of uncertainty. Uncertainty in epidemiological data is an important
factor to consider since it plays one of the key roles [9] in accuracy of the mod-
eling output along with the structural complexity of models employed [8]. Error
measurement in epidemic studies stays one of the main problems of mathematical
epidemiology [23]. In [27], the authors highlight the major sources of uncertainty
such as a lack of knowledge, biased data, measurement errors, stochasticity of the
process, parameter uncertainty, redundant complexity and erroneous structure
of the utilized model. Among the sources of uncertainty related in particular to
input data, the following ones could be distinguished:

• Noise in incidence data;
• Bias caused by missed historic records during national holidays, scarce data;
• Under-reported cases at the time of weekends;
• Implausible data, which is not reflecting the trend of the epidemic;
• Confounding factors that can or cannot be measured.

The complexity of combination of these factors makes it difficult to estimate
the resulting error structure. Thus synthetic error structure models are often
used based on known probabilistic distributions.

Relevant research. There are various ways to perceive and interpret the un-
certainty of the model parameters related to the input data. Valero and Morillas
[20] used the bootstrap method based on resampling of incidence data, relying
on the fact that they have the greatest influence on the uncertainty of modeling
process. Another method is parametric bootstrapping approach from the best-
fit model solution proposed by Chowell [24]. This method was successfully used
in a handful of studies [4, 19] to characterize the uncertainty of model parame-
ters. The paper [1] identifies the problem of characterization of uncertainty to
improve decision making procedures in risk assessments. There is a plethora of
research such as [1, 27, 28] that discuss the necessity to consider the corruption
of data or the potential bias in it during the assessment of an epidemic indi-
cators. However, not all of these studies provide quantification of this impact
on the modeling results. Lloyd [18] and Samsuzzoha et al [26] performed un-
certainty analysis of the basic reproduction number with various mathematical
and statistical methods. Chowell [3] discusses methods of parameter uncertainty
quantification in dynamic models, as well as evaluation of confidence intervals.
In paper [11] Krivorot’ko et al. formulated an inverse problem of refining the
model parameters and studied the reliability of forecasts by the epidemic models
based on the COVID-19 incidence. For the purpose of our research, we selected a
method of uncertainty quantification from [3], which is used further in the study.

Modeling uncertainty. Our main objective in modeling uncertainty is to se-
lect and test particular error structures, which are compatible with incidence
data and allow us to encapsulate the sources of uncertainty mentioned earlier.
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To model the uncertainty of the input data, the Poisson error structure may be
used, as it is one of the most popular error models. The modeling framework
described by Chowell [2], [3] introduces a bias via generating a random value
with Poisson distribution with the mean equal to the number of new registered
infection cases in a fixed time step. In our case, we applied the given distribu-
tion to weekly incidence dataset. Figure 2 illustrates the variance of simulated
residuals acquired after n = 5000 resamples on the initial dataset. The empir-
ical distribution demonstrates that the simulated uncertainty is higher on the
epidemic peak, while sample values attributed to low incidence (the beginning
and the end of the epidemic wave) do not show much variability.

Another approach, which is negative binomial error structure [12], can be
used to model higher variance levels in the data as in this case the mean and
variance could be set independently, based on the variability of residuals. It can
be useful for disease modeling in situations, where distributions with overdisper-
sion provide better representation of the actual data [25]. Taking the epidemic
data overdispersion into account in simulation is often crucial, considering that
in practical situations, especially in sparse time series, variance can be much
larger than the mean and this fact should not be ignored [10]. For cases of ex-
cessive data variability we used error structure based on zero-truncated negative
binomial distribution [7] to exclude zeros that were not eliminated in the data
correction process.
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Fig. 2: The empirical distribution of residuals obtained using Poisson error struc-
ture
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3 Experiments and results

3.1 Interval estimates of model parameters

To actually perform the estimation of the parameter uncertainty, we use the
parametric bootstrap method [6] based on best-fit model curve resampling [5].
Such choice allows us to take into account different approaches to treating pa-
rameter uncertainty. The implemented algorithm has the following steps:

• Obtain the best-fit parameter values θ̂ = (α̂, β̂, â) for simulated incidence

Z
(mod)
1 (θ̂) and corresponding residuals ρi = z

(mod)
i (θ̂)− z

(dat)
i by calibrating

the model to the original incidence data incidence.

• Generate m = 200 datasets Z
′(dat)
1 , ..., Z

′(dat)
200 based on Z(mod)(θ̂) incidence

curve with the addition of generated residuals: z
′(dat)
i = z

(mod)
i (θ̂)+δi In the

first set of experiments, to determine the residual value δi at time ti we used

Poisson distribution function δi ∼ Pois(λ(ti)) in which λ(ti) = z
(mod)
i (θ̂) [2].

In the second set of experiments, the assumed error structure was based on
zero-truncated negative binomial distribution. In the latter case, the residual
values δi have a distribution δi ∼ NB(r, p) with parameters r and p defined

so that the expressions µ = z
(mod)
i (θ̂) and σ2 = ν hold true. The value ν was

derived experimentally due to the fact that there is no generally accepted
form for calculating the variance for the simulated error structure, given that
it must cover the potential error spread in the incidence data. As a result of
empirical observations, the variance of the error is considered equal to the
standard deviation of residual sample ρ, i.e. ν = σρ.

• Re-estimate the model parameters by calibrating the model on the generated

data Z
′(dat)
1 , ..., Z

′(dat)
200 . At this step we assume that the initial day of an

epidemic is clearly defined (it was essentially established during the previous
steps when the model was calibrated to original data), thus, the calibration
procedure might be performed by means of an auxiliary algorithm (matching
by initial day of the epidemic).

• Characterise the distribution of model parameters. θ∗1 , ..., θ
∗
m The percentile

method [22] was used to obtain confidence intervals.

The described approach allows flexibility in choosing the error structure, which
is its advantage. The computational experiments revealed the major drawback of
this method, which is its computational complexity [3]. However, the usefulness
of this technique exceeds its limitations, which justified its recurrent usage in
various studies [4, 19]

Figure 3 demonstrates a set of curves compared to the initial model in boot-
strap procedure, while Figure 4 and Table 2 show results of the uncertainty
estimation for epidemiological parameters, with total number of the infected
chosen as an example.
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Fig. 3: Visualization of re-fitted curves after bootstrap procedure for the epidemic
season of ARI at 2010-2011 in St. Petersburg, Russia, for Poisson (a,b) and
negative binomial (c,d) error structures

4 Model forecast

In this section, we demonstrate how the uncertainty quantification approach
can be applied for interval forecasting. In this case, the bootstrapped datasets
are generated in the same way as it was described earlier, i.e. based on the
simulated modeling curve. The simulated incidence values for each week were
used as mean values of the bias with Poisson and negative binomial distributions.
Lower incidence values produce narrower distribution of the synthetic data points
around the mean, and vice versa. As it is demonstrated in Fig. 5, the sample
distribution of 200 bootstrapped incidence values with Poisson error for 15th

week is wider than those distributions for 25th and 10th weeks, because it is
closer in time to the peak of the outbreak.

During the prediction procedure, we use the calibration algorithms described
in Section 2.4. The first step includes the calibration based on iterative align-
ment of the epidemiological peak (primary algorithm). During the resampling
procedure, an auxiliary algorithm is used to calibrate the model to the boot-
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Fig. 4: The empirical distributions for parameter estimations after re-fitting of
parameters to the single epidemic season with different error structures. Dashed
vertical line represents the median of given parameter.
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Table 2: Interval estimates for epidemic indicators and fit quality

Mean 95% CI Mean 95% CI

Total recovered 226948.79 (226091.13, 227849.43) 223786.87 (201687.25, 238776.42)
R2 0.99997 (0.99994, 0.99999) 0.9576 (0.9116, 0.9842)

Parameter
Poisson Negative binomial
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Fig. 5: The simulated residuals empirical distribution obtained using Poisson
error structure visualised on the given outbreak

strapped incidence curves. Figure 6 shows a result of the forecasting procedure.
The prediction was performed on the data samples comprised of first 5 and 7
data points after the outbreak inception. The grey curves show the variability
of the forecast. A bunch of curves which correspond to simulated datasets with
Poisson error distribution (Figure 6a, 6c) is quite narrow which does not cor-
respond to the distribution of incidence data. Thus, it could be assumed that
there are some sources of uncertainty introducing overdispersion into the data
that should be modeled by some other distribution — for instance, negative
binomial distribution. In fact, the bootstrapped curves with the bias generated
according to negative binomial distribution provided coverage of the most data
points, which may be seen in Figures 6b, 6d. Figure 6 also demonstrates that
the width of the obtained set of curves depends on the size of data sample used
for the calibration. The less amount of data is used, the wider a bunch of the
bootstrapped curves is, which is notable in figures 6b and 6d. The quality metric
used for evaluating the forecast quality is the root mean squared errors (RMSE):

RMSE(y, ŷ) =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2.

This value is calculated for every prediction curve, thus forming a sample. The
means and CI for the samples of RMSE values are provided in Table 2 for the
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forecasts made with 5, 6, and 7 initial data points and two error distributions
(Poisson and negative binomial).
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Fig. 6: Forecast visualization for the model calibrated on samples of 5 (a,b) and
7 (c,d) data points; gray curves represent the uncertainty in the forecast with
Poisson (a,c) and negative binomial (b,d) error structures, cyan curve is the
model best fit to the data sample, the red line is a prediction.

Table 3: The root mean squared errors of the forecasts

Mean 95% CI Mean 95% CI

5 11823.2168 (11819.3652, 11827.0683) 13229.16249 (13012.460, 13445.8649)
6 9001.0666 (8996.8640, 9005.2692) 8529.351404 (8369.3499, 8689.35282)
7 9775.0136 ( 9767.2357, 9782.7916) 7564.4317 (7459.4304, 7669.4331)

Sample
size

RMSE, Poisson RMSE, Negative binomial

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_23

https://dx.doi.org/10.1007/978-3-031-36024-4_23
https://dx.doi.org/10.1007/978-3-031-36024-4_23


Accounting for data uncertainty in modeling acute respiratory infections 13

5 Conclusion

In this paper, we proposed an algorithm which is able to estimate parameter and
forecasting uncertainty caused by the variance in the incidence data. For that
purpose, by exploiting a framework for uncertainty estimation in epidemiological
setting proposed by Chowell in [3], we have performed uncertainty quantification
procedures and the interval prediction of disease incidence on the limited data
points. In our case study, the confidence intervals obtained by assuming Poisson
error structure are rather narrow if compared with variance in initial data, which
raises some questions about the adequacy of this error structure. It is shown that
negative binomial error structure is a better solution to account for observed
overdispersion in the epidemic data. It is worth noting that the variance of this
distribution was set somewhat arbitrarily based on few experiments. Ideally,
the assessment of variance should be performed after extensive computational
experiments, which will help establish the most adequate variance-to-mean ratio.

The presented uncertainty assessment methods and their planned develop-
ment make it possible to give recommendations on what nomenclature and fre-
quency of data collection related to the dynamics of acute respiratory viral in-
fections is necessary and sufficient for retrospective analysis and forecasting of
incidence with a given level of accuracy. Although so far we tested the described
methods only on influenza outbreak data, they can be easily applied for analysing
the outbreaks of other epidemic ARIs, such as COVID-19. After further testing
and validating the modeling and forecasting framework described in the paper,
we plan to adapt it for the use in real-time influenza and COVID-19 surveillance
in Russian Federation.

References

1. Burns, C., Wright, J., Pierson, J., et al.: Evaluating uncertainty to strengthen
epidemiologic data for use in human health risk assessments. Environmental Health
Perspectives 122(11), 1160–1165 (2014)

2. Chowell, G., Ammon, C., Hengartner, N., Hyman, J.: Transmission dynamics of
the great influenza pandemic of 1918 in Geneva, Switzerland: Assessing the effects
of hypothetical interventions. Journal of Theoretical Biology 241, 193–204 (2006)

3. Chowell, G.: Fitting dynamic models to epidemic outbreaks with quantified uncer-
tainty: A primer for parameter uncertainty, identifiability, and forecasts. Infectious
Disease Modelling 2(3), 379–398 (2017)

4. Chowell, G., Luo, R.: Ensemble bootstrap methodology for forecasting dynamic
growth processes using differential equations: application to epidemic outbreaks.
BMC Medical Research Methodology 21 (2021)

5. Davison, A.C., Hinkley, D.V., Young, G.A.: Recent developments in bootstrap
methodology. Statistical Science 18, 141–157 (2003)

6. Efron, B., Tibshirani, R.: Bootstrap methods for standard errors, confidence inter-
vals, and other measures of statistical accuracy. Statistical Science 1, 54–75 (1986)

7. Hilbe, J.M.: Negative Binomial Regression Second Edition. Cambridge University
Press (2011)

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_23

https://dx.doi.org/10.1007/978-3-031-36024-4_23
https://dx.doi.org/10.1007/978-3-031-36024-4_23


14 K. Sahatova et al.

8. Huaman, I., Plesovskaya, E.P., Leonenko, V.N.: Matching model complexity with
data detail: influenza propagation modeling as a case study. 2022 IEEE Inter-
national Multi-Conference on Engineering, Computer and Information Sciences
(SIBIRCON) pp. 650–654 (2022)

9. Jurek, A., Maldonado, G., Greenland, S., et al.: Exposure-measurement error is fre-
quently ignored when interpreting epidemiologic study results. European Journal
of Epidemiology 21, 871–876 (2006)

10. Kimab, D.R., Hwang, S.Y.: Forecasting evaluation via parametric bootstrap
for threshold-INARCH models. Communications for Statistical Applications and
Methods 27, 177–187 (2020)

11. Krivorot’ko, O., Kabanikhin, S., Zyat’kov, N., et al.: Mathematical Modeling and
Forecasting of COVID-19 in Moscow and Novosibirsk Region. Numerical Analysis
and Applications 13, 332–348 (2020)

12. Kulesa, A., Krzywinski, M., Blainey, P., Altman, N.: Sampling distributions and
the bootstrap. Nature Methods 12, 477–478 (2015)

13. Lee, V.J., Tok, M.Y., Chow, V.T., Phua, K.H., et al.: Economic analysis of pan-
demic influenza vaccination strategies in Singapore. PLOS One 4(9), 1–8 (09
2009). https://doi.org/10.1371/journal.pone.0007108

14. Leonenko, V., Bobashev, G.: Analyzing influenza outbreaks in Russia using an
age-structured dynamic transmission model. Epidemics 29 (2019)

15. Leonenko, V.N.: Herd immunity levels and multi-strain influenza epidemics in Rus-
sia: a modelling study. Russian Journal of Numerical Analysis and Mathematical
Modelling 36(5), 279–293 (2021)

16. Leonenko, V.N., Ivanov, S.V.: Fitting the SEIR model of seasonal influenza out-
break to the incidence data for Russian cities. Russian Journal of Numerical Anal-
ysis and Mathematical Modelling 26, 267–279 (2016)

17. Leonenko, V.N., Ivanov, S.V.: Prediction of influenza peaks in Russian cities: Com-
paring the accuracy of two SEIR models. Mathematical Biosciences & Engineering
15(1), 209 (2018)

18. Lloyd, A.: Sensitivity of model-based epidemiological parameter estimation to
model assumptions. Mathematical and Statistical Estimation Approaches in Epi-
demiology. pp. 123––141 (2009)
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