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Abstract. During the last years, a wide variety of epidemic models was
employed to analyze the spread of COVID-19. Finding the most suit-
able model according to the available epidemic data is an important
task to consider. In this project, we perform a comparison of several
models of COVID-19 dynamics and analyze the dependence of their ac-
curacy on their structural complexity, using COVID-19 incidence data
for St. Petersburg. The assessment is based on Akaike information cri-
terion (AIC). The results of the study contribute to understanding how
to properly choose the complexity of an explanatory model for a given
epidemic dataset.
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1 Introduction

During the last years, a wide variety of epidemic models was employed to analyze
the spread of COVID-19. As a rule, the modeling aim is to assess the impact
of the epidemics and the efficiency of control measures to reduce the social and
economic toll. In this regard, finding the most suitable model according to the
available epidemic data is an important task to consider. The most common
methodologies used for COVID-19 modeling include classical compartmental
SEIR models based on difference and differential equations [1-4], metapopu-
lation models which simulate population migration between countries and cities
[5, 6], and multi-agent models [7] which are beneficial in simulating outbreaks
in high detail. In the majority of the investigations, the choice of an optimal
model structure suitable for the task is not discussed and there is no opportu-
nity to compare the accuracy of different models calibrated to a fixed dataset.
At the same time, it is known that the selected model type affects the modeling
outcome, and, consequentially, the choice of the most effective control measures
[17]. Particularly, due to remaining blind spots regarding COVID-19 incidence
dynamics, simpler models may have an advantage over more complicated ones,
because the output of the latter might demonstrate higher levels of uncertainty.
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In this study, following the logic of our earlier research [13], we perform a ret-
rospective analysis of COVID-19 dynamics using a family of models based on
distinct modeling approaches. Several types of logistic models and SEIR com-
partmental models are calibrated to COVID-19 data, with the disease incidence
in St. Petersburg in 2020-2022 used as a test dataset, and their accuracy is
compared using the modification of the indicator based on Akaike information
criterion [16], namely, AICc [17]. We demonstrate the resulting goodness of fit
of the models and discuss how to find a best compromise between the model
complexity and model calibration accuracy for a given dataset. Since COVID-19
modeling research mostly inherit the methods from earlier works in mathemat-
ical epidemiology, particularly, dedicated to influenza modeling (e.g., [9], [12]),
the described methodology can be easily generalized to be used for any epidemic
ARIs.

2 Methods

The data for model calibration was taken from the repository [18] which contains
daily dynamics of COVID-19 in St. Petersburg, Russia. At the time of our study,
the sample contained disease data from 02-03-2020 to 15-12-2022. The following
datasets were formed for analysis:

— Daily incidence, i.e. number of active cases — taken directly from the source
data;

— Total cumulative number of registered cases — calculated from the source
data.

The whole dataset (Multiwave’) was also split into six separate outbreaks of
COVID-19 ("Waves’) according to the information available from open sources.
The following model types were compared:

— Models based on the logistic equations: a single equation for separate COVID
waves and a sum of logistic equations for the multiwave epidemic;

— Compartmental differential SEIR models similar to those used by the au-
thors for influenza prediction [8], in two modifications: for single COVID
waves (constant intensity of infection) and the multiwave epidemic (variable
intensity of infection).

The description of the models follows.

2.1 Logistic models

The single-wave model calibrated to the total number of registered cases is based
on the logistic model [14] and has the following form:

ac c
_— —_ — = >
= =rC (1 K) ,C(0) = Cy >0,
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where C' is the total number of registered cases of COVID-19, ¢ is the cur-
rent time, r is the infection propagation intensity and K is the maximum load,
which is equal to the maximal possible number of infection cases. We use the
optimize. fmin function from Python scipy library to find the optimal values
for r and K. Fig. la demonstrates the calibration result for the second wave of
COVID-19. With the help of some simple arithmetic operations, this model can
also produce output in a form of daily incidence, which makes it possible to use
daily incidence data for model calibration (Fig. 1b).

To describe a whole period of available COVID-19 epidemic data, correspond-
ing to a multiwave epidemic, a multiwave logistic model was build according to
the approach proposed in [15]. This model is comprised of a sum of several lo-
gistic equations, each of them reflecting the introduction of a new COVID wave.
The fitted model trajectory is shown in Fig. 1c. Similarly to the single-wave case,
the modeling output can be recalculated to obtain simulated daily incidence. The
resulting modeling curve calibrated to data is shown in Fig. 1d.

8 Data 100000 A Data
8 400000 | Wave #2 " Wave #2
1] 7, 3
3 2 80000 /7
[ 8 /
% 300000 °
5 2 60000 I,
- 4 < 4
5 200000 / ]
] / £ 40000 \
£ / z
! ]
5 100000 —__’/ & 200001 ///
= \
< Y
<] of 0 "

07.07.20 26,0820 15.10.20 04.12.20 23.01.21 14.03.21 03.05.21 22.06.21 07.07.20 26,0820 15.10.20 04.12.20 23.01.21 14.03.21 03.05.21 22.06.21

250000

e
o
N

w
=)

Data
Model

N
«

200000

N
=)

150000

100000

, i
50000 _/\J\./\J ‘\
0 — ~

Iy
=)

Daily incidence cases

°
n

Total number of registered cases
-
«n

o
=)

18.05.20 @220 22.06.21 6oL 270722 18.05.20 04.12.20 22.06.21 08.01.22 27.07.22

(c) (d)

Fig. 1: Fitted logistic models: (a) single-wave, total number of registered cases;
(b) single-wave, daily incidence; (c) multiwave, total number of registered cases;
(d) multiwave, daily incidence data.

It is worth mentioning that the multiwave model in the described form gen-
erates a 'smooth’ (i.e. differentiable) curve which worsens the fit quality of late
COVID waves. In Fig. 1c it can be seen that the model trajectory starting ap-
proximately from April, 2022 is lower than the data. To fix this problem and
thus enhance the fit quality, we present an additional ’adjusted” multiwave logis-
tic model. In this model, the initial position of each simulated wave is artificially
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matched to the corresponding point in the dataset point of each single wave
(thus, simulated incidence in the first day of each COVID wave is equal to
the real incidence). The resulting simulated function is non-differentiable in the
points of change of COVID waves.

2.2 SEIR models

The compartmental SEIR model can be expressed as a system of ordinary dif-
ferential equations in the following form:

%f) — —BS(H)I(t) + eR(t);
d%f) = BS(t)I(t) — vE(t);
O _ 3 p) - a1(0)
dR(t) _

— - =0I(t) = eR(t),

S(te) = S© >0, E(ty) = E® > 0,I(t)) = IV > 0
SO 4+ BO 4 1O = 4 € [0;1],R(te) = 1 — a,

where S(t) is the proportion of susceptible individuals in the population at time
t, E(t) is the proportion of individuals in incubation period at time ¢, I(t) is
the proportion of infected individuals at a given time ¢, R(¢) is the proportion
of recovered individuals at the time ¢, « is the initial proportion of susceptible
individuals in the population, ¢ is the recovery rate of infected individuals, v is
the intensity of transition to the stage of infected individuals, € is the percentage
of recovered population that will become susceptible again and £ is the coefficient
of intensity of effective contacts of individuals (i.e. contacts with subsequent
infection).

For a single wave case (Fig. 2a), we consider the intensity § a constant. In a
multiwave case, the intensity is a function of time, i.e. § = §(t). This modifica-
tion reflects the influence of introduced control measures on intensity of contacts,
as well as the influence of change in circulating SARS-CoV-2 virus strains on dis-
ease infectivity. In the current research, we used a piece-wise constant 3(t). The
time moments corresponding to the days when the intensity of contacts in St.
Petersburg might have changed were selected from the portal of the Government
of St. Petersburg where reports on initiated control measures were published [20].
Initially, 38 dates were selected. Several events corresponding to close dates were
combined, which resulted in 35 potential moments of changes in the intensity
of contacts. Each moment was assigned a characteristic that assumes the direc-
tion of changes in intensity (the number of contacts decreases with increasing
restrictions on disease control and increases with their weakening), as well as a
subjective categorical assessment of the possible strength of the impact of the
corresponding event on the epidemic dynamics. Using this information, we de-
fined the moments of change of 5(¢), splitted the incidence dataset into subsets
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corresponding to each of the values of intensity 3; (see Fig. 2b) and found those

values by sequentially optimizing the model on each of the incidence subsets
separately.
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Fig.2: SEIR models calibrated to daily incidence data: (a) single-wave case; (b)
multiwave case.

2.3 Accuracy indicators

Our main indicator for model comparison is Akaike information criterion (AIC)
for models calibrated with the least square method, in its corrected version AIC¢
which is more suitable for small samples (k > n/40):

2k2 42
AICe = nin(RSS) + 2k + 22

where RSS is the residual sum of squares, k is the number of free parameters
and n is the data sample size. As an auxiliary indicator, which is not dependent

on model complexity (i.e. the number of free parameters k), we employed the
coefficient of determination R?:

RSS
TSS’

where TSS is total sum of squares (the explained sum of squares plus the residual
sum of squares).

R?P=1-

3 Results

The calibration speed for different models is shown in Table 1. It is noticeable
that calibration algorithms for logistic models are approximately twice faster
than those for SEIR models, which could be important for experiments with nu-
merous calibration runs, such as calibrating a multitude of datasets or sensitivity
analysis. The results of comparison of accuracy are demonstrated in Tables 2 —
4. As Table 2 demonstrates, the logistic model fitted to incidence data presented
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the lower AIC value for multiwave case!. In case of model fitting to separate
waves, the SEIR model almost always demonstrated the lowest AIC value, ex-
cept for wave 5. At the same time, according to Table 3, logistic models fitted
to total cases have the highest R? values, including a maximum score of 1.0 ob-
tained on multiwave data. However, single-wave SEIR models present higher R?
values in most of the cases compared to logistic models fitted to the same data
format (daily incidence). Table 4 demonstrates that an adjusted logistic model
is slightly better by its AIC than the original logistic multiwave model which
generates differentiable simulated curve.

Table 1: Execution time for different models

Model Multiwave Wave 1 Wave 2 Wave 3 Wave 4 Wave 5 Wave 6
Logistic, total cases |2.11 0.70 0.87 0.71 0.68 0.74 0.74
Logistic, incidence (2.33 0.70 0.80 0.69 0.65 0.74 0.71
SEIR 5.72 1.48 2.63 0.63 1.55 0.73 1.84

Table 2: AIC for incidence models (best calibration in bold)
Model Multiwave Wave 1  Wave 2 Wave 3 Wave 4 Wave5 Wave 6
Logistic [1.75-107 0.47-10° 1.55-10° 0.65-10° 1.28-10° 1.68-107 1.17-10”
SEIR 5.24-10"  0.35-107 1.38-107 0.61-107 0.91-107 1.91-10” 1.05-107

Table 3: R? for all models (best calibration in bold)

Model Multiwave Wave 1 Wave 2 Wave 3 Wave 4 Wave 5 Wave 6
Logistic, total cases [1.0 0.99 0.99 0.99 1.0 0.99 0.90
Logistic, incidence |0.95 0.99 0.93 0.46 0.79 0.95 0.90
SEIR 0.86 0.99 0.98 0.58 0.98 0.8 0.95

Table 4: Calibration accuracy of multiwave logistic models
Indicator|AIC R?
Original [2.96 - 107 1.0
Adjusted|2.64 - 107 1.0

4 Discussion

In this study, we showed how accuracy of the model fit could be compared
accounting for their structural complexity. The selection of the winning model
could depend on data representation (daily incidence vs total registered cases),
the period of regarded data (one wave vs multiwave) and, last but not least, the
desired output indicators. It is demonstrated that comparing models solely by
the quality of fit (R? in our case) may be misleading, which becomes clear by

1 Since AIC can be compared only for the models fitted to the same data, in Table 2
we do not demonstrate results for logistic model calibrated to total cases.
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looking at Tables 3 and 4. According to the values of AIC, SEIR models should
be preferred in case of analysing single COVID-19 waves. At the same time, while
regarding multiwave disease dynamics, a multiwave SEIR model loses to logistic
models because of its increased number of parameters. Thus, we can conclude
that in some cases complex indeed does not mean accurate.

It is important to mention that the comparison of models solely based on
AIC cannot be regarded as exhaustive, because many aspects might be missing
in this case. First of all, unlike R?, AIC is calculated in absolute values and thus
is dependent on the data representation. Particularly, the direct comparison of
AIC for the logistic model calibrated to total cases number and the same model
calibrated to incidence data is impossible, whereas we can compare them via
R2. Also, some important epidemic indicators which could be provided by one
model type are unavailable in another model type. For instance, logistic models
are unable to deliver the value of basic reproduction number Ry [19] because
the recovery process in such models is entirely omitted. This aspect can be
crucial for epidemiologists, since this parameter is informative when a particular
outbreak is studied. Regarding the assessment of the cost-effectiveness of control
measures, multiwave models subjectively seem to be more efficient because they
allow to replicate the whole process instead of separating it into parts like in
single-wave models. When talking about incidence prediction, which is another
meaningful task for the models, the application of the mentioned models might
differ in efficiency. The authors believe that logistic models will give a smoother
trend thus reducing variation in error sample, although they potentially give a
biased solution. In their turn, SEIR models due to bigger number of parameters
might demonstrate larger confidence intervals for the predicted incidence. In
another words, fitting SEIR multiwave models to incomplete incidence data could
be challenging due to the greater variability of the output. In the forthcoming
studies, we plan to explicitly quantify our hypotheses related to applicability
of the models for assessing epidemic indicators (including incidence forecasting
with uncertainty assessment). Also, an important research aim is to generalize
the proposed methods and algorithms to make them suitable for the other model
types, including multiagent models [10], [11].
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