
Knowledge hypergraph-based multidimensional
analysis for natural language queries: application

to medical data

Sana Ben Abdallah Ben Lamine1[0000−0002−6018−2518], Marouane
Radaoui1[0000−0001−8575−3711], and Hajer Baazaoui Zghal2[0000−0002−2151−7397]

1 Riadi Laboratory, ENSI, University of Manouba, Tunisia
sana.benabdallah@riadi.rnu.tn, raddaouimarouen@gmail.com

2 ETIS UMR8051, ENSEA, CY University, CNRS, France
hajer.baazaoui@ensea.fr

Abstract. In recent years, data is continuously evolving not only in vol-
ume but also in types and sources, which makes the multidimensional
analysis and decision making using traditional approaches a complex
and difficult task. In this paper, we propose a three-layer-based architec-
ture to perform multidimensional analysis of natural language queries on
health data: 1/ Treatment layer aiming at xR2RML mappings generation
and knowledge hypergraph building; 2/ Storage layer allowing mainly
to store the RDF triples returned by the query of NoSQL databases,
and 3/ Semantic layer, based on a domain ontology which constitutes
the knowledge base for the generation of the mappings and the build-
ing of the knowledge hypergraph. The originality of our proposal lies in
the knowledge hypergraph and its capacity to support multidimensional
queries. A prototype is developed and the experiments have shown the
relevance of the returned multidimensional query results as well as an
improvement over traditional approaches.

Keywords: Knowledge hypergraph · Multidimensional analysis · Nat-
ural language queries · NoSQL databases · Health decision support.

1 Introduction

One of the main needs of decision-makers is going through Data Warehouses
(DW s), building OnLine Analytical Processing (OLAP) cubes and performing
MultiDimensional Analysis (MDA)[1]. The transition to NoSQL systems in DWs
gives decision-makers the possibility of storing and querying unstructured data
[2] in large amounts. DWs allow MDA but remain an expensive solution. Thus,
some works proposed to achieve MDA on NoSQL DBs without going through
DWs [4,5]. Nonetheless, for decision-makers, and health experts it seems difficult
to formulate a MultiDimensional Query (MDQ).

In this paper, we propose an Knowledge HyperGraph(KHG)-based approach
to perform MDA of natural language queries over multi-source health NoSQL
data aiming at improving the decision-making process. A prototype is developed

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_19

https://dx.doi.org/10.1007/978-3-031-36024-4_19
https://dx.doi.org/10.1007/978-3-031-36024-4_19

2 S. Ben Abdallah Ben Lamine et al.

and the experiments have shown the results’ relevance. In the remainder of this
paper, a brief overview of related works is given in section 2. Then, sections 3
and 4 detail our proposal and experimental results. Finally, we conclude and
present our future works in section 5.

2 Related works

To address MDA, DWs use OLAP to query data and analyze it from multiple
perspectives. Nonetheless, relational models, usually used to implement DWs
don’t permit managing massive data, in addition to data non-freshness and cost
of DWs. To overcome these issues, researchers have proposed alternative solu-
tions for MDA. The use of NoSQL DWs is increasingly envisaged [2]. In [4,5]
MDA is done via direct access to a document-oriented NoSQL DBs.

On the other hand, Knowledge Graphs (KGs) and KHGs allow solving inter-
operability problems in order to interrogate efficiently massive and heterogeneous
data [6]. KGs have been also attractive to researchers for they support analytics
and decision-making [7]. Some works have used KGs to address MDA. In [11],
OLAP is adapted to perform analysis on KGs. In [12], a graph-based DW is
proposed. Our motivation is to exploit the advantages of KHGs in MDA.

3 Proposed approach

Fig. 1 presents the three-layers architecture of our MDA approach.

Fig. 1: Knowledge hypergraph-based multidimensional analysis architecture

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_19

https://dx.doi.org/10.1007/978-3-031-36024-4_19
https://dx.doi.org/10.1007/978-3-031-36024-4_19

KHG-based multidimensional analysis 3

1. Treatment layer: its four modules are detailed in the following subsections.
2. Storage layer: it consists of:

– NoSQL DBs: are the data sources targeted by the user’s query
– Query DB : stores the queries and their respective reformulations.
– RDF triples store: stores the RDF triples returned by the query.

3. Semantic layer: it consists of:
– Ontology: it is the domain ontology developed in [9] and constituting

the knowledge base for the generation of the mappings and the building
of the KHG. It is also used in the verification module.

– KHG: is a data integration framework allowing for unified querying.
– xR2RML mappings: are RDF documents representing logical sources

extracted from the input databases.

3.1 xR2RML mappings generation and KHG building module

xR2RML Mappings Generation Is done in the following steps:

1. For each collection ci in the NoSQL databaseDBJ , a logical source (xR2RML
semantic view) is extracted using the property xrr:logicalSource.

2. For each document dk of ci, a triples map (tp) is created. For each tp, a
subject map is generated, which represents the unique identifier used in all
the RDF triples generated from it.

3. For each tp, a predicateObjectmap is generated. The predicate is extracted
from the input data or the ontology. The object corresponds to the docu-
ment’s value field according to its type:
– If it is simple, it is mapped to a predicate object and a data property

using xrr:reference
– Else, if it is complex, it is mapped to another triples map and an object

property using the rr:ParentTriplesMap property.

KHG building A KHG describes real world entities and their interrelations
organized in a hypergraph. It permits the representation of complex structures
(classes and their relationships) into a hypernode. Hypernodes are interrelated,
using hyperedges. A KHG is defined formally in Definition 1.

Definition 1. KHG: is defined as a tuple < N,V,A, SM , ζ > with :

– N = Ns ∪ No is the set of the KHG’s nodes; Ns and No are the sets re-
spectively of triples’ subjects and triples’ objects extracted from the set of
xR2RML mappings views (SM)

– V : is the set of hyperedges
– A: is the set of the directed arcs; an arc is a pair < u, v > where u, v ∈ N
– SM : is the set of xR2RML mapping views (mi), where each mi ∈ SM is an

hypernode such as: mi = Sn ∪ Sa , with Sn ⊂ N and Sa ⊂ A

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_19

https://dx.doi.org/10.1007/978-3-031-36024-4_19
https://dx.doi.org/10.1007/978-3-031-36024-4_19

4 S. Ben Abdallah Ben Lamine et al.

– ζ is the set of the concepts of the used domain ontology

The construction of the KHG is done via the definition of its:

1. Entities: each semantic view is a hypernode (a directed graph which nodes
and arcs are respectively the ontology’s concepts and properties).

2. Relations: relations between the semantic views are the hyperedges of the
KHG. Two types of hyperedges are constructed:

– DBRef fields from data sources are transformed into hyperedges.
– Domain ontology’s object properties are transformed into hyperedges.

3.2 Reformulation module

The reformulation of a user’s query (U-Q) into a MDQ (Def. 2) is detailed below.

Definition 2. MDQ is a tuple Q = (G,S,M,ψ), with:

– G: is the non-empty set of GROUP BY attributes of the request,
– S: is the selection predicate (facultative)
– M: is the set of measure attributes which are numeric.
– ψ: is the aggregation operator (average, sum, ...).

Preprocessing Consists of decomposing U-Q into words (or set of words) ac-
cording to their grammatical function in the query phrase using a grammatical
resource. A vector of pairs is obtained −→

V = <p1, ..., pn>, with pi = (Swi, fi) and
Swi = {wi1, ..., wik} is a set of k words of the decomposed query, where k >= 1
and fi is its grammatical function.

BGPQ schema extraction Is done in two steps:

– Triples’s extraction: Transforms U-Q into a set of triple patterns (Stp).
Having −→

V as input, it parses U-Q into sub-sentences using the lexical re-
source. Each sub-sentence turns into a tp (s, p, o), where s, p and o are
respectively the subject, verb, and object of the sub-sentence.

– Triples’s aggregation: Transforms Stp into a BGPQ Schema (Algorithm
1). To determine Sclass (set of classes) and Spredicat (set of predicates), for
each pair pk =< ti, tj > in Stp, where k ∈ [1, |Stp|2], i ∈ [1, |Str| − 1] and
j ∈ [2, |Stp|], Ip is the set of common classes between ti and tj . If |Ip| > 0,
non common classes are added to Sclass, and the respective predicates to
Spredicate. The BGPQ Schema is the union of Sclass and Spredicate (line 10).

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_19

https://dx.doi.org/10.1007/978-3-031-36024-4_19
https://dx.doi.org/10.1007/978-3-031-36024-4_19

KHG-based multidimensional analysis 5

Algorithm 1 Triples Agregation

Input: Stp : Set of triples
Output: BGPQSchema
Begin

1: Sclass ← {}
2: Spredicate ← {}
3: for each pk =< tpi, tpj >∈ Stp do
4: Ip ← {tpi.subject, tpi.object} ∩ {tpj .subject, tpj .object}
5: if |Ip| > 0 then
6: Sclass ← Sclass ∪ {tpi.subject, tpi.object, tpj .subject, tpj .object} − Ip
7: Spredicate ← Spredicate ∪ {tpi.predicate, tpj .predicate}
8: end if
9: end for

10: BGPQSchema← Sclass ∪ Spredicate

11: return BGPQSchema

End

Algorithm 2 MDQComponentsExtraction

Input: V : Vector of pairs
BoolList: list of boolean operators (>,<,>=, <=,=, in, . . .)
ListOp : list of aggregation operators (sum, average, percentage. . .)
BGPQSchema
Output: Ψ , M , S, G
Begin

1: max← 0
2: for each pi ∈

−→
V do

3: for each w ∈ pi.Swi do
4: m←MaxSimAg(w,ListOp, index)
5: if m > max then
6: max← m
7: j ← i
8: indexMax← index
9: end if

10: end for
11: end for
12: Ψ ← ListOp[indexMax]
13: M ← SearchNumAtt(

−→
V [j].Swi, ListNumAtt(BGPQSchema))

14: S ← SearchPredAtt(
−→
V ,BoolList, ListAtt(BGPQSchema))

15: G← SearchGroupByAtt(BGPQSchema,
−→
V)

End

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_19

https://dx.doi.org/10.1007/978-3-031-36024-4_19
https://dx.doi.org/10.1007/978-3-031-36024-4_19

6 S. Ben Abdallah Ben Lamine et al.

BGPQ formulation Algorithm 2 extracts the MDQ ’s components (Def. 2):

– Aggregation operator ψ: for each pi of −→V , SimAg() seeks for the word w
of pi.Swi and the operator of ListOp, which are the most similar (Jaccard
similarity coefficient). indexMax is the index of ψ in ListOp.

– Measure attribute M : j is the index of Swi containing ψ (line 7). Thus,
SearchNumAtt() assigns toM the most similar among the numeric attributes
of the BGPQ schema to the words of Swi.

– Selection predicate S (optional): SearchPredAtt() searches if a set of
words Sw of −→V contains an operator from BoolList and finds the most similar
among ListAtt(BGPQ Schema).

– GROUP BY attributes G: SearchGroupByAtt() returns a set of atomic
attributes G, excluding M and S.

3.3 Verification module

In a MDQ the measure attributes M and the GROUP BY attributes G must
not be on the same dimension hierarchy. The verification is double:

– λ: based on the KHG, allows to check the correctness of the request based on
the graph of functional dependencies of the grammatical resource (equation
1). The query is correct if λ <> 0 (a Roll-up if λ > 0 else a Drill-down).

λ (Att (mi) , Att (gk)) = 1− |Root (mi)|
|Root (gk)|

(1)

– λs: checks the validity of the query against the domain ontology. In equation
2, Cpt (a) returns the ontological concept with the attribute a. The query
is correct if λs <> O .

λS (Cpt (mi) , Cpt (gk)) = 1− SemanticDepth (Cpt (mi))

SemanticDepth (Cpt (gk))
(2)

3.4 Multidimensional SPARQL query treatment module

MD SPARQL query generation is done in three steps:

1. SELECT clause: followed by the attributes of BGPQ excluding G, then
ψ followed by M .

2. WHERE clause: followed by the list of tp of the query and if S <> ∅ ,
the selection predicates are added between parentheses after FILTER.

3. GROUP BY clause: all the attributes of G are added. It should be men-
tioned that all the attributes of the request are preceded by ’?’.

Display and storage of results The obtained MD SPARQL query is syntac-
tically checked and then executed on the KHG. The obtained triples are sent to
the display module and the RDF store for further use in similar queries.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_19

https://dx.doi.org/10.1007/978-3-031-36024-4_19
https://dx.doi.org/10.1007/978-3-031-36024-4_19

KHG-based multidimensional analysis 7

4 EVALUATION AND DISCUSSION

To implement the prototype we used: xR2RML3, Jena API, OWL (Ontology
Web Language), OWL API to check syntactically and execute the MD SPARQL4

query, BabelNET API as lexical resource, Stanford dictionary API 5: as lexical
and grammatical resource, and Allegrograph6as RDF store.

The data collection used is Patient_survey (Data.gov site7) with more than
700,000 records. Json Generator tool 8 is used to produce large-scale data with
a data schema presented in [8]. These files are loaded in a MongoDB database.

4.1 Evaluation of the KHG’s completeness

The completeness of information in a KHG influences the relevance of data query
results. Three completeness metrics are calculated using Sieve9 and KBQ10:

– Schema Completeness (SC): the rate of ontology’s classes and properties
in the KHG. SC=0.97, hence the KHG represents a large range of knowledge.

– Interlinking Completeness (IC): the ratio of interlinked triples.
IC=0.873, hence the richness of the KHG ’s properties.

– Currency Completeness (CC): the ratio of unique triples. CC=0.819, so
no redundancy.

4.2 Evaluation of the KHG-based MDA

Precision, recall and F-measure are used to evaluate the relevance of a set of
queries. The average values obtained are respectively 0.82, 0.53 and 0.63. Table
1 reports average precision and recall for two traditional approaches [9] and
ours for which the relevance is improved. In [6], it is reported that after 80% of
integrated data sources, these values tend towards 1, when using KHG.

Table 1: Comparison of relevance results
Approaches Average precision Average recall
Without domain ontology [9] 0.59 0.36
Domain ontology + NoSQL DB [9] 0.62 0.52
Our KHG-based MDA approach 0.82 0.53

3 https://github.com/frmichel/morph-xr2rml
4 https://www.w3.org/TR/sparql11-query/
5 https://nlp.stanford.edu/software/lex-parser.shtml
6 https://allegrograph.com/
7 http://healthdata.gov/dataset/patient-survey-hcahps-hospital/
8 https://json-generator.com/
9 http://sieve.wbsg.de/

10 https://github.com/KBQ/KBQ

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_19

https://dx.doi.org/10.1007/978-3-031-36024-4_19
https://dx.doi.org/10.1007/978-3-031-36024-4_19

8 S. Ben Abdallah Ben Lamine et al.

5 Conclusions and future work

In this paper, a KHG-based MDA approach is proposed. The idea is to help
health experts expressing MDQ on multi-source data to improve decision-
making. The relevance of the results is improved. In our future work, we intend
to study the performance of the approach with real-time treatment and scaling
up data size. For the reformulation of queries, deep learning will be used based
on our previous works [10].

References
1. Selmi, I., Kabachi, N., Ben Abdallah Ben Lamine, S., Baazaoui Zghal, H.: Adaptive

Agent-Based Architecture for Health Data Integration. In: Yangui, S., Bouguettaya,
A., Xue, X., Faci, N., Gaaloul, W., Yu, Q., Zhou, Z., Hernandez, N., Yumi Naka-
gawa, E. (eds.) ICSOC 2019 Workshops, LNCS, vol. 12019, pp. 224–235. Springer,
Toulouse, France (2019). https://doi.org/10.1007/978-3-030-45989-5_18

2. Dehdouh, K.: Building OLAP Cubes from Columnar NoSQL Data Warehouses. In:
Bellatreche, L., Pastor, O., Manuel, J., Jiménez, A., Aït Ameur, A. (eds.) 6th In-
ternational Conference, MEDI, LNCS, 2016 vol. 9893, pp. 166–179. Springer, Spain
(2016). https://doi.org/10.1007/978-3-319-45547-1_14

3. Chevalier, M., El Malki, M., Kopliku, A., Teste, A., Tournier, R.: Document-oriented
Models for Data Warehouses - NoSQL Document-oriented for Data Warehouses.
In: Proceedings of the 18th International Conference on Enterprise Information
Systems, pp. 142–149. SciTePress, Rome, Italy (2016).

4. Chouder, M. L., Rizzi, S., Chalal, R.: EXODuS: Exploratory OLAP over Document
Stores. Inf. Syst. 79, 44–57 (2019)

5. Gallinucci, E., Golfarelli, M., Rizzi, S.: Approximate OLAP of document-oriented
databases: A variety-aware approach. Inf. Syst. 85, 114–130 (2019)

6. Masmoudi, M., Ben Abdallah Ben Lamine, S., Baazaoui Zghal, H., Archimède;
B., Karray, M.: Knowledge hypergraph-based approach for data integration and
querying: Application to Earth Observation. Future Gener. Comput. Syst., (2021)

7. Manuél Gómez-Pérez, J., Z. Pan, J., Vetere, G., Wu, H.: Enterprise Knowledge
Graph: An Introduction. Exploiting Linked Data and Knowledge Graphs in Large
Organisations. Springer (2017)

8. Ait Brahim, A., Tighilt Ferhat,R., Zurfluh, G.: Model Driven Extraction of NoSQL
Databases Schema: Case of MongoDB. In: International Conference on Knowl-
edge Discovery and Information Retrieval, pp. 145–154. ScitePress, Vienna, Austria
(2019)

9. Radaoui, M., Ben Abdallah Ben Lamine, S., Baazaoui Zghal, H., Ghedira, C.,
Kabachi, N.: Knowledge Guided Knowledge Guided Integration of Structured and
Unstructured Data in Health Decision Process. In: Information Systems Develop-
ment: Information Systems Beyond 2020, ISD 2019 Proceedings, Association for
Information Systems, Toulon, France (2019).

10. Ben Abdallah Ben Lamine, S., Dachraoui, M., Baazaoui-Zghal, H.: Deep Learning-
Based Extraction of Concepts: A Comparative Study and Application on Medical
Data. Journal of Information & Knowledge Management (2022).

11. G. Schuetz, C., Bozzato, L., Neumayr, B., Schrefl, M., Serafini, L.: Knowledge
Graph OLAP. Semantic Web 12(4), 649–683 (2021)

12. Friedrichs, M.: BioDWH2: an automated graph-based data warehouse and mapping
tool. Journal of Integrative Bioinformatics 18(2), 167–176 (2021)

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_19

https://doi.org/10.1007/978-3-030-45989-5_18
https://doi.org/10.1007/978-3-030-45989-5_18
https://doi.org/10.1007/978-3-319-45547-1_14
https://doi.org/10.1007/978-3-319-45547-1_14
https://dx.doi.org/10.1007/978-3-031-36024-4_19
https://dx.doi.org/10.1007/978-3-031-36024-4_19

