RuMedSpellchecker: correcting spelling errors
for natural Russian language in electronic
health records using machine learning
techniques

Dmitrii Pogrebno;j[0000—-0001-6392-8445] * A pagtasia Funkner0000—0002—4596—6293]
and Sergey Kovalchuk[0000—0001—8828—4615]

ITMO University, Saint Petersburg, Russia
pogrebnoy.inc@gmail.com, funkner.anastasia@gmail.com,
sergey.v.kovalchuk@gmail.com

Abstract. The incredible advances in machine learning have created a
variety of predictive and decision-making medical models that greatly im-
prove the efficacy of treatment and improve the quality of care. In health-
care, such models are often based on electronic health records (EHRs).
The quality of this models depends on the quality of the EHRs, which are
usually presented as plain unstructured text. Such records often contain
spelling errors, which reduce the quality of intelligent systems based on
them. In this paper we present a method and tool for correcting spelling
errors in medical texts in Russian. By combining the Symmetrical Deletion
algorithm and a finely tuned BERT model to correct spelling errors, the
tool can improve the quality of original medical texts without significant
cost. We have evaluated the correction precision and performance of the
presented tool and compared it with other popular spelling error correc-
tion tools that support Russian language. Experiments have shown that
the presented approach and tool are 7% superior to existing open-source
tools for automatically correcting spelling errors in Russian medical texts.
The proposed tool and its source code are available on GitHub' and pip?
repositories.

Keywords: spell checking - text correction - BERT - transformers - Rus-
sian natural language - electronic health records

1 Introduction

The integration of machine learning techniques in the field of healthcare has
revolutionized the way treatments are administered and care is provided to pa-
tients. Predictive and decision-making models based on electronic health records
help to take into account patient specifics more accurately and better adjust
treatment for each patient. One important problem with EHRs, is that they are

! https://github.com/DmitryPogrebnoy/MedSpellChecker
2 https://pypi.org/project/medspellchecker

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:
DOI] 10.1007/978-3-031-36024-4_16 |



https://dx.doi.org/10.1007/978-3-031-36024-4_16
https://dx.doi.org/10.1007/978-3-031-36024-4_16

2 Dmitry Pogrebnoy & Anastasia Funkner & Sergey Kovalchuck

usually presented as unstructured text and contain spelling errors. According to
a study by Toutanova et al. [17], spelling errors occur mainly for two reasons.
The first reason is mainly related to the person himself and is that the writer
may not know exactly how to spell a word correctly and therefore make mis-
takes. The second reason has to do with technology and is due to poor-quality
typing devices, which can also lead to spelling errors. Such mistakes in EHRs
can confuse machine-learning-based medical systems and reduce their quality
and effectiveness of recommendations. Therefore to overcome this problem, we
need a spelling error correction tool that will accurately correct errors and can
improve model accuracy without additional cost.

There are many different open source tools for correcting spelling errors. How-
ever, most of them support English and a few other popular languages, while the
number of such tools is much smaller for other, less common languages. In ad-
dition, medical texts differ significantly from general texts. They contain many
medical terms that are almost never found in ordinary texts and require special
processing. Correction of a valid word can change a sentence and lead to un-
predictable results. Therefore special tools for medical texts aimed at correcting
spelling errors in such texts are essential.

There are no known special open source tools for correcting Russian medical
texts. And this is to be expected, since there are very few open datasets with
medical texts in Russian. Nevertheless, there are several open source general
purpose tools for correcting spelling errors in Russian texts.

In this paper, we present a method and a tool for correcting spelling errors
specifically in Russian medical texts. The new tool is based on a combination
of the Symmetric Deletion [6] algorithm for generating edit candidates and a
finely tuned BERT-based [5] machine learning model for ranking candidates and
selecting the most appropriate.

2 Related Works

There are a number of research papers devoted to different approaches to the
processing of medical texts. However, most of them are mainly devoted to texts
in English.

The study by Yifan Peng et al. [12] found that fine-tuning the BERT model on
medical notes and PubMed articles outperformed most existing state-of-the-art
models and demonstrating the effectiveness of fine-tuning language models for
specific domains. The study by Jinhyuk Lee et al. [8] presents a BioBERT model
that is fine-tuned to a biomedical corpus in English. Results of experiments have
shown that the derived model outperforms the basic BERT model in various
text mining tasks of medical texts. In another related paper by Emily Alsentzer
et al. [2], the authors presents the ClinicalBERT model for English language.
This model is finely tuned on clinical data and outperforms the basic BERT and
BioBERT models in almost any type of task.

The processing of medical texts in Russian is much less well researched. This
is mainly because there is not yet a significant amount of medical data collected

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:
DOI] 10.1007/978-3-031-36024-4_16 |



https://dx.doi.org/10.1007/978-3-031-36024-4_16
https://dx.doi.org/10.1007/978-3-031-36024-4_16

RuMedSpellchecker 3

for the Russian language that is comparable with the existing Russian-language
medical data corpus. In spite of this, corpora are gradually forming and this field
of processing Russian medical texts is actively developing.

The paper by Alexander Yalunin et al. [18] in Sberbank AI lab is one such
study. The authors of the paper ideationally replicated Jinhyuk Lee et al. work
with the BioBERT model. They fine-tuned several different BERT models on an
open corpus of medical texts in Russian and compared the metrics of the new
models on specific domain tasks. The evaluation results showed that the fine-
tuned BERT models also outperformed the basic BERT models even though the
fine-tuning corpus was smaller than in the BioBERT -case.

The study by Ksenia Balabaeva et al. [3] is devoted specifically to correct-
ing spelling errors in Russian medical texts. This work uses a combination of
Damerau-Levenstein [4] distance to generate editing candidates and Word2vec [9]
or FastText [7] embeddings to rank and select the best candidate. The evaluation
showed quite strong results, but there is still room for improvement.

There have been impressive advances in the application of BERT models to
various tasks in medical text processing. In this paper we present a new method
and its implementation as a tool for correcting spelling errors in medical texts
in Russian. We also compared the precision metrics and performance of the
developed tool with other popular open source tools for spelling error correction
in Russian.

3 Methods

3.1 Types of spelling errors

There are many different views on what errors should be corrected by a text
correction tool. Alexey Sorokin et al. [15] in their study presented the results
of the first competition on automatic text correction in Russian. Seven teams
participated in the contest. Their task was to create tools that had to most
accurately correct texts that contained predefined kinds of errors. In addition to
syntactic errors, the texts contained grammatical and cognitive errors, as well
as some other kinds of errors.

Medical texts are extremely sensitive to errors. An incorrectly corrected word,
or worse, a corrected valid word, can greatly affect the meaning of a sentence and
lead to unpredictable consequences. The more kinds of errors the tool tries to
correct, the more cases when the tool can work false positive and change a valid
word. To start gradually and reduce at first the number of false positive cases
we consider only the kind of spelling errors. Developed spellchecker supports
correction of six types of spelling errors. Four types of errors are related only to
letters and two more types of errors related to spaces. Examples of supported
spelling error types are shown in Fig. 1.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:
DOI] 10.1007/978-3-031-36024-4_16 |



https://dx.doi.org/10.1007/978-3-031-36024-4_16
https://dx.doi.org/10.1007/978-3-031-36024-4_16

4 Dmitry Pogrebnoy & Anastasia Funkner & Sergey Kovalchuck

Type of mistake Incorrect text Correct text
Wrong characters Ty6upKynes Ty6epKynes
Missing characters Ty6(pKynes TybepKynes

Extra characters Ty6epKnynes Tybepkynes
Shuffled characters Ty6peKynes TybepkKynes

Missing word separator OCTpbIv|TY6EepKynes OCTpbIM_TybepKkynes
Extra word separator Ty6_epkynes Tybepkynes

Fig. 1. Supported types of spelling errors by the spellchecking tool. As an example, the
Russian words «tuberculosis» and «acute tuberculosis».

3.2 Datasets

Developing an accurate and efficient tool for correcting spelling errors in Russian-
language medical texts is impossible without collecting enough data to train
machine learning models and testing the tool.

The availability of open sources of Russian medical texts and data sets is
extremely limited. This is mainly due to the complexity of collecting and pro-
cessing sensitive data, since they can potentially contain personal data. In this
paper, we use two open medical cases in Russian, as well as two closed datasets.

The summary of the datasets used is shown in Table 1.

Table 1. Summary information on the Russian medical datasets used.

Dataset Name Number of Records|Avg Tokens in Record
RuMedNLI [11] 14717 8
RuMedPrimeData [16] 15250 31
Almazov Center 2355 42
Russian Academy of Sciences [14] 161 863

The first public datasets is RuMedNLI: A Russian Natural Language Infer-
ence Dataset For The Clinical Domain [11] by Pavel Blinov et al. This dataset is a
manually translated from English MedNLI [13] dataset and contains 14717 med-
ical records. Another public dataset is RuMedPrimeData [16] by Starovoytova
Elena et al. This dataset contains 15250 medical anamneses of SSMU hospital
visitors.

One of the private datasets is dataset with patients’ medical anamneses which
is provided by the Institute of Artificial Intelligence Problems of the Research In-
stitute of the Russian Academy of Sciences (Russian Academy of Sciences) [14].

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:
DOI] 10.1007/978-3-031-36024-4_16 |



https://dx.doi.org/10.1007/978-3-031-36024-4_16
https://dx.doi.org/10.1007/978-3-031-36024-4_16

RuMedSpellchecker 5

This dataset contains 161 large fragments of patients’ anamneses. In addition,
a closed corpus of anamneses provided by the Almazov National Medical Re-
search Center (Almazov Center) was also used. This dataset contains 2355 pa-
tient anamneses for the period from 2010 to 2015.

Each of the datasets was pre-processed. All texts were converted to lower
case and then lemmatised using the pymorphy2? tool. Such harsh pre-processing
was done because of the extremely limited datasets. The lemmatisation helped
to get rid of words in different forms and to use words in their initial form.
This increased the number of example sentences for a particular word, which
contributed to a better fine-tuning of the language models.

After preprocessing, all four datasets were combined into one. In total, all
datasets together contain 30,737 medical records in Russian, which takes about
10.25 Mb.

3.3 Algorithm

The text correction algorithm takes raw, unprocessed text as input and returns
a corrected text. The algorithm uses the Damerau-Levenstein [4] edit distance
to generate candidates for correcting an invalid word. This algorithm generates
candidates with an edit distance of one by default, but can potentially be ex-
tended to greater values. A special pre-calculated Symmetric Deletion index is
used to optimize the computation of the edit distance and to speed up the gen-
eration of edit candidates. The diagram of the spellchecking process is shown in
the Figure 2.

The process is arranged as follows. First of all, the medical text is divided
into tokens. Next, a couple of conditions are checked. Whether there are any
non-Russian letters in the token and whether the word is a name. To check if a
word is a name, we check if the word does not contain any capital letters, or if
it is at the beginning of a sentence. If at least one condition is not fulfilled, the
token is considered as not valid for correction and gets into the final result as
it is. Otherwise, the token is reduced to lowercase letters, and the lemmatized
form of the token and information about the form of the original word is retained
in the internal representation. After that, it is checked whether the token or its
lemmatised form is included in the dictionary of correct words. If it is included,
then such a token gets into the final text as it is. Otherwise, a list of candidates
is generated to replace the incorrect word. Then this list is ranked by a special
language model and the most suitable candidate gets into the final text. The best
candidate is transformed into the required form and case of the original word.
This happens with every token. At the end, the corrected tokens are assembled
into the final text.

The precision of the corrected algorithm depends mainly on the completeness
and purity of the dictionary with correct words, and on how well the language
model correctly ranks the edit candidates.

% https://github. com/pymorphy2/pymorphy2

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:
DOI] 10.1007/978-3-031-36024-4_16 |



https://dx.doi.org/10.1007/978-3-031-36024-4_16
https://dx.doi.org/10.1007/978-3-031-36024-4_16

6 Dmitry Pogrebnoy & Anastasia Funkner & Sergey Kovalchuck

Split the text of the
anamnesis into tokens
Fi

or each token

Token is valid Lemmatize and
for correction lowercase token

Token isn't included 35
Token is not valid ; in the dictionary

for correction

Extract from SymDel index
of candidates for correction

v Token is included
Rank candidates and choose in the dictionary
the most suitable one using the ML model
v

Restore the form of the original word
to the selected candidate

YVYVY
—
A

Assemble all the correct
tokens into result text

Fig. 2. Examples of supported types of spelling errors by the spellchecking tool.

3.4 Implementation

The new tool for correcting the spelling of medical texts is intended to work
only with Russian text and is written in Python. The tool consists of seven
components. The architecture of the tool is shown in the Figure 3.

Spelling correction tool |

l 2]

Pre-processor % - - 1

Spelichecker
Manager

] ¢
Dictionary —§ '
1

+-=-»(— Post-processor

Edit Distemt:e$j O Error Language
Index Model Model

Fig. 3. Architecture of the new spelling correction tool.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:
DOI] 10.1007/978-3-031-36024-4_16 |



https://dx.doi.org/10.1007/978-3-031-36024-4_16
https://dx.doi.org/10.1007/978-3-031-36024-4_16

RuMedSpellchecker 7

The Pre-processor component is responsible for splitting the text into sepa-
rate words, removing punctuation and capitalisation, and determining the lem-
matised form and form information of the original word. In contrast, the Post-
processor component restores the form of the original words to the corrected
words and reassembles the entire text from the individual words.

The Dictionary component contains a dictionary of correct words and is
used to quickly determine whether a word is correct or requires correction. This
dictionary contains only lemmatised words from the Aspell Russian dictionary
and several medical dictionaries. The final dictionary contains 214629 words in
the primary form.

Error Model component is responsible for generating a list of candidates
for correcting an incorrect word. The error model uses the Damerau-Levenstein
edit distance to create a list of candidates. Generation of the candidate list
is a computationally intensive operation. The Edit Distance Index component,
which contains a special index, is used to significantly speed up the operation
and improve the overall performance of the tool.

Language Model is responsible for ranking the editing candidates and choos-
ing the most suitable one to replace the incorrect word. A finely tuned machine
learning models based on the BERT architecture is used to rank candidates for
Russian medical texts. The main advantage of this approach is that the model
is able to take into account the context around the incorrect word when ranking
candidates, which improves the quality of ranking and accuracy of correction.

3.5 Language Model

In this paper, three different BERT base models were fine-tuned on a collected
dataset of Russian medical texts. Fine-tuning of the models took place using the
transformers, datasets and accelerate libraries from the Hugging Faces platform.
A common Fill Mask task was used to fine-tune the models. All hyperparameters
for fine-tuning all models are the same and are shown in Table 2

Table 2. Hyperparameters of fine-tuning of all models.

Parameter Value
Train epoch 5
Learning rate 0.00005
Weight decay 0.01
FP16 training True
Gradient accumulation steps| 256
Per device train batch size 1
Per device eval batch size 1
Gradient checkpointing True

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:
DOI] 10.1007/978-3-031-36024-4_16 |



https://dx.doi.org/10.1007/978-3-031-36024-4_16
https://dx.doi.org/10.1007/978-3-031-36024-4_16

8 Dmitry Pogrebnoy & Anastasia Funkner & Sergey Kovalchuck

The first base model is pre-trained ruRoBERTa-large? model from Sberbank
Al This model was chosen because it is one of the larger and more efficient mod-
els of the BERT architecture. This model is publicly available and pre-trained
for the Russian language, which makes it easy to use for various applications in
Russian. The fine-tuned model is published on Hugging Face as DmitryPogreb-
noy/MedRuRobertalarge’.

The second basic model was the distilbert-base-multilingual-cased model®.
This model is slightly inferior in efficiency to the previous model, but has a
much smaller size and better performance. This model supports multiple lan-
guages including Russian. For the task of ranking editing candidates in Russian,
all other languages are superfluous. To reduce the size of the model, support for
unnecessary languages was discarded using the approach described in the paper
by Amine A. et al. [1]. But unlike the approach in the paper, all tokens not con-
taining Russian letters except for special characters, numbers and punctuation
marks were discarded. This halves the size of the model. The converted model
is published on the Hugging Face service as DmitryPogrebnoy /distilbert-base-
russian-cased’. The fine-tuned model is published on Hugging Face as Dmitry-
Pogrebnoy /MedDistilBert BaseRuCased®.

The third basic model was the cointegrated /rubert-tiny2® model. This model
only supports the Russian language and is based on the BERT architecture. The
main feature that distinguishes this model from the previous two is that it is
much smaller in size. It is half the size of the MedDistilBertBaseRuCased model.
The fine-tuned model is published on Hugging Face as DmitryPogrebnoy/Me-
dRuBertTiny2'°.

As a result, the Language Model component contains three different BERT-
based models fine-tuned to rank a edit candidate. With several models of dif-
ferent sizes, it is possible to use this spellchecker tool on a variety of technical
hardware, from a high-performance server with the MedRuRobertal.arge model
to an common personal computer with the MedRuBertTiny2 model.

The Language Model component can easily be extended by adding candidate
rankers based on other machine learning models. It is enough to implement the
necessary interface and everything will work out of the box. As an example, we
have added rankers based on the RuBioBERT and RuBioRoBERTa models from
the paper by Alexander Yalunin et al. [18].

3.6 Python package

The developed spellchecker was assembled in a Python package and uploaded
to the official pip repository. The package with the new tool is called med-

! https://huggingface.co/sberbank-ai/ruRoberta-large

® https://huggingface.co/DmitryPogrebnoy/MedRuRobertalarge

% https://huggingface.co/distilbert-base-multilingual-cased

" https://huggingface.co/DmitryPogrebnoy/distilbert-base-russian-cased
 https://huggingface.co/DmitryPogrebnoy/MedDistilBertBaseRuCased

? https://huggingface.co/cointegrated/rubert-tiny?2

' https://huggingface.co/DmitryPogrebnoy/MedRuBertTiny?2

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:
DOI] 10.1007/978-3-031-36024-4_16 |



https://dx.doi.org/10.1007/978-3-031-36024-4_16
https://dx.doi.org/10.1007/978-3-031-36024-4_16

RuMedSpellchecker 9

Listing 1.1. An example of using a new tool to correct an error in the sentence "The
patient has been diagnosed with a heart attack”

1 from medspellchecker.tool.medspellchecker \

2 import MedSpellchecker

3 from medspellchecker.tool.distilbert candidate ranker \

4 import RuDistilBertCandidateRanker

5
6 candidate ranker = RuDistilBertCandidateRanker ()
7 spellchecker = MedSpellchecker (candidate ranker)
8 fixed text = spellchecker.fix text(

9 7Y _60JILHOTO _ IMarHOCTUPOBAH _ UHPPKT

10 )

12 print(fixed text)

spellchecker'!. In addition to the source code and necessary classes, this package
also contains a dictionary of correct words. Apart from the dictionary, the pack-
age does not contain any other additional datasets or models, which keeps the
size of the package manageable.

The medspellchecker package does not contain any parts or compiled frag-
ments of ranking models. They are all downloaded automatically when needed
from the public repository on Hugging Faces. An internet connection is required
to use the tool, at least for the first time. Once the model has been downloaded
and cached, an internet connection is not required.

An example of the use of a package with the developed tool is shown in
Listing 1.1.

The first two lines import the main class of the package. Lines 3 and 4
then import one of the three available classes to rank the edit candidates. Line
6 creates an instance of the candidate ranking class based on the fine-tuned
DistilBert model. Line 7 creates an instance of the class to correct spelling errors.
On line 8, the fiz text method is called, which takes the raw text and returns
the corrected text. Finally line 12 prints the corrected result, which looks like
«Y 6osbHOrO mAuarHocTupoBaH uHMapkTy. In this way, the package can be used
to correct spelling errors in Russian medical texts in a few lines. The package
also allows you to extend the ranking classes and add your own custom ones.

4 Experiments

There are several open source tools that can automatically correct spelling er-
rors in words. Most of these tools focus mainly on English text, while the other
languages fall by the wayside and cannot boast such a rich range of tools. Nev-
ertheless, there are several tools that support the Russian language. However,
none of them is intended for medical texts.

" https://pypi.org/project/medspellchecker

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:
DOI] 10.1007/978-3-031-36024-4_16 |



https://dx.doi.org/10.1007/978-3-031-36024-4_16
https://dx.doi.org/10.1007/978-3-031-36024-4_16

10 Dmitry Pogrebnoy & Anastasia Funkner & Sergey Kovalchuck

We have evaluated the precision and performance of the tool, and compared
it to other open source tools for correcting spelling errors in Russian texts.
The following parameters were identified for comparison.

— FError precision. This is the percentage of words with an error that the tool
correctly corrected relative to all incorrect words.

— Lexical precision. This is the percentage of correct words without mistakes
that the tool does not correct relative to all correct words.

— Opverall precision. This is the average of error precision and lexical precision.

Performance. Average number of words processed per second.

Precision metrics and tool performance were evaluated on two different data-
sets. The first dataset contains correct and incorrect words without their context.
This set contains 100 entries for each of the first four error types, 900 entries for
the fifth error type and 1000 for the sixth error type shown in Figure 1. Thus
this test dataset contains a total of 2300 records. Each record contains a pair of
words. The first word contains a particular type of error and the second word is
its correct version.

The second dataset also contains 100 entries for each of the first four error
types, 900 entries for the fifth error type and 1000 for the sixth error type shown
in Figure 1. Thus this test dataset contains a total of 2300 records. This set does
not contain single words, but words with context. Each record consists of three
parts. The first part is a coherent passage of 10 words, one of which is written
with an error of a certain type. The second part is the same 10 words, but fully
correct. The third part is the number of the incorrect word, which is used to
calculate the error and lexical precision.

All words and passages in the test datasets are collected from various Russian
medical texts and anamneses.

Thus we have two test datasets with medical data. The first dataset allows
us to evaluate how good the tool performs in correcting single words, and the
second dataset allows us to calculate the quality of word correction in a coherent
context.

In order to better compare the tools was also calculated overall precision,
which is the average of lexical and error precision. This metric allows estimating
the quality of spelling error correction in general. However, it should be noted
that there are usually more correct words in a text than there are incorrect
words, therefore lexical precision is more important than error precision.

In addition to the quality of correction of spelling errors, it is also necessary
to take into account the time in which these errors are corrected. Of course,
the faster the tool works, the better. The performance test was conducted on
a computer on Ubuntu 20.04 with 24 GB RAM, Intel Core i5-10210U CPU @
1.60GHz * 8 and NVIDIA Tesla V100.

5 Results and Discussion

Seven open source tools for correcting spelling errors in Russian texts were chosen
for the experiments. For each tool, there are Python wrappers for easy handling

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:
DOI] 10.1007/978-3-031-36024-4_16 |



https://dx.doi.org/10.1007/978-3-031-36024-4_16
https://dx.doi.org/10.1007/978-3-031-36024-4_16

RuMedSpellchecker 11

from Python code. The selected tools and their Python wrappers are shown in
the Table 3.

Table 3. Open source tools and their Python wrappers for correcting spelling er-
rors in Russian chosen for experiments. Full links to Github repositories require
«https:/ /www.github.com/» prefix.

Tool name Wrapper name Wrapper GitHub repository
Aspell Aspell-python WojciechMula/aspell-python
Hunspell PyHunspell blatinier /pyhunspell
Enchant PyEnchant pyenchant /pyenchant
LanguageTool |LanguageTool-python|jxmorris12/language tool python
sgsltlecLeNcigl[gl ;] PySpellChecker barrust /pyspellchecker
Symspell SymspellPy mammothb /symspellpy
Jumspell Jumspell bakwc/JamSpell

In addition to the existing tools, the experiment was also conducted with
RuMedSpellchecker in ten different configurations, depending on the language
model and the type of processor used. The first six configurations used models
fine-tuned as part of this paper. The remaining four configurations used the
RuBioBERT and RuBioRoBERTa models, which were obtained in the paper by
Alexander Yalunin et al. [18] in Sberbank AT lab.

An example of correcting spelling errors with selected tools is shown in
Table 4. The misspelled sentence is «Y 6oIbHOTOIMATHOCTUPOBAH UHMPKT U
TyGepKy3». The correct result of the misspelled sentence is «y 60bHOTO
JgumarnoctupoBaH wHMApKT U TyOepkyse3». The case of letters is not taken into
account. In this example, RuMedSpellchecker tool was run in CPU mode, as the
quality and result of the fix is independent of which computing mode is used.

As you can see even such a relatively simple example causes problems with the
correction. However, the Aspell-python and LanguageTool-python tools properly
corrected the example sentence. The other existing tools made mistakes in end-
ings, prepositions, or missing a space between words. The new tool corrected the
example preposition with only two of the language models. The other three had
incorrect results.

The results of the example sentence corrections cannot be used to evaluate
the precision of the corrections and the performance of the tools. The following
are the results of the single word corrections experiment and the word with
context corrections experiment.

The result of the experiment with single word corrections is shown in Table 5.
In addition to the tool names and four metric columns, the table contains a
column with the CPU or GPU type of processor. GPUs can significantly improve
the performance of spelling correction tools, but only those that support it.
Unfortunately, none of the existing evaluated tools support GPU computing.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:
DOI] 10.1007/978-3-031-36024-4_16 |



https://dx.doi.org/10.1007/978-3-031-36024-4_16
https://dx.doi.org/10.1007/978-3-031-36024-4_16

12 Dmitry Pogrebnoy & Anastasia Funkner & Sergey Kovalchuck

Table 4. The results of fixing the «¥Y GoqbHOrOAMATHOCTHPOBAH UH(MPKT U TYOEPKYJI3»
sentence by the various tools selected.

Tool name Result
Aspell-python Y GOJIBHOTO AMATHOCTUPOBAH MH(MAPKT U TyOepKyje3
PyHunspell Y 6ompHOrO AUArHOCTUPOBaH MHMAPKT au TyOepKy.I
PyEnchant 1 6ompHOTO MuarHoctupoBaH MHMAPKT an TyOepKyT
LanguageTool-python |¥Y 6osbHOro AuarHocTupoBaH MHQPAPKT U TyGepKyJie3
PySpellChecker YV 60/1bHOrOIMarHOCTUPOBAH UHMAPKT U TyOEpKYyIe3
SymspellPy 1 6OTLHOTONATHOCTUPOBAH MH(MAPKT U TYOEpKyJIe3
(coi}g:ii(eiuri}(; de) y GOJIBHOTO JIMarHOCTHPOBaHMS MHMAPKT U TyOepKyJie3
Jumspell YV 60sIbHOrOAMATHOCTUPOBAH HHPPKT U TyOEpKyI3
RuMedSpellchecker YV 60JIbHOTO JIMarHOCTUPOBAH MHMEKT U TYOEPKYy/I3
(MedRuRobertaLarge)
RuMedSpellchecker VY G0JIbHOTO AMArHOCTUPOBAH MHMAPKT U TyOepKyJie3
(MedDistilBertBase)
RuMedSpellchecker VY G0JIbHOTO AMArHOCTUPOBAH MH(MAPKT U TyOepKyJie3
(MedRuBertTiny?2)
RuMedSpellchecker YV 60JIbHOTO JIMArHOCTUPOBAH UHPPKT U TYOEpKyJI3
(RuBioBERT)
RuMedSpellchecker YV 60JIbHOTO JINarHOCTUPOBAH MHMEKT U TYOEPKY/I3
(RuBioRoBERTa)

Table 5. Comparison of spelling correction tools in Russian medical texts and a new tool
in the single word correction test.

Processor| Error | Lexical | Overall |Average words
Tool name .. . . . .
type |precision|precision |precision| per second
Aspell-python CPU 0.86 0.859 | 0.859 283.7
PyHunspell CPU 0.812 0.539 0.675 9.4
PyEnchant CPU 0.829 0.541 0.685 20
LanguageTool-python CPU 0.762 0.904 0.833 25.1
PySpellChecker CPU 0.354 0.86 0.607 3.4
SymspellPy CPU 0.399 0.813 0.606 9702.8
SymspellPy CPU | 0465 | 0512 | 0.489 672
(compound mode)
Jumspell CPU 0.267 0.947 0.607 2552.1
RuMedSpellchecker CPU 2.1
(MedRuRobertaLarge) GPU 0-715 1 0.991 | 0853 5.9
RuMedSpellchecker CPU 12.7
(MedDistilBertBaseRuCased)| GPU 0-701 1 0.991 | 0.846 39.7
RuMedSpellchecker CPU 24.2
(MedRuBertTiny2) GPU 0-681 | 0.991 | 0.836 79.1
RuMedSpellchecker CPU 2.2
(RuBioRoBERTa) GPU 0.695 ) 0.991 | 0.843 5.8
RuMedSpellchecker CPU 8.3
(RuBioBERT) GPU 0-683 0.991 0.837 20.1

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:
DOI] 10.1007/978-3-031-36024-4_16 |



https://dx.doi.org/10.1007/978-3-031-36024-4_16
https://dx.doi.org/10.1007/978-3-031-36024-4_16

RuMedSpellchecker 13

The Aspell-python tool performed best in the single-word correction test
in terms of error precision and overall precision. The new tool, on the other
hand, was quite average in error precision. However, the tool was the best in
lexical precision, which also influenced the overall precision and made it close
to the best. This is probably due to the additionally extended vocabulary of
valid words. In terms of performance, SymSpellPy showed the best result, while
Jumspell also showed a high value. As expected, the performance of the new
tool depends on the model and processor type used. The smaller the model, the
faster the tool runs, but the precision is slightly reduced. Also the tool with our
fine-tuned models shows slightly better precision metrics than with RuBioBERT
and RuBioRoBERTa respectively. Overall, it can be said that the performance
of the tool is average compared to competitors.

The results of the precision metrics of the new tool in the one-word correction
test were not as high. However, the main feature of the language models used
in the tool is to take into account the context around the word being corrected.
Therefore, the new tool revealed itself in the test with word correction in context.
The result of the experiment with word correction in context is shown in Table 6.

Table 6. Comparison of spelling correction tools in Russian medical texts and a new tool
in the test of correcting a words with context.

Processor| Error | Lexical | Overall |Average words
Tool name .. .. ..
type |precision|precision |precision| per second
Aspell-python CPU 0.731 0.93 0.831 357.3
PyHunspell CPU 0.706 0.719 0.713 11.8
PyEnchant CPU 0.721 0.719 0.72 24.3
LanguageTool-python CPU 0.727 0.942 0.835 43.6
PySpellChecker CPU 0.304 0.868 0.586 6.7
SymspellPy CPU 0.37 0.913 0.642 26060.2
SymspellPy CPU | 0483 | 0.804 | 0.643 1604.2
(compound mode)
Jumspell CPU 0.307 0.969 0.638 4322.3
RuMedSpellchecker CPU 8.9
(MedRuRobertaLarge) GPU 0.792 | 0984 | 0.888 29.1
RuMedSpellchecker CPU 45.5
(MedDistilBertBaseRuCased)| GPU 0-765 0.9 0.878 153.8
RuMedSpellchecker CPU 127.3
(MedRuBertTiny2) GPU 0.742 0-987 1 0.865 356.2
RuMedSpellchecker CPU 9.1
(RuBioRoBERTa) GPU 0.738 0-987 | 0.863 31.3
RuMedSpellchecker CPU 30.7
(RuBioBERT) apu— 0715 | 0.988 | 0.852 o

RuMedSpellchecker outperformed the competition in all precision metrics
in the test of correcting words with context. In addition, in this test, the new

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:
DOI] 10.1007/978-3-031-36024-4_16 |



https://dx.doi.org/10.1007/978-3-031-36024-4_16
https://dx.doi.org/10.1007/978-3-031-36024-4_16

14 Dmitry Pogrebnoy & Anastasia Funkner & Sergey Kovalchuck

tool showed significantly better performance than in the previous test. However,
SymSpellPy was still the performance leader.

The new tool with the largest language model, MedRuRobertaLarge, scored
higher in the error precision metric than the other models. However, lexical pre-
cision was higher with the MedDistilBertBaseRuCased model. This can probably
be explained by the very limited dataset for fine-tuning large models. Also, due
to the limited dataset, the generalization ability of the models may be biased.
For example, for other types of medical texts the tool may perform worse. De-
spite this it is very likely that with more medical texts to train, the fine-tuning
of models will be better and the precision metrics of the tool will also be even
higher.

Nevertheless, the results show that the new approach for correcting medical
texts in Russian is effective and outperforms the competition by 7% in overall
precision. Moreover, this approach can be used not only to correct medical texts.
This algorithm can be adapted to other specific domains and languages with
limited available datasets.

6 Conclusion

We presented a new method for correcting medical texts in Russian and a tool
that implements it. Experiments have shown that the new tool is slightly inferior
to existing tools when correcting single words, but outperforms them by 7% in
overall precision when correcting words with context. The achieved result can
be improved by more medical data in Russian for better fine-tuning of language
models.

The presented method can be used not only for correction of medical texts
in Russian. The algorithm can be adapted to correct spelling errors in texts in
other low-resource languages. In addition, the presented approach can also be
applied not only to medical texts, but also to texts of other specific domains
with a limited set of available data.

Acknowledgments

This work was supported by the Ministry of Science and Higher Education of
Russian Federation, goszadanie no. 2019-1339.

References

1. Abdaoui, A., Pradel, C., Sigel, G.: Load what you need: Smaller versions of mutililin-
gual BERT. In: Proceedings of SustaiNLP: Workshop on Simple and Efficient Natural
Language Processing. pp. 119-123. Association for Computational Linguistics, Online
(Nov 2020). https://doi.org/10.18653/v1/2020.sustainlp-1.16

2. Alsentzer, E., Murphy, J., Boag, W., Weng, W.H., Jindi, D., Naumann, T.,
McDermott, M.: Publicly available clinical BERT embeddings. In: Proceedings

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:
DOI] 10.1007/978-3-031-36024-4_16 |



https://dx.doi.org/10.1007/978-3-031-36024-4_16
https://dx.doi.org/10.1007/978-3-031-36024-4_16

10.

11.

12.

13.

14.

15.

16.

17.

18.

RuMedSpellchecker 15

of the 2nd Clinical Natural Language Processing Workshop. pp. 72-78. Associ-
ation for Computational Linguistics, Minneapolis, Minnesota, USA (Jun 2019).
https://doi.org/10.18653/v1/W19-1909

. Balabaeva, K., Funkner, A., Kovalchuk, S.: Automated spelling correction for clinical

text mining in russian. Studies in health technology and informatics 270, 43-47 (06
2020). https://doi.org/10.3233 /SHTI200119

. Damerau, F.J.: A technique for computer detection and correction of spelling errors.

Commun. ACM 7(3), 171-176 (mar 1964). https://doi.org/10.1145/363958.363994

. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirec-

tional transformers for language understanding (2018), https://arxiv.org/abs/
1810.04805

. Github repository of symspell tool (2018), https://github.com/wolfgarbe/

SymSpell

. Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of tricks for efficient text

classification (2016), https://arxiv.org/abs/1607.01759

. Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, CH., Kang, J.

BioBERT: a pre-trained biomedical language representation model for
biomedical text mining. Bioinformatics 36(4), 1234-1240 (sep 2019).
https://doi.org/10.1093 /bioinformatics /btz682

. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word represen-

tations in vector space (2013), https://arxiv.org/abs/1301.3781

Norvig, P.: Peter norvig’s blog post about a simple spell checking algorithm (2007),
https://norvig.com/spell-correct.html

Pavel, B., Aleksandr, N., Galina, Z., Arina, R., Vladimir, K., Chaitanya, S.:
Rumednli: A russian natural language inference dataset for the clinical domain (2022).
https://doi.org/http://doi.org/10.13026 /gxzd-cf80

Peng, Y., Yan, S., Lu, Z.: Transfer learning in biomedical natural language processing:
An evaluation of bert and elmo on ten benchmarking datasets (2019), https://
arxiv.org/abs/1906.05474

Romanov, A., Shivade, C.: Lessons from natural language inference in the clinical
domain (2018), https://arxiv.org/abs/1808.06752

Shelmanov, A.O., Smirnov, I.V.; Vishneva, E.A.: Information extraction from clinical
texts in russian. Computational Linguistics and Intellectual Technologies: Papers
from the Annual International Conference "Dialogue” 270, 537-549 (2015)

Sorokin, A., Baytin, A., Galinskaya, I., Rykunova, E., Shavrina, T.: Spellrueval :
the first competition on automatic spelling correction for russian (2016), https:
//www.dialog-21.ru/media/3427/sorokinaaetal . pdf

Starovoitova, E., Kulakov, E., Fedosenko, S., Shmyrina, A., Kir-
illova, N., Vinokurova, D., Balaganskaya, M.: RuMedPrimeData (2021).
https://doi.org/10.5281 /zenodo.5765873

Toutanova, K., Moore, R.C.: Pronunciation modeling for improved spelling correc-
tion. In: Proceedings of the 40th Annual Meeting on Association for Computational
Linguistics. p. 144-151. ACL ’02, Association for Computational Linguistics, USA
(2002). https://doi.org/10.3115/1073083.1073109

Yalunin, A., Nesterov, A., Umerenkov, D.: Rubioroberta: a pre-trained biomedical
language model for russian language biomedical text mining (2022), https://arxiv.
org/abs/2204.03951

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:
DOI] 10.1007/978-3-031-36024-4_16 |



https://dx.doi.org/10.1007/978-3-031-36024-4_16
https://dx.doi.org/10.1007/978-3-031-36024-4_16

