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Abstract. In this article, we present a processing pattern dedicated
to video-oculography. It is a complete solution that allows for checking
the external conditions accompanying the video oculography, conduct-
ing oculometric measurements based on different test models, estimat-
ing eye movement (EM) angles and detecting EM type in the stream of
coordinates, and calculating its parameters. We based our architecture
on neural networks (NN), machine-learning (ML) algorithms of different
types, parallel/asynchronous computing, and compilations of the models,
to achieve real-time processing in oculometric tests.

Oculometric tests provide significant insight into central neuro-motor
states, but machine-learning methods are needed to estimate their mean-
ing. A limitation of this cognitive-analytical trend was the reliance on
dedicated measuring devices, such as eye-trackers, which are usually sep-
arate and expensive equipment. Presented approach goes beyond these
limitations and was developed to use standard home computer equip-
ment, with an internet connection and computer camera. Our set of
dedicated algorithms embedded in the software compensates for hard-
ware limitations.

We tested the results of the presented solution on reflexive saccades (RS)
and a standard 30 frames per second (FPS) web-camera, and we were
able to distinguish between young and old persons and between healthy
and prodromal neurodegenerative (ND) subjects by analyzing RS pa-
rameters. Visual processes are connected to many brain structures and,
by using ML methods, we are trying to dissect them. The development
of solutions like the one presented in this article gives hope for the gen-
eral availability of screening tests connected to ND risk and for collecting
extensive data outside the laboratory.

We hope that this direction will contribute to the development of ND
analytic means in computational health and consequently, to the faster
development of new ND preventive measures.

Keywords: machine learning, deep learning, eye moves, eye tracking,
eye move computations, video oculometry, computer vision, reflexive sac-
cades, saccade detections, neurodegenerative diseases, Parkinson’s dis-
ease
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1 Introduction

The video-oculography supported by computer vision algorithms introduces a
non-invasive and economically efficient method of eye tracking based on stan-
dard cameras, rather than dedicated devices. It allows for measuring the same
components of the EM, and thanks to the possibility of using standard devices
such as computer webcams, it brings oculometry to widespread use.

Many researchers experiment with models and new approaches to estimate
EM and gaze direction. It has already been confirmed that web-based eye track-
ing is suitable for studying fixation, pursuit eye movements, and free viewing
with repeatability of well-known gazing patterns with slightly less accuracy and
higher variance of the data compared to laboratory devices [1]. Furthermore,
in the case of RS, such webcam systems are able to calculate parameters with
sufficient results, allowing for clinical diagnosis and identification of neurological
disorders such as Multiple Sclerosis (MS) [2]. Other researchers have proved that
in terms of accuracy, webcam systems can be equal to infrared eye-trackers with
1000 Hz sampling frequency [3].

The core elements of each video-oculographic system are algorithms asso-
ciated with eye position estimation. There are many different approaches; Lin
et al. experimented with estimation based on the appearance-features of eyes,
Fourier Descriptors, and the Support Vector Machine, combining a position cri-
terion, gaze direction detection, and lighting filtering [4]. Xu et al. experimented
with grayscaling and histogram equalization, creating a 120D feature set for
linear regression [5]. However, for the last period of time, for both computer vi-
sion and video-oculography, the golden standard has been Convolutional Neural
Network (CNN) models. CNNs are based on convolution operations, which, in
short, sample every possible pixel arrangement to find specific patterns. In case
of video-oculography, this pattern will include the eye component, including the
iris and the most important pupils. Akinyelu et al. based their estimation on
the face component to extract the gaze features from the eyes, and a 39-point
facial landmark component was used to encode the shape and location of the
eyes into the network. Experiments confirmed better results of CNN in compar-
ison to the Visual Geometry Group (VGG) NN [6]. Meng et al. experimented
with CNN and webcams for an eye-tracking method based on detecting 6 eye
features [7]. Gunawardena et al. explored this subject in terms of the efficiency
of 4 lightweight CNN models for eye tracking: LeNet-5, AlexNet, MobileNet,
and ShuffleNet. They indicate that MobileNet-V3 and ShuffleNet-V2 are the
most suitable CNN models [8]. Harenstam-Nielsen experimented with adding
Long-Short Term Memory (LSTM) cells to the convolutional layers and Recur-
rent Neural Network (RNN) cells to the feature layers to increase eyetracking
performance [9]. Here, the importance of ”memory” modeling in the context
of the CNN should be emphasized. For example, the convolutional layer of a
model trained for face detection might encode the information that ”eyes” are
present in the input image, but the receptive field will not have any information
to explain whether the eyes are above the nose or not. This is because each con-
volutional kernel will not be large enough to process many features at one trial.
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The cost of tracing wide-range dependencies within an image is ineffectiveness
and weight of the model, which is most important for real-time processing. This
is why several separate models are used for eyetracking based on the CNN archi-
tecture. Usually, this process starts from face detection, then facial landmarks
are estimated to determine the location of the eyes. Finally, the image of the
eyes is entered into the final network to determine gaze directions.

This issue seems to be already been resolved by the self-attention approach
introduced first in transformer-based architectures, which are well known from
neural language processing. In computer vision, this architecture takes a feature
map as an input parameter and computes relations between each feature based
on its weights, resulting in shared information about each object in the image.
However, vision transformers in video-oculography are still a very fresh subject
and will be elaborated in the next work, as CNN, despite its disadvantages,
with the right approach allows for very fast and efficient video-oculographic
processing. This is the subject of this text and general purpose was to propose
a universal processing pattern based on our best knowledge, which would cover
and resolve well-known issues and allow for easy embedding and conducting all
standard oculometric tests. We hope that the proposed solution will contribute
to the dissemination of oculometric tests also in the context of ND diagnosis.

2 Methods

We developed a pattern for general use in video-oculographic processing con-
structed of 3 base steps,

1. Analysis of information about sufficient / insufficient equipment or environ-
mental conditions

2. Face detection and facial components estimations including estimation of
gaze direction

3. EM estimation including signal smoothing and EM type detection and com-
putations of its parameters.

The description of this processing pattern has been presented in subsequent
sections and on fig.1.

2.1 Video signal quality check

The environmental factors such as poor lighting or equipment, glasses on the
subject’s face, or insufficient concentration on the stimulus can bring an unac-
ceptable quality of the signal and recordings of the EM test. This is why we
decided to introduce several methods estimating quality components and estab-
lished threshold values to validate the EM signal. Firstly, we set the frequency
level threshold to be ∼25 FPS, as our previous experiments showed that in lower
frequencies it is impossible to calculate the parameter within the acceptable error
range, due to an enormous temporal sample error. As explained in [3], in the case
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Fig. 1: The process pattern schema for video-oculometric test.
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of web cameras, 30 FPS would be ideal, but many factors, such as insufficient
light, can affect the video frequency.

This is why we determine lighting conditions from video signals by calculating
the dominant and average colors in an image converted to grayscale. The domi-
nant color is estimated with clustering by the k-means function implemented in
the OpenCV library with 5 colors and selecting random initial centers in each
attempt [10]. The mean color is just calculated as the mean value along the
bitmap columns. These two parameters indicate acceptable lighting conditions
in presented approach. We have experimentally determined that the average
value obtained from the RGB of the dominant color should not be lower than
90 and the mean color should not be lower than 120. Similarly, for video signal
estimation, we decided to use two parameters for noise level measurement of
EM signals: Signal to Noise Ratio (SNR) as a simple relationship between the
horizontal axis EM mean and its statistical deviation (SD). We also calculated
the Periodogram of the horizontal axis EM, which estimates the spectral density
of a signal providing statistical average including noise. We used the function
implemented in the SpectralPy library with the default ”boxcar” window, den-
sity scaling, and ”constant” detrend. Both parameters support the evaluation
of EM noise level and, during experiments, we established acceptable thresholds
for EM signals of ≤ 3.5 for SNR and ≥ 0.02 average from the Periodogram.

We propose to use the presented parameters with a small tolerance for quality
that is only slightly different from the threshold values. We also propose to
perform a quality check during calibration, as this is the moment when we have
enough data to perform quality analysis, yet the actual test has not been done,
making it easy to stop the study and notify the examined person of insufficient
conditions.

2.2 Face detection and facial components estimations

We decided to base this part of the process on trained neural networks mostly
based on convolutional architecture compiled into functions, which allows for the
best performance of estimations. We used the Intel OpenVINO™ [11] framework,
which uses this method for optimizing deep learning performance together with
a pipeline that allows for running many asynchronous estimations in parallel,
including image pre-processing. The fig. 2 presents the schema of parallel pro-
cessing, which has been used for nested computations, where inference results
of the ancestor model (i.e. face detection) are passed to descendant models (i.e.
head pose and facial landmarks estimators).

Additionally, we tried to select the lightest and quickest NN architectures we
could find to minimize estimation latency. In order to estimate the eye angles,
we connected four models working together in one sequence. The face detector
finds the face in the main image from the camera. Next, we smooth the face
bounding box coordinates to reduce jittering caused by the detector’s uncertainty
range with Weighted Moving Average (WMA) with a weight value set to 0.5.
Then, the cropped face image is sent in parallel to the next two models to
estimate the position of the head relative to the camera lens and to estimate
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Fig. 2: The schema of parallel processing of nested models.

facial landmarks to find the eyes in the face image. Finally, gaze estimation
is performed based on the images of both eyes and the head position angles.
Pre-processing includes mostly resizing and rotating the image and reshaping
the bitmap matrix into the model input [10,12], post-processing includes mostly
reshaping the model outputs into a more convenient format and calculations, i.e.
trigonometric conversion from gaze vectors into gaze angles.

For face detection, we used the lightweight ”face-detection-0205” model,
based on the MobileNetV2 scaffolding and Fully Convolutional One-stage Ob-
ject Detection (FACOS) as a head [13]. The model was trained with indoor and
outdoor scenes shot by a front-facing camera and outputs bounding boxes with
93.57% of average precision (AP) for faces larger than 64x64 pixels. For facial
landmarks estimation, we used the ”facial-landmarks-35-adas-0002” model [14].
The CNN was trained with a 1000-sample random subset of different facial
expressions and outputting a row-vector of 70 floating point values (x,y) for nor-
malized 35 landmarks coordinates with a Normed Error (NE) of 0.106 [13]. For
head pose estimation, we used the ”head-pose-estimation-adas-0001” model [15].
The CNN had ReLU activation function, batch normalization and angle regres-
sion layers as convolutions, fully connected with one output returning Tait-Bryan
angles describing rotation in Euclidean space with an accuracy of: yaw 5.4 ± 4.4,
pitch 5.5 ± 5.3 and roll 4.6 ± 5.6 [15]. For gaze estimation, we used the ”gaze-
estimation-adas-0002” model [16]. The Visual Geometry Group CNN model for
gaze direction estimation outputs a 3-D vector in a Cartesian coordinate system
(in which the z-axis is directed from the mid-point between eyes to the camera
center, y-axis is vertical, and x-axis is perpendicular to both z and y) with a
Mean Absolute Error (MAE) of 6.95 ± 3.58 of angle in degrees [16].

2.3 Eye move estimations

For the purposes of this study, we chose RS as one of the most common types
of eye movement performed by humans thousands of times a day, which is also
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of great importance in oculometric research related to ND [17–25]. In presented
approach, RS is stimulated by alternately displaying the fix-point and one of the
left/right peripheral targets (markers) in random time intervals (in a step/no-
delay model). All are green ellipses in the horizontal axis at a distance of about
8 degrees, and the subjects sat at a distance of about 55-70 cm from the cam-
era/monitor. The study included 20 RS tests performed by each subject, fig. 3
presents the RS test pattern used in our experiment.

Fig. 3: The reflexive saccades test pattern schema.

For a more accurate estimation of the RS, the signal was smoothed. In pre-
sented approach, based on the EM fluctuation analysis, smoothing might be
conducive to an accurate determination of the start and end of the amplitude
peak. We smoothed the signal with a low-pass Butterworth 2nd order filter with
a cutoff of 3.5, and for this purpose, we used the implementation of this func-
tion included in the SciPy library [26]. Smoothing was performed outside the
RS estimated initially on the raw data, to prevent changing the shape of the RS
amplitudes.

For RS detection, we implemented a rolling window function that estimates
this type of EM in time series of gaze angles based on stabilization, deviation,
and changes in the amplitude. In addition, we introduced a signal of markers
to the algorithm for estimations of the RS latency and gain parameters. The
algorithm first calculates fluctuation in the fixation state (as EM mean shift
in the x-axis) in the small (300 ms) control window (fixation state window)
preceding changes in the state of the marker. Then, the size of the next window
is calculated with the starting point set between the moment when the peripheral
target appears and below the possible minimal RS latency (40 ms) depending
on the data frame rate. From the starting point, the window end is set to the
maximum RS length (500 ms for ∼8°). Next, the window is iterated in search of
longer amplitude change with minimal duration for longer RS (50 ms) towards
the displayed target. For such amplitude change to be classified as start of the
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RS, the shifts between data points must be longer than the mean fluctuation in
the fixation state window and must be ≥30% of the distance between fix-point
and the peripheral target. With the assumption of the min RS duration (50
ms) algorithm looks for the data-point in which position relative to the previous
point will be <30% which is considered as minimal inhibition of the RS and also
its ending point. If no starting or ending point was found, a trail is classified as
failed. For each detected RS, we calculated the following parameters: latency as
the time difference between the start of the marker movement and the start of
the eye movement, duration as the total movement time period, amplitude as
the total EM angle, average and maximum velocity as the respectively average
and maximum angular velocity, and gain as the ratio between the RS amplitude
and fix-point-target distance.

2.4 Experimental application

We evaluated the presented approach by creating a sample web application in
which we implemented our processing pattern. Fig. 4 presents its pipeline. In the
first stage (Head Position Validation), we adjusted the head position using the
camera view with landmarks markers applied to the subject’s face. We estimated
the distance between the head and the monitor by computing the distance be-
tween the subject’s center of eyes, received from facial landmarks coordinates.
We decided to accept an approximated range of 55-80 cm, allowing the subject
to be able to use the mouse or keyboard, but not too far as the face image had to
be large enough. We also estimated the perpendicular head position determined
on the basis of the vertex positions of the face bounding box. We implemented
this feature to obtain registration of subjects in the same head position. The next
stage was a calibration. We decided on the simplest three-point schema map-
ping only the position of the fixation point and the peripheral targets in physical
space. During calibration, we also computed the parameters of the video signal
quality described in subsection 2.1. In all cases, the application reported poor or
satisfactory parameter values, enabling corrections to be made. After successful
completion of these stages, the main oculometric test for RS was performed,
then RS were detected in the registered EM signal and their parameters were
estimated as described in section 2.3. Finally, the results were presented on the
screen and recorded in a file system of a server.

Fig. 4: The pipeline of the experimental application.
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3 Results

We wanted to evaluate the presented processing pattern by using application
described in previous section. We tested it with 8 subjects in range of 23-45
years old and different gender (158 RS samples). The group was small, but our
goal was not to build a statistically large population of different individuals.
Rather, we only wanted to collect data from sample equipment and examples of
external conditions that may accompanying the study.

We also wanted to reference our results with laboratory measurements and
laboratory-grade devices. We decided to compare our results with those pub-
lished in the data sheet ”Descriptive and Reproducibility Results of the Pro-
Saccadic Task”, where 8 degrees horizontal RS were tested (28 subjects) [27].
All measurements in this research were performed with a professional infrared
eye tracker, the Eyelink 1000 Plus, with a frequency of 1000 Hz [27]. In our
measurements we used a standard but good quality webcam, the Logitech C922
Pro Stream, at 30 FPS with Full HD mode.

For latency (ms), we obtained a mean of 192 ±45, for gain (%), 1.16 ±0.24,
for average velocity we received means of 88 deg/sec ±33.78, and for maximum
velocity 145 (deg/s) ±52. In the reference data, the latency mean was 176 ±21
(a difference of 16 ms), the gain was 0.98 ±0.05 (a difference of 0.18), and the
maximum velocity was 342 deg/s ±44 (a difference of approximately 200 ms) [27].
Table 1 presents comparison between experimental and reference statistics. All
differences were statistically significant (P < 0.05), which is evident given the
differences in frequency.

Table 1: Comparison between experimental and reference statistics.
Source Latency (ms) Gain (%) Max Velocity (deg/s)

Webcam 30Hz experimental data 192 ±45 1.16 ±0.24 145 ±52

Eye-tracker 1000 Hz reference data 176 ±21 0.98 ±0.05 342 ±44

Difference 16 ± 48.3 0.18 ± 0.25 197 ± 67.3

We can see that even with such a large difference in sampling rate (970 Hz),
some parameters, such as latency, do not show proportionally large differences,
while parameters like velocity clearly indicate the impossibility of capturing all
values at low frequencies. Therefore, it can be argued that not for every pa-
rameter do large differences in frequencies proportionally translate into infor-
mation loss between subsequent sampling points. This is particularly important
when such differences are statistically insignificant when comparing two different
groups of subjects, as indicated in the next section of this text.

However, in our system, the processing frequency depends only on the hard-
ware capabilities. This is a fundamental limitation of an approach like ours that
cannot be minimized by techniques such as synthetic oversampling, because no
two oculomotor systems are the same and artificial data generated from statis-
tical analysis will always be inadequate. In terms of eye tracking accuracy, with
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the very fast but not super accurate model we used, the results seem to be sat-
isfactory. The difference in gain between our results (1.16 ±0.24) and the results
of the reference study (0.98 ±0.05) does not seem to be great. Although gain
expresses the differences between EM and marker amplitudes, which strongly
depends on the subject, in the case of fundamental differences in accuracy, the
difference in the resulting gains would certainly be much greater.

However, in terms of frequency, the results for a 100, 300, or 1000 FPS
camera would be completely different due to temporal sampling error. The data
are collected at some finite frequency, and if it is lower than 1000 Hz, changes in
speed or direction of eye movement are not registered between two consecutive
sampling points. As 1 ms is the maximal one-point temporal sampling error at
a 1000 Hz [28] and the sampling error will be half of the sample time value
((1000/x)/2) we can calculate that at 300 Hz this error would be 1.6, at 100 Hz
5, and at 30 Hz 16.6 ms, which corresponds to the difference between results from
reference data we received for latency. It must be noted that the data frequency
for the processing speed in the proposed pattern seems to be transparent, thanks
to the use of parallel/asynchronous estimations and fast models with compiled
form. This does not change the fact that in this approach, the frequency of data
is independent from the processing, and in this context, the process may be
responsible at most for notifications to the users of the system.

4 Discussions

The phenomenon of temporal sample error in lower frequencies, so clearly visible
in the case of velocity results, is well described by Anderson et al. [28]. How-
ever, its effect has dissimilar influences on different parameters, as shown by the
latency where, with a huge difference in sampling frequency, the nominal differ-
ence in parameter values is very small. When it comes to the classification of
young and old people, or healthy people and ND patients, such an error margin
may not affect the results. For example, in one of our previous studies on RS
task with PD patients, specific disease stages (varying in progression) showed
latency thresholds of 260.0 ms and 308.5 ms [29,30], while the healthy subjects
for the RS show latency between 190-200 ms [31]. In this context, it is unlikely
that any classifier will go wrong with such large differences. Similarly, for the
classification of old and young, or other reasons for deviating from the average
results of a regular person, high data rates may not be necessary, so standard
computer hardware may be sufficient.

Therefore, it is important to be aware of the type of study and its require-
ments for sampling rate. Thus, one should be aware of the selection of the ap-
propriate camera for an experiment or patient examination. For computational
solutions such as ours, the sampling rate is transparent and depends on the equip-
ment and lighting, which are also evaluated in presented approach by methods
described in Section 2.
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5 Conclusions

In this text, we presented a pattern for processing in modern video-oculometric
applications, allowing us to get satisfactory results using consumer-grade com-
puter equipment. We propose using this pattern also with standard web-cameras,
where high frequency is not required and approximate results are enough to
make assumptions. Because of the limitations of consumer-grade equipment, it
will never compete in accuracy with laboratory equipment.

However, we have proved that it can bring reliable results, such as for latency
in PD, which could be used for screening tests of ND. Due to the availability of
computer devices, applications using this pattern may disseminate oculometric
examinations, making them universally available.

For more accurate applications, high frame rate equipment is needed, but
our solution is fully scalable and, in this context, parallel processing adapts to
the capabilities of the video device.
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