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Abstract. Development of a Diabetic Foot Ulcer (DFU) causes a sharp
decline in a patient’s health and quality of life. The process of risk strat-
ification is crucial for informing the care that a patient should receive to
help manage their Diabetes before an ulcer can form. In existing prac-
tice, risk stratification is a manual process where a clinician allocates a
risk category based on biomarker features captured during routine ap-
pointments. We present the preliminary outcomes of a feasibility study
on machine learning techniques for risk stratification of DFU formation.
Our findings highlight the importance of considering patient history, and
allow us to identify biomarkers which are important for risk classification.
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1 Introduction

Diabetic Foot Ulcers (DFUs) are a severe complication of Diabetes Mellitus.
It is estimated that 15% of diabetic patients will develop a DFU during their
lives [12]. Development of a DFU can cause a sharp decline in health and quality
of life, often leading to further infection, amputation and death [10, 3]. Predicting
the likelihood of DFU formation is based on risk stratification.

Risk stratification is crucial for informing the level and regularity of care that
a patient should receive. Improper treatment of a DFU can exacerbate patient
condition and lead to further health complications, impacting quality of life and
increasing cost of treatment [3]. Given medical knowledge of biological mark-
ers which act as patient features, clinicians leverage their domain expertise to
manually allocate a risk category which describes the likelihood of developing
a DFU [1]. Biological markers (henceforth ‘biomarkers’, as per domain termi-
nology) are physiological features captured during routine medical examinations
which contribute to a clinician’s understanding of patient condition and their
capability to effectively stratify future risk. For example, concentration of albu-
min in the blood is a recognised indicator of Diabetes and its complications [5].
Of specific interest are biomarkers which describe the onset of peripheral neu-
ropathy (i.e. damaged nerve endings in the extremities [2]).

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36024-4_11

https://dx.doi.org/10.1007/978-3-031-36024-4_11
https://dx.doi.org/10.1007/978-3-031-36024-4_11


2 K. Martin et al.

Risk stratification is therefore an expertise-driven task with good potential
for automation using machine learning. However, few existing works have used
patient health records for this purpose. The authors in [11] produced a review
of journal papers describing applications of machine learning algorithms for the
diagnosis, prevention and care of DFUs. They surveyed 3,769 papers (reduced to
37 after application of inclusion and exclusion criteria) and found the majority
of ML algorithms have been applied to thermospectral or colour images of the
foot (29 papers). Only a single reviewed paper examined patient health records.
In [4] the authors collated a dataset of 301 patient records from a hospital in
India and trained a decision tree for the purposes of explaining amputations
caused by DFUs. Key differences to our work include: (a) our work is on a
much larger dataset - we apply machine learning algorithms to health records
for approximately 27,000 individual patients; (b) our work is targeted towards
risk stratification of ulcer formation (predictive) whereas [4] aimed to explain
amputation decisions due to DFUs (retrospective); and (c) the works are applied
in the context of different health systems.

In [8] the authors describe a method of predicting DFU formation (and subse-
quent amputation) using national registry data for 246,000 patients in Denmark.
Their dataset is formed from socio-economic features, with some knowledge of
concurrent health conditions. Though their results are not comparable to those
we present here, due to differences in features and task, they emphasise the lim-
itations of high-level data. In their results, they stated that knowledge of DFU
history is an important indicator of recurrence. Our findings mirror this, hence
the use of historical data to augment the biomarker dataset.

In this paper we present three contributions. Firstly, we compare 3 machine
learning algorithms for risk stratification using a large dataset of health records
extracted from SCI-Diabetes. As part of this experimentation, we provide a
novel comparison of recent and historical features to identify their impact on
decision-making. Finally, we identify the contributory power of each feature in
our dataset using mutual information values. Results indicate that risk labels
are highly dependant on features for detection of peripheral neuropathy.

We structure this paper in the following manner. In Section 2 we formalise our
methodology and evaluation by introducing the dataset and machine learning
task. In Section 3 we describe the results of our evaluation, while in Section 4
we provide some discussion. Finally, in Section 5 we present our conclusions.

2 Methods

The Scottish Care Information - Diabetes (SCI-Diabetes) platform is operated by
the National Health Service (NHS) Scotland and contains digital health records
of patients with Diabetes. The SCI-Diabetes platform has been used since 2014
to allow sharing of records across multi-disciplinary care teams (i.e. endocrinolo-
gist, diabeteologist, etc) to facilitate treatment of Diabetes patients in Scotland.
Records within SCI-Diabetes store information captured during routine health-
care appointments, including results of medical tests and procedures. We describe
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these features as biomarkers. Biomarker values are recorded for a patient from
the time they were first diagnosed with Diabetes until their most recent exam-
ination, and are used to predict the progression of associated health concerns.
This includes our primary interest; risk of DFU formation in either foot.

We have been given access to a subset of electronic health records from
the entire scope of SCI-Diabetes1. The SCI-Diabetes Biomarker dataset (hence-
forth simply the Biomarker Dataset) contains data describing biomarker features
for 30,941 unique patients. The dataset contains a mix of recent and historical
biomarker information, and the length of patient history varies based upon the
number of appointments they have attended or tests they have taken. These
biomarkers are of two types: numerical, where values are continuous numbers;
and categorical, where values are discrete categories. Each patient is also allo-
cated a risk classification, provided by clinicians based upon National Institute
for Health and Care Excellence (NICE) guidelines [6].

To our knowledge, patient SCI-Diabetes records have not previously been
used to stratify risk of DFU development using machine learning algorithms.
However, researchers have applied machine learning to patient records within
SCI-Diabetes to predict whether a patient has Type 1 or Type 2 Diabetes [7].
They found that a simple neural network model could outperform clinicians on
this task. This suggests that SCI-Diabetes is a promising data source for us to
explore risk stratification using biomarker data.

2.1 Recent and Historical Biomarker Datasets

We derive a machine learning task to classify the risk of a patient developing a
DFU based on their biomarker data. As a first step, a data quality assessment
was performed and anomalies were corrected. Categorical data was standardised
across the dataset. Missing numerical values were infrequent, and only occurred
in patients with multiple appointments, so were imputed using the mean of that
biomarker value for that patient. Finally, missing class labels were removed -
of the initial 30,941 patients, 4,621 have no recorded risk status and thus are
dropped. The remaining 26,320 patients are divided into three risk classes: 19,419
Low risk, 4,286 Moderate risk and 2,615 High risk patients respectively.

We differentiate between using only recent biomarkers (basing risk prediction
only upon a patient’s most recent appointment) and using historical biomark-
ers (incorporating knowledge of a patient’s medical history) to create two dis-
tinct datasets. This allows us to compare whether additional historical knowl-
edge allows improved risk stratification for DFU formation. To create the Re-
cent Biomarker dataset, we extracted the biomarker values recorded at a pa-
tients’ most recent appointment. This resulted in a dataset with 26,320 instances
(one for each patient), each of which had 37 features. To create the Historical
Biomarker dataset, the Recent dataset was augmented with additional features
calculated from historical biomarkers. Records of patient appointments were
grouped using their CHI number, then aggregated using the following techniques:
1 Access provided by NHS Data Safe Haven Dundee following ethical approval and

completion of GDPR training.
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– Numerical: Calculating the mean of values from first examination to second
most recent examination and subtract this from the most recent examination
value. Use of an average allows us to capture a baseline for the patient and
standardise variable lengths of patient histories. Using a difference measure
allows us to explicitly capture feature changes between appointments.

– Categorical: Using the second most recent examination value as the new
feature.

When historical features were unavailable (i.e. a patient only had a single ap-
pointment), we reused recent feature values. The resulting dataset had 26,320
instances and 47 features - the 37 features of the Recent dataset, and 10 addi-
tional features created through our aggregation of historical biomarkers (broken
down into 4 numerical and 6 categorical features). Not all features were suitable
for aggregation, as some were unalterable (such as Diabetes Type).

We highlight that we have removed a feature describing whether a patient has
previously developed a foot ulcer. While we acknowledge the literature suggests
that DFU history is an important feature for risk prediction [8], we removed this
feature from our task because it is linked with the class label. In SCI-Diabetes,
a patient is always allocated a High risk label if they have a history of DFU.

2.2 Machine Learning for Risk Stratification

We now have a multi-class classification problem where the goal is to identify
whether a patient is at Low, Moderate or High risk of developing a DFU. We
apply three different machine learning algorithms for this purpose:
Logistic Regression (LR) estimates the probability of an event or class using
a logit function. For multi-class classification, the prediction based on a one-vs-
all method (i.e. the probability of belonging to one class vs belonging to any
other class, repeated for each class in the dataset).
Multi-Layer Perceptron (MLP) is a neural network formed of an input layer,
multiple hidden layers and an output layer. The goal is to model the decision
boundary of different classes by learning an easily separable representation of the
data. Within each hidden layer, data is transformed by applying a set of weights
and biases to the output of the previous layer (i.e. creating a new representation
of the data). The final layer converts this representation to a probability distri-
bution across the range of possible classes (i.e. modelling the decision boundary).
Random Forest (RF) classifier is an ensemble of multiple decision tree clas-
sifiers. Decision trees learn by inferring simple decision rules to classify data.
Random forest learns an uncorrelated set of decision trees where the output of
the forest is an improvement over any individual tree it contains.

These algorithms were selected as they compliment the feature composition
of the dataset. RF is well suited for categorical data, as inferred rules are in-
herently categorical and previous work suggests decision trees perform well in
this context [7]. However, conversion from numerical to categorical data reduces
granularity. Therefore we also evaluated LR and MLP algorithms, which are well
suited towards numerical data.
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Table 1. Comparison of ML Models for Risk Stratification of DFU.

Model
Recent Historical

Accuracy (%) F1 Score (%) Accuracy (%) F1 Score (%)

Random Forest 82.57 63.00 82.98 64.34
Multi-Layer Perceptron 79.28 53.39 78.91 54.65
Logistic Regression 81.12 58.68 79.80 48.54

2.3 Understanding Important Biomarkers for Risk Stratification

Finally, it is desirable to understand biomarkers which contribute to allocation
of risk classes. Mutual Information (MI) is a method to calculate dependency
between two variables X and Y (see Equation 1).

MI(X;Y ) = H(X)−H(X|Y ) (1)

Where H(X) is the entropy for X and H(X|Y ) is the conditional entropy for X
given Y . Greater MI values indicate greater dependency between two variables,
whereas low values indicate independence. We calculate MI between each feature
and label in both the Recent and Historical Biomarker datasets.

3 Results

Overall, the results (shown in Table 1) are very promising for this challenging
problem, with a peak accuracy of 82.98% and Macro F1 Score of 64.14% respec-
tively. We believe the difference indicates some overfitting to the majority class,
suggesting the ML algorithms are capable of recognising low risk patients, but
struggle to accurately identify Moderate and High risk patients. RF is the best
performing ML algorithm, obtaining the highest accuracy and Macro F1 Score
on both datasets. The difference in Macro F1 Score highlights that RF is more
capable of correctly predicting minority classes, Moderate and High risk.

Next we examine whether risk stratification of DFU is more accurate if we
consider patient history. In the Recent Biomarker dataset, we achieve a peak
accuracy of 82.57% and Macro F1 Score of 63% using RF. Using the Historical
Biomarker dataset demonstrates a slight increase to 82.98% and 64.14% respec-
tively (the best performing set up from our experiments). However, results on
MLP and LR are mixed. For example, the MLP algorithm demonstrates a minor
reduction in accuracy on the Historical Biomarker dataset compared with the
Recent Biomarker dataset (dropping from 79.28% to 78.91%), but an improved
Macro F1 Score (increasing from 53.39% to 54.65%). This suggests a drop in per-
formance on the majority class (Low risk), but an increase in performance in one
of the minority classes (Moderate or High risk). The LR algorithm demonstrates
a noticeable drop in performance when historical features are included.

Finally, as a proxy for feature importance we calculate MI between each
biomarker feature the risk label (see Table 2).
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Table 2. MI Values for Features in Recent and Historical Biomarker Datasets.

Feature MI

Recent Historical
Albumin Concentration 0.79 1.04
Angina 0.7 0.63
Body Mass Index 0 0
CVA Haemorrhagic 0.18 0.13
CVA Non-Haemorrhagic 0 0
CVA Summary 0.24 0.79
CVA Unspecified 0.73 1.03
Coronary Artery Bypass Surgery 0.66 0.05
Current Tobacco Nicotine Consumption Status 0 0
Diabetes Mellitius Sub Type 0.9 0.47
Diabetes Mellitius Sub Type 2 0.3 0.31
Diabetes Mellitius Type 0.29 0.54
Diastolic Blood Pressure 0.57 0.69
Estimated Glomerular Filtration Rate 2.68 2.78
HbA1c 0.08 0.44
Hypertension 0.41 0.96
Ischaemic Heart Disease 0.41 0.23
Maculopathy Left 0.16 0.97
Maculopathy Right 0.02 0.6
Maculopathy Summary 0.18 0.59
Monofilament Left Sites 16.97 16.37
Monofilament Right Sites 16.87 17.41
Myocardinal Infraction 0.57 0.92
Peripheral Pulses Left 8.34 8.3
Peripheral Pulses Right 7.95 7.86
Peripheral Vascular Disease 0.92 0.82
Protective Sensation Left 17.01 17.2
Protective Sensation Right 16.68 17.12
Protective Sensation Summary 19.38 18.94
Retinopathy Left 1.04 0.94
Retinopathy Right 1.21 0.66
Retinopathy Summary 0.93 0.65
Systolic Blood Pressure 0.57 0.27
Total Cholesterol 0.81 0.85
Transient Ischemic Attack 0.52 0
Triglyceride Level 0.44 0
Weight 0.08 0

Historical Numerical Features
Historical Estimated Glomerular Filtration Rate - 2.39
Historical Albumin Concentration - 1.53
Historical Systolic Blood Pressure - 1.07
Historical Diastolic Blood Pressure - 0.73

Historical Categorical Features
Historical Protective Sensation Left - 16.18
Historical Protective Sensation Right - 16.06
Historical Peripheral Pulses Left - 7.8
Historical Peripheral Pulses Right - 7.57
Historical Monofilament Left Sites - 15.81
Historical Monofilament Right Sites - 16.11

4 Discussion

Our results suggest that inclusion of historical features make algorithms more
capable of recognising Moderate and High risk patients. However, we observed
evidence of all algorithms overfitting, which we suspected was due to class imbal-
ance in the dataset. We applied downsampling to reduce the number of samples
in the Low risk class to 5,000 (making class sizes comparable across the three
classes). In almost all scenarios, downsampling resulted in decreased accuracy
and F1 Score. The drop in F1 Score highlights that additional instances within
the Low risk class is contributory to ML algorithms’ ability to learn this task.

By applying MI, we find the most important features for model decision-
making are derived from tests of foot health (such as protective sensation, pe-
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ripheral pulses, and monofilament tests), many of which are directly related to
tests for peripheral neuropathy. However, these features are mostly categorical in
nature - for example, monofilament feature values are calculated based on clinical
test thresholds. It would be useful to capture more granular detail about these
features, for improved risk stratification. Interestingly, there are several features
which are not traditionally associated with foot health which also contribute,
specifically albumin concentration, retinopathy and estimated glomerular filtra-
tion rate. We suspect that unusual recordings of these features indicate further
complications of Diabetes, which would be linked with increasing risk of DFU
formation. A recent study suggesting links between retinopathy and peripheral
neuropathy [9] supports this idea. Biomarkers such as smoking status or BMI
(which can lead to complications in other aspects of Diabetes) are not so relevant
to DFU formation. Finally, we note large dependency values using the histor-
ical knowledge we have captured from relevant categorical features, and low
dependency values on historical numerical features. Even several features which
previously showed low importance scores when only considered using knowledge
from the most recent appointment (such as systolic and diastolic blood pressure)
demonstrated a noticeable increase. This supports the outcome of our experi-
ments; that an effective risk stratification system should be based on evolving
knowledge of the patient and their history.

There are several limitations to our study. SCI-Diabetes captures data for
patients within Scotland, so our results may not generalise to other healthcare
systems, though we highlight that our findings overlap with [8] despite this. We
have only tried a subset of possible machine learning algorithms, selected as
they compliment the feature composition of the dataset. It would be desirable
to compare more algorithms on this task. Finally, while we have performed some
initial experimentation to address dataset imbalance and subsequent overfitting
of trained algorithms, further strategies in the literature could be investigated
(both at the training and evaluation stages of model development). Despite these
limitations, we believe our results show good potential for risk stratification of
DFU formation using ML algorithms.

5 Conclusions

In this paper, we presented a comparative study of machine learning algorithms
for risk stratification of diabetic foot ulceration. Our results have indicated the
empirical value of examining historical biomarker features of a patient to stratify
this risk. Finally, we have highlighted the importance of biomarker indicators of
peripheral neuropathy as contributing to risk categorisation of a patient.

In future work, we plan to incorporate historical and recent biomarkers into
a single time-series record for a given patient. This should allow more granular
prediction of the evolution of DFU formation risk. Another interesting aspect is
addressing the dataset imbalance by examining cost by error class. Finally, we
plan to improve capability to explain model decision-making by combining fea-
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ture importance and counterfactual explainer algorithms to identify contributing
factors to DFU formation and which biomarkers to target for treatment.
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