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Abstract. The paper deals with mining imbalanced multiclass datasets.
The goal of the paper is to evaluate the performance of several balancing
agents implemented by the authors. Agents have been constructed from
5 state-of-the-art classi�ers designed originally for mining binary imbal-
anced datasets. To transform binary classi�ers into multiclass ones, we
use the one-versus-one (OVO) approach making use of the collective deci-
sion taken by the majority voting. The paper describes our approach and
provides detailed description of the respective balancing agents. Their
performance is evaluated in an extensive computational experiment. The
experiment involved multiclass imbalanced datasets from the Keel im-
balanced datasets repository. Experiment results allowed to select best
performing balancing agents using statistical tools.

1 Introduction

Multiclass imbalanced data mining is a challenging task in the �eld of machine
learning and data mining. It refers to the scenario where a dataset contains
multiple classes, but the number of instances in each class is signi�cantly imbal-
anced. This can occur when one or more classes dominate the dataset, while the
instances of other classes are scarce.

Imbalanced datasets can pose problems for machine learning algorithms, as
they may not be able to accurately classify the minority classes due to the lack of
su�cient training data. Additionally, in multiclass imbalanced data mining the
mutual relationships between classes are complex and hence di�cult to iden-
tify [24]. As a result, traditional machine learning algorithms tend to perform
poorly on multiclass imbalanced datasets, leading to poor prediction accuracy
and biased models.

To address these issues, various approaches have been proposed in the lit-
erature. As has been observed by [16], algorithms for dealing with multiclass
problems can be broadly categorized into binarization approaches and ad hoc so-
lutions. According to [7], binarization aims at decomposing the M-class problem
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into M(M-1)/2 binary subproblems (OVO one-versus-one) or M binary subprob-
lems (OVA one-versus-all). There has been a signi�cant amount of research in
the �eld of multiclass imbalanced data mining over the past few decades. Some
of the key techniques that have been proposed in the literature include:

1. Undersampling: This approach involves reducing the number of instances in
the majority classes, such that the resulting dataset is more balanced (see
for example [20], [2]).

2. Oversampling: This approach involves increasing the number of instances in
the minority classes, such that the resulting dataset is more balanced (see
for example [1], [23], [18], [16]).

3. Cost-sensitive learning: This approach involves modifying the loss function
of a machine learning algorithm such that it takes into account the relative
importance or cost of misclassifying di�erent classes (see for example [17],
[27]).

4. Ensemble methods: Methods such as bagging, boosting, and stacking have
been shown to be e�ective in handling imbalanced datasets (see for example
[10], [26], [9], [6], [22]).

5. Algorithm level methods: Dedicated methods adapted to multiclass imbal-
ance (see for example [12], [19], [5]).

The main advantage of undersampling is that it is simple and fast to implement,
but it can also lead to the loss of important information from the majority
classes. The main advantage of oversampling is that it can help improve the
performance of machine learning algorithms on minority classes, but it can also
lead to over�tting if the synthetic samples are not generated carefully. Another
potential drawback, as pointed out in [16], is that classic oversampling algo-
rithms consider only information from the minority class neglecting information
from the majority classes. Cost-sensitive learning su�ers often from the lack of
information on the relative importance of misclassifying di�erent classes. En-
semble methods can combine the predictions of multiple classi�ers to improve
the overall performance. Their performance relies on diversity between classi�ers
involved which is not always easy to achieve.

In this paper we evaluate the performance of 5 balancing agents. Balancing
numbers of the majority and minority classes examples is one of a key approaches
in constructing classi�ers able to deal with imbalanced datasets. The idea is to
preprocess training dataset to maximize the performance of a classi�er used to
classify data with unknown class labels. Balancing can be based on oversampling,
undersampling or both. Balancing numbers of the majority and minority classes
examples is one of a key approaches in constructing classi�ers able to deal with
imbalanced datasets. The idea is to preprocess training dataset to maximize the
performance of a classi�er used to classify data with unknown class labels.

All of the discussed agents have roots in binary imbalanced data classi�cation
methods and all have been implemented by us in the form of a software agents
using the OVO approach to make them suitable for solving multiclass problems.
The goal of the paper is to evaluate their performance. The proposed software
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agents are goal driven, reactive, autonomous, and display collaborative behaviors
in the following sense:

� They try to balance majority and minority classes examples to improve the
classi�cation performance.

� They adapt to various imbalance ratio in the training datasets.
� They are independent of the classi�cation algorithm used.
� They reach a �nal decision through comparing classi�cation decisions of
base classi�ers and selecting the �nal outcome basing on the majority vote
paradigm.

The list of the original algorithms implemented as agents for balancing multiclass
imbalanced datasets follows:

� Adaptive synthetic sampling approach for imbalanced learning ADASYN-
M [11].

� Local distribution-based adaptive minority oversampling LAMO-M [25].
� Combined synthetic oversampling and undersampling technique CSMOUTE-
M [14].

� Feature-weighted oversampling approach FWSMOTE-M [21].
� Dominance-based oversampling approach DOMIN-M [13].

ADASYN has been selected as one of the most often applied oversampling tech-
niques. The remaining algorithms have been selected as they are known to out-
perform many �classic� balancing techniques. Besides, they are based on rel-
atively newly published concepts, and all use information from not only the
minority class but also from the majority classes.

The rest of the paper is constructed as follows: Section 2 contains a descrip-
tion of the discussed agents. Section 3 contains agent performance evaluation
based on computational experiment results. The �nal section contains conclu-
sions and ideas for future research.

2 Balancing agents

Assume that D ⊂ X × Y is a multiclass training dataset with samples (x, y)
where x is an instance (datarow) and y is the class identity label associated with
it.

The algorithm applied to learn the best classi�er forD uses one-vs-one (OVO)
method. For each pair of classes from Y , the dataset D is �ltered, resulting in
a subset with data from two classes. If it is imbalanced, an agent modi�es it
performing oversampling and/or undersampling. The modi�ed set is used to
generate the best possible classi�er for the two classes. Finally, all the generated
classi�ers are merged to perform majority vote on data from the testing set. The
OVO approach makes use of collective decision taken through a voting procedure.
Algorithm 1 shows the pseudo-code for the proposed approach.

As mentioned before, the agents used to balance datasets are: ADASYN-
M, LAMO-M, FWSMOTE-M, DOMIN-M, CSMOUTE-M. They are brie�y de-
scribed.
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Algorithm 1: Schema of the approach

Input: Multiclass dataset D = Train ∪ Test, threshold α, agent G
Output: values of performance metrics for D

/* learning */

1 geneList← ∅;
2 foreach pair of classes c1, c2 ∈ Y do

/* filtering training dataset to classes c1, c2 */

3 T (c1, c2)← {(x, y) ∈ Train : y = c1 ∨ y = c2};
4 if imbalance ratio of T (c1, c2) is above α then

5 use agent G to transform T (c1, c2)
6 end

7 apply GEP to T (c1, c2) to obtain gene g;
8 merge g to geneList;
9 end

/* testing */

10 foreach (x, y) ∈ Test do
11 foreach g ∈ geneList do
12 apply g to x, compare with y and store the result;
13 end

14 end

15 return performance metrics as de�ned in 3.2

The �rst four agents perform undersampling of the majority subset using
Algorithm 2. The idea is to �nd the centroid of minority data and keep in the
majority subset only those closest to the centroid.

Oversampling is speci�c for each agent type. SMOTE [4], which is an over-
sampling method, extending minority set via interpolation, adds elements of
type x + λ · (z − x) for any minority example x, z its K-neighbor and ran-
dom λ ∈ (0, 1)(K is a parameter). ADASYN-M agent uses adaptive sampling
approach introduced in [11] to extend the minority subset, using the weighted
distribution of minority examples by generating with SMOTE new minority in-
stances whose number is proportional to the proportion of K-neighbors which
are in the majority subclass.

In case of LAMO-M agent, using the method introduced in [25] (Local
distribution-based Adaptive Minority Oversampling), di�erently than in ADA-
SYN, not all data from the minority subset are used in generation of new syn-
thetic data. Two steps are performed:

� using two parameters k1, k2 de�ning respectively the number of neighbors for
minority and majority instances, the distribution of instances is inspected
and sampling seeds identi�ed: �rst instances from majority subset which
appear in k1 neighborhood of minority instances are identi�ed and sampling
seeds are those minority instances which are in k2 neighborhood of any from
the �rst set,

� synthetic minority instances are generated from sampling seeds using inter-
polation.
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Algorithm 2: Undersampling with minority class centroid

Input: data from majority class majC, data from minority class minC,
parameter s - size of reduced majority class.

Output: reduced majority class redMaj ⊂ majC of size s.

1 calculate centroid CN of minC
2 de�ne distances of CN to majority instances
3 DIST ← {dist(x,CN) : x ∈ majC}
4 sort DIST in ascending order SORT = {d1, . . . , d|majC|}
5 keep in reduced majority class instances whose distances are in the initial s

segment of DIST
6 redMaj ← {x ∈ majC : dist(x,CN) ≤ ds}
7 return redMaj

FWSMOTE-M uses the algorithm introduced in [21] which applies a method
based on SMOTE where the importance of attributes is weighted by Fisher
score making use of di�erence of attribute means in each of two classes; the
weights are used when calculating distances in interpolation.

In case of DOMIN-M which is based on our method suggested in [13] the
relation of domination among instances is introduced and using the genetic al-
gorithm (GA) in subsequent iteration steps the minority subset is oversampled
with non-dominated members of GA population. The relation of domination
uses two criteria. Assume majority objects majC, minority objects minC �xed.
The �rst criterion makes use of an approach suggested in [15] for oversampling
strategies based on calculating real-valued potential of each instance. The po-
tential is de�ned by a radial basis function based on a set of majority objects
majC, minority objects minC and parameter γ representing the spread of the
function. For an instance x the potential is de�ned as:

φ(x,majC,minC, γ) =
∑

y∈majC

exp−(
dist(x,y)

γ )2 −
∑

y∈minC

exp−(
dist(x,y)

γ )2

For any two instances x, y we write:

x ≺1 y ⇐⇒ φ(x,majC,minC, γ) < φ(y,majC,minC, γ)

The second criterion makes use of an average distance of an instance to 25% of
nearest neighbors from the majority instances. For a �xed instance x and �xed
majority dataset majC, let {x1, . . . , xn} stand for the 25% of nearest neighbors
from majC. De�ne:

distMajority(x,majC) =

n∑
i=1

dist(x, xi)/n

x ≺2 y ⇐⇒ distMajority(x,majC) < distMajority(y,majC)

Finally, x dominates y i�

x ≺ y ⇐⇒ x ≺1 y & x ≺2 y
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The genetic algorithm starts with random population of instances and �tness
de�ned as level of domination. After each iteration members with lowest �tness
are merged into the oversampled minority set. Details are in [13].

Agent CSMOUTE is balancing using the algorithm introduced in [14]. For
oversampling SMOTE is used, and undersampling is performed in the following
steps: for randomly selected majority instance x and its random k-neighbor z,
both are deleted from majority set and the new interpolated instance x+λ·(z−x)
is introduced; this procedure is repeated to reach the proper size of the majority
subset.

3 Computational experiment

3.1 Experiment plan

Experiment involved multiple class imbalanced datasets from the Keel Dataset
Repository as shown in Table 1.

Table 1. Datasets used in the reported experiment. source [3]

Dataset #Attr. #Inst. #Clas. IR Dataset #Attr. #Inst. #Clas. IR
Balance 4 625 3 5.88 New Thyroid 5 215 3 4.84
Contraceptive 9 1473 3 1.89 Pageblocks 10 548 5 164
Dermatology 34 336 6 5.55 Penbased 15 1100 10 1.95
Ecoli 7 336 8 71.50 Shuttle 9 2175 5 853
Glass 9 214 6 8.44 Thyroid 21 720 3 36.94
Hayes-Roth 4 132 3 1.70 Wine 13 178 3 1.50
Lymphography 18 148 4 40.50 Yeast 8 1484 10 23.15

Each of the discussed balancing agents has been used in the experiment
to produce synthetic minority examples followed by applying the binary GEP
classi�er under the OVO scheme to obtain the confusion matrix from which
values of the performance measures have been calculated using formula from
3.2, that is geometric mean (Gmean), mean of recall values (M.Rec.) shown as
(1), accuracy (Acc.), index kappa (Kappa) shown as (2) and area under the roc
curve (MAUC) shown as (3). To obtain the average values we used 5-CV scheme
repeated 6 times.

Gene Expression Programming (GEP) technique, introduced by [8] combines
the idea of genetic algorithms and genetic programming and makes use of a
population of genes. Each gene is a linear structure divided into two parts.
The �rst part, the head, contains functions and terminals while the second
part, the tail, contains only terminals. For this study terminals are of type
(oper; attr; const), where the value of const is in the range of attribute attr and
oper is a relational operator from {<,≤, >,≥,=, 6=}. Functions are from the set
{AND,OR,NOT,XOR,NOR}. For a �xed instance x from the dataset, the
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value g(x) of a gene g is boolean and thus a gene can be treated as a binary
classi�er.

In the reported experiment, for all considered balancing agents and datasets,
the GEP classi�er has been used with the following parameter value settings:
population size � 100; number of iterations � 200; probabilities of mutation,
RIS transposition, IS transposition, 1-point and 2-point recombination � 0.5,
0.2, 0.2, 0.2, 0.2, respectively. For selection the roulette wheel method has been
used. Parameter values for oversampling agent algorithms have been set as in
original papers describing implementation for the binary classi�cation task.

3.2 Performance measures

To de�ne classi�er performance measures used in the experiments, assume that
the dataset contains data from k classes. The elements of confusion matrix C =
{cij : i, j ≤ k}, where cij describes the number of instances that were predicted
as class i but belonged to class j, allow to de�ne for each class m ≤ k:
� TPm = cmm - the number of true positives (examples of class m which were
classi�ed correctly),

� FPm =
∑k

i=1,i6=m cmi - the number of false positives (examples that were
wrongly assigned to class m),

� TNm =
∑k

i=1,i6=m

∑k
j=1,j 6=m cij - the number of true negative predictions

regarding class m,
� FNm =

∑k
i=1,i6=m cim - the number of false negatives for class m.

The Precision and Recall for class m are de�ned as:

Precisionm =
TPm

TPm + FPm
, Recallm =

TPm

TPm + FNm

and used for the measure Gmean and average accuracy which is the arithmetic
mean of recall values of all the classes Mean− recall:

Gmean = (

k∏
i=1

Recalli)
1
k , M.Rec =

1

k

k∑
i=1

Recalli (1)

As noted in [22], for multiclass classi�cation Kappa measure is less sensitive to
class distribution than Accuracy:

Kappa =
n
∑k

i=1 TPi −ABC
n2 −ABC

, Accuracy =
1

n

k∑
i=1

TPi (2)

where n is the size of the dataset and ABC =
∑k

i=1(TPi + FPi)(TPi + FNi).
The average AUC (area under the ROC curve) is de�ned as:

MAUC =
1

k(k − 1)

k∑
i 6=j

AUC(i, j) (3)

where AUC(i, j) is the area under the curve for the pair of classes i and j.
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3.3 Experiment results

In Table 2 computational experiment results averaged over 30 runs produced
using 5 cross-validation scheme for 6 times, and further on, averaged over 14
considered datasets, are shown. In Figures 1 � 5 the above results are shown in
the form of Box & Whiskers plots.

Table 2. Average values of performance measures obtained in the experiment.

Performance measure DominM CsmouteM FWSmoteM AdasynM LamoM
Accuracy 0.559 0.362 0.548 0.522 0.355
Kappa Index 0.393 0.257 0.345 0.362 0.190
Balanced recall 0.607 0.520 0.555 0.588 0.431
MAUC 0.345 0.315 0.329 0.352 0.258
Gmean 0.584 0.419 0.483 0.548 0.410

Fig. 1. Box & Whisker plot of average accuracies obtained in the reported experiment.

To evaluate the results shown in Table 2 and Figures 1�5 we have performed
the Friedman ANOVA by ranks test for each of the considered performance
measures. The null hypothesis for the procedure is that the di�erent agents
produced statistically similar results i.e. produced samples drawn from the same
population, or speci�cally, populations with identical medians. As it is shown
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Fig. 2. Box & Whisker plot of average kappa indexes obtained in the reported experi-
ment.

Fig. 3. Box & Whisker plot of average balanced recall values obtained in the reported
experiment.
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Fig. 4. Box & Whisker plot of average Kappa indexes obtained in the reported exper-
iment.

Fig. 5. Box & Whisker plot of average Gmean values obtained in the reported experi-
ment.
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in Table 3 summarizing the above test results, the null hypothesis for results
measured using each of the considered performance measure, should be rejected
at the signi�cance level of 0.05. The Kendall concordance coe�cient calculated
for results produced using each of performance measures shows a fair agreement
in the rankings of the variables among cases. The above �ndings tell us that
there are statistically signi�cant di�erences in the performance of the considered
agents.

Table 3. Summary of the Friedman ANOVA test results

Measure Chi Sqr. p-value Conc. C.
Accuracy 32.58700 0.0000 0.58193
Kappa 36.17204 0.0000 0.64593
M. Rec. 34.42140 0.0000 0.54324
MAUC 31.63880 0.0000 0.52731
Gmean 28.97491 0.0001 0.51741

To gain better knowledge of the performance of the considered balancing
agents we have carried out a series of pairwise comparisons using the Wilcoxon
matched pairs tests. The null hypothesis in such case states that results produced
by two di�erent agents are drawn from samples with the same distribution. Test
results are summarized in Table 4.

Table 4. Wilcoxon matched pair test results

Measure Compared agents T Z p-value
Accuracy DOMIN-M vs. FWSMOTE-M 38.00000 0.91026 0.36269

Accuracy DOMIN-M vs. ADASYN-M 5.00000 2.98188 0.00287
Accuracy DOMIN-M vs. CSMOUTE-M 0.00000 3.29577 0.00098
Accuracy DOMIN-M vs. LAMO-M 2.00000 3.17021 0.00152
Kappa DOMIN-M vs. ADASYN-M 5.00000 2.98188 0.00287
Kappa DOMIN-M vs. FWSMOTE-M 12.00000 2.54245 0.01101
Kappa DOMIN-M vs. CSMOUTE-M 0.00000 3.29577 0.00098
Kappa DOMIN-M vs. LAMO-M 0.00000 3.17980 0.00147
M.Rec DOMIN-M vs. FWSMOTE-M 10.00000 2.83981 0.00451
M.Rec DOMIN-M vs. ADASYN-M 6.00000 3.06699 0.00216
M.Rec DOMIN-M vs. CSMOUTE-M 0.00000 3.40777 0.00066
M.Rec DOMIN-M vs. LAMO-M 0.00000 3.29577 0.00098
MAUC DOMIN-M vs. ADASYN-M 40.00000 1.13592 0.25599

MAUC DOMIN-M vs. FWSMOTE-M 3.00000 3.10744 0.00189
MAUC DOMIN-M vs. CSMOUTE-M 5.00000 2.98188 0.00287
MAUC DOMIN-M vs. LAMO-M 0.00000 3.29577 0.00098
Gmean DOMIN-M vs. ADASYN-M 18.00000 1.92186 0.05462

Gmean DOMIN-M vs. FWSMOTE-M 8.00000 2.79355 0.00521
Gmean DOMIN-M vs. CSMOUTE-M 0.00000 3.29577 0.00098
Gmean DOMIN-M vs. LAMO-M 6.00000 2.91911 0.00351
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Data from Table 4 allow drawing the following observations valid at the
signi�cance level of 0.05:

� For Accuracy measure, DOMIN-M and FWSMOTE perform statistically
equally well.

� For the Accuracy measure, DOMIN-M outperforms statistically ADASYN-
M, CSMOUTE-M, and LAMO-M.

� For the Kappa index measure, DOMIN-M outperforms statistically all the
remaining agents.

� For the Mean-Recall measure, DOMIN-M outperforms statistically all the
remaining agents.

� For the MAUC measure, DOMIN-M and ADASYN-M perform statistically
equally well.

� For the MAUC measure, DOMIN-M outperforms statistically FWSMOTE-
M, CSMOUTE-M, and LAMO-M.

� For the Gmean measure, DOMIN-M and ADASYN-M perform statistically
equally well.

� For the Gmean measure, DOMIN-M outperforms statistically FWSMOTE-
M, CSMOUTE-M, and LAMO-M.

4 Conclusions

The paper contributes by proposing a set of balancing agents able to deal with
mining multiclass imbalanced datasets. The proposed agents are based on several
state-of-the-art binary classi�ers and use OVO (One-versus-One) strategy to deal
with the multiclass problems. Agents can be used as stand-alone classi�ers or
serve as components (base classi�ers) in ensembles of classi�ers. The goal of the
paper was to evaluate the performance of the considered agents when mining
multiclass imbalanced datasets. The computational experiment has shown that
among considered approaches the DOMIN-M assures the best performance no
matter which performance measure was used. DOMIN-M agent performance is
closely followed by that of the ADASYN-M and FWSMOTE-M agents. The
above three agents should be considered as a promising option when looking for
a tool for mining multiclass imbalanced datasets.

Future research will concentrate on the experimental study of the proposed
agent's performance in di�erent ensemble architectures including boosting, bag-
ging, and stacking. Another promising direction of research would concentrate
on undersampling part of balancing strategies. Using more advanced techniques
like PCA or metaheuristic based techniques could be advantageous.
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