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Abstract. This study aims to develop new classifiers that can effectively
integrate and analyze biomedical data obtained from various sources
through high-throughput technologies. The use of explainable models
is particularly important as they offer insights into the relationships and
patterns within the data, which leads to a better understanding of the
underlying processes.

The objective of this research is to examine the effectiveness of decision
trees combined with Relative eXpression Analysis (RXA) for classifying
multi-omics data. Several concepts for integrating separated data are ver-
ified, based on different pair relationships between the features. Within
the study, we propose a multi-test approach that combines linked top-
scoring pairs from different omics in each internal node of the hierarchical
classification model. To address the significant computational challenges
raised by RXA, the most time-consuming aspects are parallelized using
a GPU. The proposed solution was experimentally validated using single
and multi-omics datasets. The results show that the proposed concept
generates more accurate and interpretable predictions than commonly
used tree-based solutions.

Keywords: Relative expression analysis - Decision trees - Multi-omics
data - Classification.

1 Introduction

Comprehensive multi-omics analysis refers to the simultaneous study of multiple
types of omics data, such as genomics, proteomics, and metabolomics, in order
to gain a more complete understanding of biological systems [10]. This type of
analysis can provide a holistic view of the advanced interactions within a bio-
logical system by combining data from different omics platforms and modalities.
However, multi-omics data is typically high-dimensional, making it difficult to
analyze and interpret. Traditional machine learning algorithms for biomedical
data tend to prioritize prediction accuracy and use complex predictive models,
which can impede the discovery of new biological understanding and hinder prac-
tical applications [1]. Currently, there is a strong need for simple, interpretable
models that can aid in understanding and identifying relationships between spe-
cific features, and enhance biomarker discovery.
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This research focuses on the development of computational methods for
biomedical analysis within the field of interpretable and explainable machine
learning. The main idea is not only to perform predictions efficiently, but also
provide insight, which is the ultimate goal of data-driven biology. To address this
challenge, we enhanced Decision Tree (DT) [11], well-known white-box approach
[1], to unlock its potential in contemporary biological data analysis. We propose
DTs with splits composed of several simple tests which are based on Relative
eXpression Analysis (RXA) concept [7]. In the rest of this article, we will refer
to such group of tests as multi-test.

In contrast to DT, Relative eXpression Analysis (RXA) was originally devel-
oped for a specific task of identifying connections among a small group of genes
[9]. RXA methods focus on analyzing the relative order of gene expressions, as
opposed to their raw values, which makes them robust to various factors such as
methodological and technical issues, biases, and normalization procedures. The
most commonly used method within RXA is top scoring pair (TSP) analysis
which examines the pairwise ordering relationships between two genes within
the same sample. These pairs of genes can be viewed as ”biological switches”
that are linked to regulatory patterns or other aspects of gene expression net-
works. There are several extensions of TSP within RXA, including increasing
the number of pairs in the prediction model, extending the relationships to more
than two genes, and hierarchical interactions between the genes. TSP and its
extensions have been successful in real-world applications due to their straight-
forward biological interpretation. Their effectiveness has also been recognized in
other fields such as proteomics and metabolomics, but they have not yet been
applied for multi-omics analysis.

A simple straightforward application of the T'SP solution is not possible due
to the following reasons:

— TSP is designed for binary classification, however, with the use of DT it can
be successfully applied for multi-class problems [3];

— high computational complexity of the RXA solution which significally limits
the size of the analyzed data;

— lack of more advanced inter-gene relations especially in the context of multi-
omics data.

Some of the aforementioned issues have been already addressed in various TSP
extensions. In one of them called Relative eXpression Classification Tree (RXCT)
[5], the top-scoring pairs are applied as a splitting rules in a top-down induced
DT. The search for pairwise relationships is paralellized using the GPU which
significally improves the speed of the creating the prediction model.

In this study, we use the RXCT solution [5] as a baseline and extend the
RXA concept to the multi-omics analysis. In the proposed solution called Rela-
tive Multi-test Classification Tree (RMCT), we introduce the multi-test splitting
rule [4] which can be viewed as a collection composed of multiple pairwise com-
parisons. The feature space of each pair of attributes is limited to a single omic
and preserve the clarity in interpretation by not mixing ”apples and oranges”.
The general idea is to use multi-tests in which top-scoring-pairs are tightly linked
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Fig. 1. General flowchart of a RMCT algorithm.

and could participate in a common pathway. The measure of similarity between
the pairwise unit tests pairs that compose multi-test is the number of observa-
tions routed in the same way. It can be viewed as a mix of horizontal and vertical
integrations of the multi-omics sources in each internal node of the tree.

Experimental validation of RMCT was performed on six single and two multi-
omics datasets from three omics sources: gene expression, DNA methylation and
miRNA. In order to evaluate the performance of the proposed concept accuracy
and F1 weighted score were used.

2 Relative Multi-test Classification Tree

The new RMCT solution utilizes the RXCT algorithm as a foundation. In this
section some basic steps such as DT induction and TSP creation are briefly
mentioned. Next, we focus on our contribution and highlight the differences
between RMCT and the RXCT system.

2.1 Overview

The general flowchart of our GPU-accelerated RMCT is illustrated in Fig. 1. It
can be seen that the DT induction is run in a sequential manner on a CPU,
and the most time-consuming operation is performed in parallel on a GPU.
This ensures that the parallelization does not alter the behavior of the original
algorithm.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:
DOI] 10.1007/978-3-031-36021-3_69 |



https://dx.doi.org/10.1007/978-3-031-36021-3_69
https://dx.doi.org/10.1007/978-3-031-36021-3_69

4 M. Czajkowski, K. Jurczuk, M. Kretowski

The overall structure of the proposed solution is based on a typical top-
down induced binary classification tree. The greedy search starts with the root
node, where the locally optimal split (multi-test) is searched. Then the training
instances are redirected to the newly created nodes and this process is repeated
for each node till there is a noticable improvement in the Gini index (default
5%). We propose using a two-stage scoring method to enhance performance.
Initially, a screening and scoring process is done using the GPU, and then the
top results are further evaluated by the CPU.

As it is illustrated in Figure 1, the data is initially transferred from the CPU’s
main memory to the GPU’s device memory, allowing each thread block to access
it. This process is done only once before beginning the tree induction, as later
on only the indexes of instances that are present in a calculated node are sent.
The CPU launches GPU functions, known as kernels, separately for each omic
source. Each thread on the device is given an equal amount of relations, referred
to as offset, to compute. The algorithm scores all possible pairwise relations from
a single source and uses the Gini index to calculate the scores. This is done to
make the algorithm suitable for multi-class analysis. After all the thread blocks
finish their calculations, the results are transferred from the GPU’s memory to
the CPU’s memory.

2.2 Constituting the multi-test

The final tree node split is built on the CPU on the basis of the results from
the GPU computation. We have studied three ways of constituting multi-test by
taking into account two most common strategies [15] of integrating multi-omics
data (see Fig. 2.) and our own hybrid approach.

(i) The horizontal integration treats each type of omics measurements equally.
It can be viewed as a direct extension from single-omics data analysis to
integrative analysis, where important associations between multi-level omics
measurements have been identified simultaneously in a joint model. We re-
alize horizontal integration by building the multi-test split with top-scoring-
pair from each single-omic source.

(ii) The hierarchical integration incorporates the prior knowledge of the regula-
tory relationship among different platforms of omics data. The integration
methods are developed to more closely reflect the nature of multidimensional
data. Alike in horizontal integration, we use multi-test with each pair from
single-omic source. However, instead of looking at the highest scoring pairs,
we focus on ones that are associated with the same class (surrogate test).
This way, the multi-test stores hierarchical interactions between each source
and becomes a collection of rules with similar patterns.

(iii) The proposed hybrid method simplifies the guidelines in (ii) by eliminating
the requirement to utilize steam from every source. Even though the number
of pairs in the multi-test stays the same, we permit the possibility that in
certain parts of the tree the data may be split using pairs from only 2 or 1
data sources. This way the hybrid approach can also work with the single-
omic data. The attributes that make up the pairs cannot be repeated, and
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Fig. 2. Integration schemes of multi-omics data to constitute a split in internal node.

similarity between the pairs remains the primary criterion for including them
in the multi-test.

Finally, the splitting criterion is guided by a majority voting mechanism in which
all pair components of the multi-test have the same weight.

3 Experiments

In this section, we experimentally validate the proposed RMCT approach and
confront its results with popular counterparts.

3.1 Datasets and setup

In our experiments we used datasets from Multi-Omics Cancer Benchmark TCGA
Preprocessed Data repository [12]. From the list of datasets we have selected two:
Glioblastoma with 4 classes (Classical: 71 instances, Mesenchymal: 84, Neural:
47, Proneural: 72) and Sarcoma with 5 classes (DDLPS: 71, LMS: 105, MFH: 29,
MFS: 21, UPS: 21) as they have the largest number of patients and clinical data
with defined class labels. Each dataset consists of three types of omics data: gene
expression, DNA methylation, and miRNA expression. We also perform single-
omics analysis in which algorithms are tested on each data source seperately.
Due to the performance reasons, the Relief-F [13] feature selection was applied
and the number of selected genes was arbitrarily limited to the top 500 for each
omic, thus 1500 attributes for multi-omic datasets.

We evaluate the performance of the proposed RMCT solution with three
multi-test variants denoted as RMCT;, RMCT;;, RMCT;; (see Section 2.2)
against:

— RXCT [5], the predecessor of the RMCT approach;
— C4.5 [14]: popular state-of-the-art tree learner (Weka implementation [8]
under name J48);

— JRip: rule learner — repeated incremental pruning to produce error reduction
(RIPPER) [2].
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Fig. 3. The performance of the algorithms in terms of accuracy, F1 weight and size on
the multi-omics Glioblastoma and Sarcoma databases and their single-omic sets.

A standard 10-fold cross-validation technique is used to evaluate the perfor-
mance of the proposed solutions. The evaluation is based on accuracy, F1 weight
score (a modified version of the F1 macro algorithm that takes into account
the imbalance in the samples) and the number of tree leaves/rules. Due to the
multi-class nature of the datasets, it was not possible to compare the RMCT
with other TSP-family solutions. However, in previous research [5], we found
that the RXCT algorithm outperformed other popular TSP-family algorithms
on 8 real-life cancer-related datasets that concern binary classification. It should
be noted that in case of single-omic data, results are only provided for RM CTj;;.

3.2 Results

Figure 3 presents a summary of the classification performance for the proposed
solution, the RMCT, and its competitors for both multi-omics datasets and their
individual components. The results show that RMCT outperforms the predeces-
sor RXCT algorithm and popular white box classifiers such as the decision tree
C4.5 and JRip learner. Analysis of the results using the Friedman test revealed
statistically significant differences between the algorithms (p-value < 0.05) in
terms of accuracy. According to Dunn’s multiple comparison test [6], the RMCT
with a hybrid multi-test variant (RM CT;;;) was able to significantly outperform
the other algorithms on both multi-omics datasets and most of the single-omic
sets. On average, most of the tested classifiers showed improved results when us-
ing multi-omics data. However, in some cases, using single-omics data resulted in
more distinct patterns that distinguished between classes. In all cases, the classi-
fication models built on gene expression datasets were more accurate than those
built on miRNA data. The highest prediction performance on all datasets was
achieved by the RMCT algorithm with a hybrid multi-test variant (RMCT;;;).
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Fig. 4. An example multi-test DT induced by RM CT for the Glioblastoma multi-omics
dataset together with prediction results and a confusion matrix.

The complexity comparison (see Figure 3), shows that the C4.5 algorithm
generates larger trees than the other tested solutions, despite all being considered
interpretable. When the classifier representation is inadequate, the true relation-
ship is only partially captured or with the inclusion of uninformative features,
making it difficult to understand and interpret the output model. This is often
reflected in the increased size of the generated model, rather than a decrease in
accuracy.

Due to the limited space in the paper, the authors only briefly mention that
they examined the rules generated by the RMCT and their biological relevance
in the TCGA research network [12]. They found that on average, 25% of the
features used in the models (especially in the upper parts of the tree) were
directly related to the analyzed cancer, and an additional 30-40% were discussed
in several papers in the medical literature. An example DT induced by the
RMCT for Glioblastoma multi-omic dataset is shown in Figure 4. However,
these are preliminary results, and further work is planned with biologists to
better understand the gene-gene relationships generated by the RMCT.

4 Conclusions

The presented research explores the use of a decision tree and relative expression
analysis for classification of multi-omics data. Three data integration methods,
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referred to as multi-test, were proposed and validated for determining the split in
the tree nodes. Results from initial experiments on both single and multi-omics
datasets indicate that the proposed method, RMCT, is able to identify various
patterns and improve accuracy compared to other solutions. Future research
aims to expand the use of integrated multi-omics analysis on proteomic and
metabolomic data for pathway analysis and more specialized classification.
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