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Abstract. Multiple Sclerosis (MS) is a neurodegenerative disease that
involves a complex sequence of events in distinct spatiotemporal scales
for which the cause is not completely understood. The representation of
such biological phenomena using mathematical models can be useful to
gain insights and test hypotheses to improve the understanding of the
disease and find new courses of action to either prevent it or treat it
with fewer collateral effects. To represent all stages of the disease, such
mathematical models are frequently computationally demanding. This
work presents a comparison of parallel programming strategies to opti-
mize the execution time of a spatiotemporal two-compartmental mathe-
matical model to represent plaque formation in MS and apply the best
strategy found to perform the sensitivity analysis of the model.

Keywords: Computational Biology · Parallel Programming · Multiple
Sclerosis.

1 Introduction

Multiple Sclerosis (MS) is a neurodegenerative disease with onset in early adult-
hood, and the most common form is Relapse-Remitting MS (RRMS), character-
ized by symptom attacks and remission phases [4]. Mathematical models have
been applied to other brain diseases [1, 9, 13], and several models have been pro-
posed for MS, including models of self-tolerance [7], drug effects [16], disease
progression [15], and initial damage by the immune system. Our previous pa-
per [3] proposed a new model to represent the damage caused by MS, influenced
by the dynamics of immune system activation in the nearest lymph node. The
main objective of this work is to identify critical model parameters in each phase
of MS using sensitivity analysis. However, sensitivity analysis is a computation-
ally expensive study, and since MS is a long-term disease, the model needs to
simulate disease progression over long periods, requiring a parallel implementa-
tion to reduce the computation time.
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This paper is organized as follows. Section 2 briefly reviews the main char-
acteristics of our mathematical model. The same section also presents the tech-
niques used to develop a parallel version of the code and the sensitivity analysis
used in this work. Section 3 presents and discusses the results. Finally, Section 4
presents our conclusions and plans for future works.

2 Methods

2.1 Mathematical Model

MS is characterized by an infiltration of lymphocytes across the blood-brain
barrier into the brain. The microglia is stimulated to attack the oligodendrocytes.
After being destroyed, brain parenchymal cells are captured by dendritic cells.
Thus, the dendritic cells become activated and migrate to the lymph node, acting
as presenting antigen cells (APC) and stimulating adaptive immune system [10,
14]. Then, CD8+ T cells and antibodies migrate to the brain parenchyma [12].
CD8+ T cell stimulates microglia and attacks brain cells, while antibodies do
the opsonization of brain cells [11, 17].

The mathematical model represented in Figure 1 comprises two distinct com-
partments: the brain parenchyma (i.e., tissue) and the peripheral lymph node [3].

Fig. 1. Two-compartment mathematical model for MS. Dendritic cells migrate to the
peripheral lymph node and activate the T and B cells recruiting antibodies. Adapted
from [3].

The model employs a set of 6 PDEs to depict the dynamics of RRMS in
the spatial domain Ω and temporal domain I. These PDEs correspond to the
following entities: Microglia (M), Oligodendrocytes (O), Conventional Dendritic
Cells (DC), Activated Dendritic Cells (DA), Antibodies (At), and CD8+ T Cells
(T ). Additionally, a set of 6 ODEs, defined in the temporal domain I, represents
the dynamics in the lymph node, namely: Activated Dendritic cells (DL), CD8+

T cells (TL
C ), CD4+ T cells (TL

H), B Cells (B), Plasma cells (P ), and Antibod-
ies (AL

t ). Details of the mathematical model can be consulted in our previous
work [3].
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2.2 Numerical Implementation

The code was implemented in C, utilizing the Finite Difference Method to solve
the system of Partial Differential Equations. First-order central difference was
used to numerically solve the diffusion, while chemotaxis was resolved using both
first-order central difference and up-wind-down-wind. The system of ordinary
differential equations was solved using the Explicit Euler method.

For our simulations, we assumed a two-dimensional domain of 20mm×20mm,
and the simulation time was set to represent 4 weeks of autoimmune response
after the onset of microglia activation. All simulation parameters were obtained
from our previous work [3].

2.3 Sensitivity Analysis

Sensitivity analysis (SA) [19] evaluates how changes in input parameters af-
fect model outputs, helping researchers identify the most influential factors and
improve model accuracy. SA is essential in assessing the robustness and relia-
bility of mathematical models, especially those involving complex systems with
many uncertain input parameters. Various methods are available to perform SA,
including the one-factor-at-a-time (OFAT) approach, Sobol method, Latin hy-
percube sampling, and Fourier Amplitude Sensitivity Test (FAST) [20, 18, 6, 2].
In this work, the second-order Sobol method was used, with bounds set for each
parameter, and samples generated to compute the model for each sample.

2.4 Parallel Implementation

While the second-order Sobol method can provide valuable insights into the be-
havior of complex models, it also comes with a significant computational demand
due to the large number of model runs required to estimate the sensitivity indices
accurately. More specifically, to evaluate the importance of each input variable
and the interactions between them, the second-order Sobol method requires at
least N(2D + 2) model runs, where N is the number of samples to generate,
and D is the number of parameters of the model. This means that the number
of model runs increases rapidly as the number of input variables and the maxi-
mum order of interaction increase. With D = 34 parameters and N = 2048, the
second-order Sobol method requires the execution of 143, 360 instances of the
model, which hurts performance. To overcome this issue, we implemented two
parallel versions of the code, one using MPI and the other OpenMP.

The parallel solution for a coupled system of ODEs and PDEs can lead to
additional communication and synchronization overheads, data dependency, and
memory management issues that can impact the efficiency and accuracy of the
parallelized version of the code.

In our mathematical coupled model, the exchange of data between the two
compartments requires the use of synchronization primitives, i.e., data must be
exchanged, at each time step, between the system of PDEs, which solves the
dynamics that occur in the brain tissue, and the system of ODE, which solves
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the dynamics on the lymph node. In other words, before the next time-step
starts, it is necessary to calculate the average concentration of those popula-
tions of cells in the tissue (PDEs) that migrate to the lymph node, so that the
computation of the ODEs system in the next time-step starts with the popu-
lations updated. The same occurs with the antigen population, which must be
updated before the PDEs system starts its next time-step computation. Finally,
the advection and diffusion terms also require synchronization at each time step.

Solving the PDEs with OpenMP (OMP) To solve the model using OMP,
the algorithm first creates a team of threads. Next, the ODEs system, which
represents the lymph node compartment, is solved sequentially. Then, OMP is
utilized to divide the tissue domain into slices and assign each slice to a previously
created thread, which will solve the PDEs in parallel in the assigned part of the
domain. Since all points of the mesh require the same amount of work, we kept
the default static schedule. Finally, we calculate the average concentrations of
cell populations in the tissue, which will be used to solve the ODEs system in
the next time step.

Solving the PDEs with Message Passing Interface (MPI) To implement
a parallel version of the code using MPI, the domain must be divided into smaller
subdomains, and each subdomain must be assigned to a separate MPI process.
Each process performs local computations for the ODEs system and solves the
PDEs within its designated domain using locally available information. After-
wards, the resulting solutions must be communicated to neighboring domains
to update the boundary conditions, as depicted in Figure 2. This communica-
tion is accomplished using MPI_Send and MPI_Receive operations. The process
of solving the PDEs system and updating the boundary conditions is repeated
iteratively until a converged solution is obtained.
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Fig. 2. To properly synchronize the mesh division between two processes, it is essential
for each process to exchange borders with its neighboring processes at every time step.
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3 Results and Discussion

3.1 Computational Environment

The numerical model presented in our previous work [3] was implemented using
the C programming language. The code was compiled using gcc version 9.4.0 with
the optimization flag −O3 enabled. In this work, the second-order Sobol method
was implemented with the help of the Python library SALib [5, 8] executed with
Python 3.9.13. The code was executed in a 3.30 GHz Intel® CoreTM i5-12600
CPU with 16GB of main memory. The number of physical cores available is 6,
which is the maximum number of threads/processes used during simulations.

3.2 Results for the Parallel Execution

Table 1 presents the average wall clock time obtained for ten executions of each
parallel version of the code. Each parallel version was executed using two, four,
and six threads/processes. The Table also presents the standard deviation and
the 95% confidence interval for each execution. As a reference, the sequential
version of the code executes in 734±4.73 seconds. The spatial discretization used
in this comparison was hx = 0.5 mm, and the time-step used was ht = 2× 10−6

days.

Table 1. Average execution time, standard deviation and 95% confidence interval (in
seconds).

Average Standard Deviation Confidence Interval
# of Threads MPI OMP MPI OMP MPI OMP

2 420 386 6.13 5.50 (418, 423) (382, 390)

4 308 246 7.17 1.92 (303, 309) (245, 248)

6 322.2 213 0.87 2.02 (321, 323) (211, 214)

The OMP version running on 6 nodes presented the best performance, achiev-
ing a speedup close to 3.5. The best MPI version achieved a speedup of 2.4 in 4
nodes. This difference in performance can be attributed to communication costs,
such as those depicted in Figure 2.

3.3 Sensitivity Analysis

We have run the SA considering all 34 parameters of the model. The OpenMP
version with 6 threads was used to solve each sample generated by the Sobol
method. The bounds used for each parameter by the Sobol method are ±10%
the baseline values presented in our previous work [3]. The quantity of interest
(QoI) is the total concentration of destroyed oligodendrocytes 28 days after the
start of the microglia attack. To take advantage of the embarrassingly parallel
nature of the SA analysis, where each run with a set of parameters is independent
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of other runs, we divided the execution into multiple instances that could be run
in parallel on multiple machines.

Figure 3 presents the results for the first-order SA. The parameters that have
more impact on the destruction of the brain cells are related to the increase in
the microglia population: the rate of proliferation (µm), diffusion (dM ), and
chemotaxis (χ). The decay rate of microglia (cM ) has a lower impact when
compared to the other microglia terms, but it is also relevant to prevent/increase
the destruction of oligodendrocytes.

Fig. 3. Results from the first-order sensitivity analysis show that the parameters most
relevant to oligodendrocyte destruction are those related to microglia proliferation and
diffusion, while the other parameters appear to have no significant relevance.

Figure 4 shows the covariance of parameters obtained using the second-order
Sobol method. As we can observe, there is a high covariance between µm and dM .
Additionally, the decay rate of microglia (cM ) is also relevant when combined
with the parameters of the equations for lymph nodes and the decay rate of
dendritic cells in the tissue.

The first and second-order Sobol’s indices suggest a significant dependence
of oligodendrocyte destruction on the concentration of microglia. Our current
model configuration indicates a limited impact of other immune system cells on
the disease dynamic. Therefore, it can be concluded that microglia’ concentration
plays a crucial role in determining the destruction of oligodendrocytes.
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Fig. 4. Parameters covariance.

4 Conclusions

Our study compared two strategies for enhancing the performance of a differ-
ential equation model for Multiple Sclerosis (MS), namely using OpenMP and
MPI. Based on the size of our problem, we found that the former strategy demon-
strated better performance, enabling us to execute the model up to 3.5 times
faster. As a result, we were able to conduct a Sensitivity Analysis (SA) for the
model over a 28-day simulation period that represents the acute phase of MS.

We believe that conducting an SA to assess the impact of the parameters on
chronic MS, which can last for years, would be a valuable next step. Our study
contributes to the current understanding of MS dynamics by providing insight
into the potential impact of different strategies for enhancing computational
performance.
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