
Replacing the FitzHugh-Nagumo
electrophysiology model by physics-informed

neural networks

Yan Barbosa Werneck1, Rodrigo Weber dos Santos[0000−0002−0633−1391]1,
Bernardo Martins Rocha[0000−0002−0508−8959]1, and Rafael Sachetto

Oliveira[0000−0003−0800−5984]2

1 Graduate Program in Computational Modeling, Federal University of Juiz de Fora,
Juiz de Fora, Brazil

2 Graduate Program in Computer Science, Federal University of São Jõao del Rei,
São Jão del Rei, Brazil

Abstract. This paper presents a novel approach to replace the FitzHugh-
Nagumo (FHN) model with physics-informed neural networks (PINNs).
The FHN model, a system of two ordinary differential equations, is widely
used in electrophysiology and neurophysiology to simulate cell action po-
tentials. However, in tasks such as whole-organ electrophysiology model-
ing and drug testing, the numerical solution of millions of cell models is
computationally expensive. To address this, we propose using PINNs to
accurately approximate the two variables of the FHN model at any time
instant, any initial condition, and a wide range of parameters. In partic-
ular, this eliminates the need for causality after training. We employed
time window marching and increased point cloud density on transition
regions to improve the training of the neural network due to nonlinearity,
sharp transitions, unstable equilibrium, and bifurcations of parameters.
The PINNs were generated using NVIDIA’s Modulus framework, allow-
ing efficient deployment on modern GPUs. Our results show that the
generated PINNs could reproduce FHN solutions with average numerical
errors below 0.5%, making them a promising lightweight computational
model for electrophysiology and neurophysiology research.

Keywords: Neurophysiology · Computational Electrophysiology · FitzHugh-
Nagumo · Physics-Informed Neural Networks

1 Introduction

Computational electrophysiology and neurophysiology are fields that study the
electrical activity of cells and tissues, such as those in the heart or the brain. The
Hodgkin-Huxley (HH) model, proposed in 1952 [4], was a breakthrough in these
fields as it was the first model to explain the electrical activity of neurons. The
FitzHugh-Nagumo (FHN) model, proposed in 1961 [2], is a simplified version of
the HH model that retains its essential features while being much more com-
putationally efficient. The FHN model is a system of two ordinary differential
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equations that describe the dynamics of a cell action potential (AP). Because of
its simplicity, the FHN model has become one of the most important building
blocks in computational electrophysiology and neurophysiology, and it is widely
used in simulations of neuronal and cardiac activity.

Despite its advantages, the numerical solution of millions of cell action poten-
tial models based on the FHN model is still computationally expensive, especially
for large-scale simulations, such as whole-organ electrophysiology modeling [7],
and drug testing and development [8]. Therefore, there is a need for lightweight
computational models, also called emulators, proxies, or surrogates, that can
replace the original cell model.

In this work, we present a new approach to replace the FHN model by physics-
informed neural networks. This machine-learning technique uses mathematical
equations that describe the phenomena during the model development or train-
ing phase. The resulting neural network model takes as input the time, initial
conditions, and parameters of the FHN model and provides accurate approxi-
mations for the two variables of the original equations at the specified time.

Different from classical numerical methods for transient equations, causality
is not needed after the network is trained. The computations of u(t1) and u(t2)
by the network do not have to respect any relation between the time instants
t1 and t2. For instance, t1 can be greater than t2. This further speeds up the
calculation of the solutions since fine numerical discretizations are no longer
needed.

Due to the nonlinearity of the model, sharp transitions, unstable equilibria
of the solutions, and bifurcations of parameters, two techniques were used to
improve the training phase of the neural network: Time window marching and
increasing point cloud density on transition regions. The new physics-informed
neural networks were generated with the NVIDIA Modulus framework [6] and
are optimized for deployment in modern GPUs. The results show that the neu-
ral networks were able to reproduce the FHN solutions with average numerical
errors below 0.5%. This approach has the potential to significantly reduce the
computational cost of large-scale simulations in electrophysiology and neuro-
physiology.

2 Background

The use of neural networks for electrophysiology modeling has become increas-
ingly important and interesting in recent years, particularly for complex and
expensive cardiac electrophysiology models. One notable study in this area is
[3], which demonstrated the ability of neural networks to emulate the intricate
spatial and temporal dynamics of tissue action potential (AP) propagation.

Recently, physics-informed neural networks have emerged as a promising ap-
proach to improving data-driven models [1]. Physics-informed neural networks
(PINNs) combine deep learning with physical laws to improve data-driven mod-
els. In a PINN, a neural network is trained to predict the solution to a physical
problem while enforcing the governing differential equations to capture the un-
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derlying physical behavior of the system being modeled. This approach has been
applied to various fields such as fluid mechanics, heat transfer, and electrophys-
iology modeling.

In the context of cardiac electrophysiology, several recent works have demon-
strated the potential of PINNs informed by electrophysiological dynamics, using
the relationships described by the Eikonal equation, to generate accurate predic-
tions for cell activation time. For example, Bin et al. [12] and Sahli et al. [11] both
presented PINN-based methods for predicting cell activation time with reason-
able accuracy and performance. Additionally, Ruiz-Baier et al. [10] proposed a
method to estimate the cardiac fiber architecture using physics-informed neural
networks.

This concept has also been extended to more complex cell activation models.
In [3], the authors used PINNs to reconstruct the entire spatiotemporal evolution
of the monodomain model, accurately predicting action potential propagation
in 1D and 2D meshes with only a sparse amount of data in the training. The
resulting PINNs were also used to perform the inverse estimation of parameters
using both in silico and in vitro data, showcasing their potential for clinical
applications.

Overall, the use of neural networks and PINNs in electrophysiology modeling
has shown great promise in recent years and has the potential to significantly
improve our understanding and prediction of complex electrophysiological phe-
nomena. The networks can prove to be a more efficient replacement for the
numerical solvers in order to facilitate studies requiring large-scale simulations,
such as whole organ simulations of the heart and brain in fine detail.

3 Methods

3.1 FitzHugh-Nagumo model

The FitzHugh-Nagumo model is one the simplest model capable of describing
the dynamics of excitable cells such as neurons and cardiac cells. It consists of
two coupled ordinary differential equations (ODEs) that capture the dynamics
of the cell through the activation and recovery variables. The FHN model is
given by:

dU

dt
= KU(U − α)(1− U)−W, (1)

dW

dt
= ϵ(βU − 0.8W ). (2)

The model is particularly useful in studying the activation and all-or-nothing
behaviors of the action potential generation dynamic in cardiac cells with few
equations and parameters. The above equations were numerically solved with the
classical Euler method in order to generate data for the training and validation
phases of the neural networks.

In this study, the following model parameters are used: ϵ = 0.5, α = 0.4, and
β = 0.2. The remaining parameter K as well as the initial conditions for U and
W are allowed to vary.
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3.2 Neural Network Architecture

In this work, the neural networks were developed with Modulus, NVIDIA’s
framework for neural networks, capable of incorporating data-driven and physics-
informed constraints. Modulus provides a high-level interface for training and
deploying PINNS and traditional neural networks. It can handle complex model
geometries and parameterization to produce surrogate models for various high-
dimensional problems. It is designed to be used with NVIDIA’s high-end GPUs
to accelerate training and evaluation.

The PINNs in this study were used to replace the FHN model, replicating
the temporal evolution of the solutions in the whole parameter space, and for
any initial conditions. The proposed NN model has the following form:

unet(U0,W0,K, t) = U,W. (3)

To handle this problem a network topology was designed using a total of 10
hidden layers, each one with 300 nodes, all fully connected, i.e., a Multi-Layer
Perceptron (MLP) architecture. The hidden layers connect the input layer, which
consists of time, the initial conditions, and the model parameter, to an output
layer with nodes for the variables U and V .

The neural network proposed in this study was trained using a loss function
that incorporates both physics-informed and data-driven constraints, providing
the network with actual data and prior knowledge of the system dynamics. As
a result, the network produces more accurate solutions and converges faster.

The physics constraints are incorporated by accounting for the consistency
of the solutions predicted by the network in relation to the system’s known
governing equations, described by the FHN model:

fu(U,W ) = KU(U − 0.4)(1− U)−W (4)

fw(U,W ) = 0.5(0.2U − 0.8W ) (5)

The loss function comprises the sum of losses for each variable, evaluated in a
domain using a specified batch size and aggregated using the L2 norm. This
interior loss function, Li is expressed as:

LI(U0,W0,K, t) =
1

Nbatch

(
batch∑ ∂unet(U0,W0,K, t)

∂t
− f(U,W )

)2

, (6)

where batch is a meta-parameter used to define the number of points used to
evaluate the above expression during the training phase. In particular, these
points will be randomly chosen.

The resulting constraint requires the derivative of the output of the model
with respect to the input parameters, such as time. In order to calculate it, the
network unet is assumed to be differentiable, which is a reasonable assumption
since the activation functions are infinitely differentiable. The derivatives are
then calculated by Modulus using Automatic Differentiation [9] .
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Additionally, to ensure accurate solutions, another constraint is imposed on
the neural network to enforce proper initial conditions. This is achieved by mea-
suring the error of the network’s prediction at the initial time in relation to a
constant or parameterized initial state. The initial condition constraint, LB has
the following form:

LB(U0,W0,K) =
1

Nbatch

batch∑
(unet(U0,W0,K, t = 0)− (U0,W0))2 (7)

Finally, a data-driven constraint is also introduced. It evaluates the similarity
of the network predictions in relation to data generated using numerical results
of the FHN equations. Similarly, the data constraint, LD consists of the L2

aggregation of the error function in a number of points defined by the batch
size:

LD =
1

Nbatch

Nbatch∑ 1

2
(unet(U0,W0,K, t)− usolver(U0,W0,K, t))2. (8)

For this, a training set was assembled containing the time evolution of dif-
ferent solutions in the parameter space, explored on a regular grid manner, with
10 homogeneously spaced values for each parameter. The solutions are obtained
using the simple forward Euler numerical solver with a time step of 0.01.

The total loss function was formulated simply by the weighted sum of the
previous constraints, and is given by:

LT = λDLD + λILI + λBWLB . (9)

The λ coefficients control the relative weighting of each constraint in the total
loss. In this implementation, the initial condition constraint is heavily imposed
with a much larger weighting (λB > λI , λD) to ensure its effectiveness in elimi-
nating non-viable solutions. However, this does not mean the solution is overly
constrained since the initial condition constraint only evaluates at t = 0. By giv-
ing greater weight to the initial condition constraint, the network can learn the
correct initial conditions for the system, which is crucial for generating reliable
solutions. At the same time, the other constraints are still crucial for ensuring
that the solutions are consistent with the governing equations and the available
data.

A training protocol was formulated for PINNs with a fixed amount of train-
ing steps (3000). The loss function was minimized using the classical Adam
optimizer. An exponential decaying function was used for the learning rate:

lr = lr0γ
step. (10)

This allows the network to learn more aggressively in the initial training steps
and only make minor adjustments to fine-tune the solutions in the final steps.
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3.3 Advanced techniques

In this work, we use PINNs to replace the FHN model with increasing dimensions
of parameterization. As a result, the complexity of the problem increases at
each stage. To tackle the more challenging problems in the later stages, we
implemented two techniques to enhance model training efficiency and improve
the overall accuracy, which are described next.

Time Window Marching Large time domains, with heterogeneous scales of
solution behavior, pose additional challenges during the training phases. In our
case, we have a rapid activation, a slow recovery, followed by a long steady state
rest, resulting in vastly different behaviors across time.

To mitigate this issue, we implemented the time window marching technique,
which is illustrated in Figure 1. The idea of this technique is to divide the time
domain into smaller windows and solve them separately. Different networks are
trained separately for each time window.

Fig. 1. Time window scheme, each training window consists of a region of the time
domain to be trained separately (adapted from [6]).

An additional constraint is considered to connect the solution of each window
to the next, which imposes the continuity of the solution on the interface of the
time windows. The constraint is given by:

LW (Y ) =
1

Nbatch

batch∑
(unet(U0,W0,K, t)prevW − unet(U0,W0,K, t)nextW )2.

(11)
The points are sampled at the window interface, i.e., the final time of the

previous window, and the initial condition of the next. This constraint forces the
initial conditions of the next window and thus a weight similar to the one of the
initial condition constraint was adopted.
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Overall, time window marching is a helpful technique to handle large and
complex time domains, especially when the solution behavior is highly hetero-
geneous across time. It also helps reduce the computational cost and memory
usage required for solving the problem.

Increasing point cloud density on transition regions Another common
source of complexity, and consequently also a source of error, are the regions in
the parameter space where the solution behavior changes rapidly. This happens,
for instance, when the solution is near unstable equilibria or when the parameters
are near bifurcations. An example of this complexity can be seen in the activation
threshold, generated by the term (u− α) of the FHN equations. Solutions with
U0 above the threshold, known as supra-threshold, trigger an action potential,
whereas solutions below the threshold, known as sub-threshold, only decay to the
steady state. Due to the scarcity of data in these critical regions, the resulting
predictions can often contain significant errors.

This problem is addressed by constraints implemented to evaluate additional
points in such transition regions, forcing the network to learn more about the
solution in those regions with more physics-generated data. This approach accel-
erates convergence at a small cost, proportional to the batch training size used
in the transition regions.

The constraint used has the same form as the regular psychs constraints but
is enforced only on points within the critical region. It also has a separate λ
coefficient for the weight.

3.4 Validation

In order to assess the quality of the trained networks, validation sets were also
generated. This generation was done by sampling the numerical solutions for
different parameter sets than the ones used in training and using the same nu-
merical solver (forward Euler). The validation loss was also calculated with the
L2 error for the whole domain, which compares numerical solutions and the
predictions of the network.

4 Results

4.1 Basic scenario with time as the single parameter

The first proposed problem is a simple time-only parameterization of the FHN
model. Requiring the network to predict the solution of the model for the whole
time domain for specific initial conditions and set of parameters. The proposed
model has the form:

unet(t) ≈ FHN(t). (12)

The training was done by minimizing the total loss based only on physics-
informed constraints of the interior of the time domain, t ∈ (0, 10) with a batch
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size of 3000 points, and the boundary of the time domain, t = 0, with a batch
size of 500.

For such a simple problem, data was unnecessary, and a very good match was
obtained using only physics and the time window technique. The time domain
was divided into 20-time windows, each with the size of a time unit, and training
separately for 3000 steps. This might be a little costly, computationally wise,
but allows the network to train for this particular problem only with the prior
knowledge of the mathematical equations that describe the dynamics of the
system.

Fig 2 shows how the network is capable of solving the problem for the whole
time domain, closely matching the numerical solver.

t

Fig. 2. Scenario with one input parameter: time. Predictions of the neural network for
the FHN(t) model (pred) compared to the numerical solution using the forward Euler
method (true).

The resulting network prediction achieved a mean error of 0.005, with a
relative error of around 0.5%. The maximum error was 0.002. For such a simple
problem, high precision is expected; what makes this interesting is that the
network managed such precision without the need for data, with only prior
knowledge of the system dynamics and the initial state.

4.2 PINN parameterized by time and the initial condition for U

The next step was to increase the problem’s complexity by parameterizing part of
the initial condition. The initial condition U0 of the solution was parameterized,
requiring the network to predict solutions for any initial condition U0 and for
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any time instant, t. The proposed network to solve the problem is described by:

unet(t, U0),≈ FHN(t, U0). (13)

In this case, the increase in complexity required adding a data-driven constraint,
as the network did not produce a good fit with only physics-driven constraints
and with the limitation, for the sake of comparison, of 3000 iterations. The total
loss function contains information on particular solutions, data-driven, and on
the governing equations of the FHN model, physics-informed. Additionally, a
constraint for initial conditions is also imposed. The time domain was divided
into 10 time windows for this problem.

The network was trained with a batch size of 1000 for the data-driven con-
straint and 2000 for the physics-driven constraint, with the same 500 batch size
for the initial condition. It was also set to train for 3000 steps per window.

Fig. 3. Neural network’s solutions to the FHN(t, U0) problem. The first column shows
the true solution, while in the second the network prediction is presented, and finally,
in the third column the error between the two is displayed. In this scenario, t and U0

parameterize the neural network.

In this case, the network solution had a mean error of 0.0012 for the U
variable, representing a good approximation with less than 0.2% relative error.
Furthermore, by analyzing individual solutions, as shown in Fig. 4, one can
see how the network manages to replicate the action potential dynamics of the
model.

The maximum error in the solution space is 0.04, as shown in Fig. 3. It
occurs in a very localized region near the threshold α = 0.4. This region contains
solutions very distinct since this is an unstable equilibrium.

4.3 PINNs for any initial conditions of the FHN equations (U0,W0)
and time

Now the network has to solve the whole temporal evolution of the FHN model
for a fixed set of parameters and any initial condition. Effectively, replacing the
numerical solver for a given set of model parameters. The proposed model has
the form:

unet(t, U0,W0) = U,W (t, U0,W0). (14)
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t t

Fig. 4. Specific solutions of the FHN(t, U0) problem: network predictions compared
to the numerical scheme (true) indicated by the dashed line.

In this problem, the same constraints of the last case were used. However,
the batch size of each constraint was expanded to account for the higher dimen-
sionality of the problem, which, of course, results in a higher training time when
compared to previous cases.

Both the physics and the data constraints had a λ weighting of one and the
IC constraint was heavily enforced with a weighting of 1000. The network was
trained with batch sizes of 7000 for the data constraints, 5000 for the physics
constraints, and 500 for the boundary constraints.

Fig 5 shows how the network is capable of replicating the model in the whole
solution space. And that most of the error is still localized in the region imme-
diately above the threshold.

Fig. 6 presents specific network predictions, which had a mean error of only
0.001 and a maximum error of 0.01, meaning a relative mean and maximum
error of 0.1% and 1%, respectively. From the results, we note that the neural
network yields accurate enough results.

4.4 PINNs replace the FHN model parameterized by any initial
conditions, the parameter K, and time

Our final experiments further increase the complexity of the problem by adding
an extra dimension for the parameterization of the FHN model (the parameter
K), which represents the velocity of the dynamics of the action potential. Now
the network not only has to solve for any initial condition, but it also has to
produce different solutions for the K parameter. The proposed model has the
following form:

unet(t, U0,W0,K) = U,W (t, U0,W0,K). (15)
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Fig. 5. Colormaps showing the evaluations of the Neural Network, FHN numerical
solution and the respective error for three different values of W0. U0 varies along the
vertical axis and time along the horizontal axis.

For this problem, initially, the error in the critical region near the unsteady
equilibrium was too high. Therefore, an additional constraint was explicitly
added for evaluating the consistency of the solution in this region, i.e., for
U0 ∈ (0.45, 0.65). This constraint double-enforces the solution of the FHN equa-
tions in this region.

The physics constraints were evaluated with a batch size of 2000 for the
constraint enforced in the whole domain and 1000 for the one enforced on the
critical region. Furthermore, the initial condition constraint had a batch size of
500, and the data-driven had a batch size of 2000. The time domain was divided
in 10 windows, like in the previous examples. In this case, data and physics
constraints had a λ weighting of one and the IC constraint was heavily enforced
with a weight of 1000.

The network’s performance for this problem is worse than the previous exam-
ples, with a maximum error of 0.18 ( 18% of maximum relative error). However,
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Fig. 6. Graphics showing the specific network predictions (solid lines) and the numer-
ical solutions of the FHN model (dashed) for different values of W0.

we can see in Figure 7 that this high error is highly localized. The relative mean
error measured was 0.1%, showing that the network has good overall accuracy.

5 Discussion

Table 1 summarizes all the presented results. Note that in each different scenario
presented the generation of the PINNs took less than one hour of execution time
on a single NVIDIA Tesla T4 with 16GB of memory. Also, note that the num-
ber of advanced techniques used to improve the results steadily increased from
only physics-informed constraints and the time window technique (PINNs pa-
rameterized only by time) to physics-informed and data-driven constraints, time
window technique and an increased point cloud density on a critical region near
an unsteady equilibrium (PINNs parameterized by time, the initial conditions,
and the parameter K of the FHN model).

It’s important to note that although several techniques were employed to
improve model accuracy and training rate there is much more room to improve.
One conceivable way is to explore the use of different neural network architec-
tures. Recurrent architectures can be particularly suited for this problem due to
their time-aware nature that propagates the solution through time, at the cost of
being traditionally more expensive than MLP [13]. Another architecture worth
mentioning is the Fourier-based one [5]. By exploring different neural network
architectures, it may be possible to find more efficient and effective models for
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 t                                                                                        t                                                                                        t

 t                                                                                        t                                                                                        t

 t                                                                                        t                                                                                        t

Fig. 7. Figures showing the evaluations of the Neural Network in the whole solution
space, and its respective error for 3 parameter sets, U0 , W0, and K. The results show
a reduced localized error after the special constraint was imposed in the region near
the unsteady equilibrium.

solving this problem. However, it is important to carefully consider the trade-
offs between model accuracy and computational cost, which is a topic of future
research.

6 Conclusions

Together with the Hodgkin-Huxley model, the FitzHugh-Nagumo model is an
essential building block in computational electrophysiology and neurophysiology.
The FHN is a simple model based on two ordinary differential equations that
can reproduce the dynamics of a cell action potential. Despite its simplicity,
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Table 1. Table showing each studied scenario, if physics or data constraints were
used, the performance techniques employed, the PINNs training time, and the resulting
accuracy.

Input parameters Mean Error Max error Training time Employed techniques
Time 0.0058 0.041 23 min Physics + Window,

Time, U0 0.0012 0.042 12 min Physics+Data+Window
Time, U0 and W0 0.0014 0.113 43 min Physics+Data+Window

Time, U0 , W0 and K 0.0007 0.164 25 min All previous + region

the FHN model is widely used in many research fields, including neuroscience,
physiology, and cardiology.

However, the numerical solution of millions of cell models is computationally
expensive, particularly in tasks such as whole-organ electrophysiology modeling
for the brain or the heart and drug testing and development.

Machine learning techniques, particularly neural networks, have emerged as
promising tools for generating emulators in recent years. Physics-informed neu-
ral networks (PINNs) are a type of neural network that use the mathematical
equations that describe the phenomena during the model development or train-
ing phase, making them particularly well-suited for modeling complex physical
systems, such as the FHN model.

In this work, we present how to replace the FHN model with PINNs, using the
NVIDIA Modulus framework to generate the neural network models. The new
neural network model receives input time, t, initial conditions, and parameters of
the FHN and offers accurate approximations for the two variables of the original
equations at the specified time.

To deal with the nonlinearity of the model, sharp transitions, unstable equi-
libria, and bifurcations of the parameters, two techniques were essential to im-
prove the training phase of the neural network: Time window marching and
increasing point cloud density on transition regions. These techniques allowed
us to generate accurate neural network models that reproduce FHN solutions
with average numerical errors below 0.5%.

In conclusion, our work shows how PINNs can generate accurate emula-
tors for the FHN model, a widely used model in computational electrophysiol-
ogy and neurophysiology. The new neural network models are computationally
lightweight, making them well-suited for whole-organ electrophysiology model-
ing, drug testing, and development. Moreover, our work demonstrates the poten-
tial of PINNs as a tool for emulating other complex physical models and high-
lights the importance of combining data-driven and physics-based approaches in
machine learning for scientific applications.
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