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Abstract. The aim of this work is to develop a method for automated,
fast and accurate geometric modeling of blood vessels from 3D images, ro-
bust to image limited resolution, noise and artefacts. Within the centerline-
radius paradigm, convolutional neural networks (CNNs) are used to ap-
proximate the mapping from the image cross-sections to vessel lumen
parameters. A six-parameter image formation model is utilized to de-
rive conditions for this mapping to exist, and to generate images for the
CNN training, validation and testing. The trained networks are applied
to real-life time-of-flight (TOF) magnetic resonance images (MRI) of a
blood-flow phantom. Excellent agreement is observed between the pre-
dictions made by the CNN and those obtained via model fitting as the
reference method. The latter is a few orders of magnitude slower than the
CNN and suffers from local minima problem. The CNN is also trained
and tested on publicly available contrast-enhanced (CE) computed to-
mography angiography (CTA) clinical datasets. It accurately predicts the
coronary-tree lumen parameters in seconds, compared to hours needed
by human experts. The method can be an aid to vascular diagnosis and
automated annotation of images.

Keywords: Medical image analysis · CNN · Parameter estimation ·
Blood-vessels lumen modeling · Centerline-radius paradigm · Uncer-
tainty.

1 Introduction

Cardiovascular disease produces immense health and economic burdens globally
[1]. The main types of this disease originate from blocked blood supply to organs
and tissues. The related clinical practices rely on angiography and venography
in multiple imaging modalities to acquire information about human vascular-
ity. Reliable quantification and visualization of vascular structures is impor-
tant for diagnosis assistance, treatment, surgery planning/execution, pathology
? Supported by Lodz University of Technology, Institute of Electronics.
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quantification, and evaluation of clinical outcomes in different fields, including
laryngology, neurosurgery and ophthalmology [2], [3]. Three-dimensional imag-
ing is the main technique used to acquire quantitative information about the
vasculature. Example modalities include MR angiography (MRA) which can be
flow-dependent (TOF or phase contrast angiography) or flow-independent. An
invasive alternative is computed tomography angiography (CTA). They can both
be contrast-enhanced (CE) or nonenhanced. Various diseases require the usage
of dedicated imaging techniques and image analysis algorithms. The most often
considered abnormalities are stenosis, aneurysms and calcifications [2].

The human vasculature exhibits a complex tree-like structure of highly-
curved, different-diameter branches. They are closely surrounded by other ar-
teries, veins and tissues. The images feature limited spatial resolution and sub-
stantial noise. These factors make the tasks of vessel quantification in 3D images
especially challenging for radiologists. Manual vessel labeling is tedious, time-
consuming and error-prone [4]. There is a strong need to develop automated
techniques for accurate, fast and objective vascularity evaluation [3] – to re-
lieve radiologists of the burden of adding annotations to 3D images, crucial
to effectively train data-driven solutions for healthcare. The main difficulties
in achieving this task are in limited spatial resolution, intensity variations in
regions surrounding the vessels, and imaging artefacts. These nonidealities in-
crease uncertainty of lumen geometry measurements. The aim of this study is to
develop a robust algorithm for fast, quantitative, subpixel-accuracy geometric
characterization of blood vessels’ lumen, given their 3D image.

There are two main approaches to vascular structures segmentation and
quantification in 3D images [5], [6]:

– direct volumetric lumen segmentation,
– 2D cross-sectional characterization along approximate centerline.

We focus on the second method and use a CNN to estimate of the lumen
parameters from image cross-sections. The first approach is usually performed
with the use of time-consuming calculations [7] or much faster convolutional
neural networks [8]. Still, the segmentation produces images which are a coarse,
voxelized representation of the vessel, with a need for postprocessing aimed at
smooth approximation of its surface, e.g. for blood-flow simulation.

In our approach, the lumen cross-sections are computed as 2D images on
planes perpendicular to the vessel centerline approximated by a smooth curve
in 3D space [9] beforehand. This is less troublesome than volumetric segmenta-
tion of the lumen; various algorithms are available [10], [11]. Normal vectors to
the centerline define the cross-section planes. The 2D images on such planes are
obtained through the 3D discrete image interpolation and resampling. Alterna-
tively, a lumen cross-section model is fitted to the image data for centerline-based
vessel quantification, e.g. with the use of the least-squares (LS) algorithm [9].
This involves long-lasting iterative minimization of a nonlinear error function and
is likely to get stuck in its local minima. We will use it as a reference method.

In Section 2, we describe the proposed method of lumen cross-section quan-
tification. Section 3 characterizes the 3D image datasets to which the method is
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applied to investigate its properties. The results are presented in Section 4, their
discussion and conclusions form the content of Section 5.

2 Methods and materials

To study the problem, it is first assumed that the blood-vessel cross-section
forms a circle of radius varying along the centerline. The hypothetical noiseless
analog image F (x, y) of the lumen cross-section, at any point (ξ, η, ζ) in the 3D
space is a convolution of the imaging system effective impulse response h(x, y)
with the function f(x, y) representing the lumen and its background

F (x, y) =

∫ ∞

−∞

∫ ∞

−∞
f(u, v)h(x− u, y − v)dvdu (1)

where (x, y) are image coordinates on the cross-section plane, (x, y) = (0, 0) at
(ξ, η, ζ). The function f(x, y) is constant within the lumen region, surrounded
by the background of different, also constant, intensity. The function h(x, y),
assumed isotropic Gaussian, combines the effects of the 3D image scanner point-
spread function (PSF) and interpolation which precedes 3D image resampling.
These assumptions are relevant to many practical situations [12]. Other image
formation model options (non-circular shape, non-constant lumen/background
intensities) will be accounted for later on in this paper.

The equidistant sampling points on a Cartesian grid are (xs
i , y

s
j ) = (i∆s, j∆s),

i, j ∈ {−N, . . . , 0, . . . , N}, ∆s denotes the sampling interval, and the cross-section
image size is (2N + 1)× (2N + 1). The image intensity at (i, j) is the sampled
convolution (1) multiplied by lumen intensity step b and added to the background
intensity a. The circle center is shifted by (dx, dy) from the centerline. There are
P = 6 image model parameters θ = (θ0, θ1, θ2, θ3, θ4, θ5) = (a, b, R,w, dx, dy)

I(i, j;θ) = a+ bF (i∆s − dx, j∆s − dy, R,w). (2)

where R and w denote, respectively, the lumen radius and the Gaussian "sigma".
The proposed method uses the CNN as a nonlinear regressor. The input to

such network is the vessel cross-section image. Values of the model parameters
are predicted at the CNN outputs. The network can be trained to estimate a
single parameter or a number of them in [1, . . . , P ]. A cascade of three convolu-
tional layers and three dense layers was used in the experiments, Fig. 1, where
N = 7. The numbers of channels N1, . . . , N6 in the layers depended on the
estimated parameter(s) and image noise level.

In the transfer-learning training phase, the assumed parameter values are
substituted to (2) to calculate image model intensity on a predefined sampling
grid. This results in a noiseless image. Gaussian noise ε is added to it, to take
account of the uncertainty of measurement/reconstruction. Then, the neural
network is trained to estimate the model parameters for images at its input.
The CNN-predicted parameter values differ from those used to compute the
input images. Sum-of-squares of these differences is the goal function minimized
in the training process.
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Fig. 1: CNN architecture applied to parameter estimation of blood-vessel lumen
visualized in its 15 × 15-pixel 2D cross-section. The convolutional and dense
layers feature ReLU activation functions, the output is linear.

In the recall phase, the neural network is driven by an image of unknown
parameters and estimates their values. Ideally, the implicit input-output function
θ̂ = g(θ) of the pipeline in Fig. 1 should be an identity. Including bias and
random noise components makes it more realistic:

θ̂p ∼= θp + βp + νp, p ∈ {0, . . . , P − 1} (3)

where θ is the vector of true values of the model parameters. The added terms
of bias β and noise ν depend on θ, image noise ε, sampling interval ∆s, image
artefacts, model adequacy, and numerical errors. Due to the complexity of the
model equations (1) and (2), explicit derivation of the inverse mapping seems
to be an impossible task. This justifies the use of a CNN to learn this mapping
from example images of known parameters. The CNN ability to reconstruct it
is limited by the finite number of layers and count of trainable weights, being
another source of the estimator uncertainty. Sensitivity analysis [13] and Monte
Carlo simulations were applied to (2) to find parameter subspaces and image
sampling patterns where the inverse mapping exists, and to evaluate estimator
bias and variance. Importantly, this estimator has much better precision (quan-
tified with the RMS error) than implied by Cramér-Rao lower bound of unbiased
predictors. Discussion of these findings extends beyond the scope of this paper.

The performance of the proposed lumen quantification method is assessed
through its application to images of real blood vessels and their physical models.
The MR-QA123 flow phantom, driven by computer-controlled pump was used
to force a steady flow (2.5 ml/s) of blood-mimicking liquid through the lumen
of the phantom branches [14]. The U-shaped 8 mm inner diameter pipe of the
phantom is used in this work. The phantom was placed in a GE Signa HDxt
1.5T system. Fig. 2a shows a maximum-intensity-projection (MIP) of the pipe
TOF image. Its voxel dimensions are (0.82 × 0.82 × 1.01) mm3. Image inten-
sity is normalized to [0, 1]. To assess the CNN performance on clinical images,
17 annotated datasets available as part of Rotterdam Coronary Artery Algo-
rithms Evaluation Framework [4] are used. The volumes intensity is clipped to
[−300, 800] HU and normalized to [0, 1].
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Fig. 2: Scanner-acquired TOF MRI for U-shaped pipe in flow phantom; a) MIP
on the 0ξζ plane, b) mosaic of lumen cross-sections (not to scale, arrows indicate
fluid flow direction), c) 1D intensity profiles at y = 0 of sections taken at dc =
0, 38, and 242 mm from inlet (marked respectively by red, green and blue circles
in (b) and Fig. 3 upper row), black dotted lines: profiles reconstructed by model
(2) supplied with CNN-predicted parameters.

3 Results

Prior to CNN training, the noise of the phantom images was found to be Gaus-
sian with PSNR ∼= 30dB. A pseudo-random noise of the corresponding standard
deviation was added to each synthesized 2D cross-section in the training, vali-
dation, and testing sets. The 15× 15-pixel images were computed using (2). For
∆s = 0.82 mm, the model parameters spanned randomly the ranges: 0 ≤ a ≤ 0.3;
0.1 ≤ b ≤ 1.1; 1.0 ≤ R/∆s ≤ 6.0; 0.3 ≤ w/∆s ≤ 1.5; −1.2 ≤ dx/∆s ≤ 1.2;
−1.2 ≤ dx/∆s ≤ 1.2, with uniform probability distribution. The image counts
in the three sets were 60 000, 20 000 and 20 000, respectively.

Five neural networks were trained: four single-ouput, each for a, b, R,w in-
dividual parameters, and one with two outputs for (dx, dy). The CNNs were
implemented in Keras environment on a desktop computer with 16 GB RAM,
Intel™ i5-8300H CPU @2300 MHz under MS Windows 11 OS. Computations
were accelerated by NVIDIA GeForce GTX 1050 card with 4 GB GPU memory.
Typical learning process (Adam weight optimization up to the time of valida-
tion error increase) took less than one hour, for (32,32,32,32,16,8) channels in
the CNN layers. Computing the network output required 25 µs on average. The
LS method was implemented with least_squares() function of the Scipy library,
taking a minute to fit the model to a section of the pipe image.

Excellent agreement between the CNN and LS predictions for all six pa-
rameters is achieved, Fig. 3. The effect of stripe artefacts is clearly visible for
dc ∈ [0, 100] mm, Fig. 3 left column (periodically varying lumen intensity b along
the centerline). The two estimators differ more in the second half of the pipe,
where the TOF SNR is low (due to flow direction reversal w.r.t. the 0ζ axis, Fig.
2a). This concerns especially d̂x and d̂y parameters; however, the disparity stays
in the subvoxel range.

For each selected point of a coronary artery segment in CE-CTA images, the
annotations include three lumen contours marked by respective observers on a
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Fig. 3: Plots of estimated lumen parameters for MR TOF image of U-shaped
pipe in the flow phantom, flow rate 2.5ml/s. Left: â, b̂, R̂, ŵ; right: d̂x, d̂y. Top:
CNN, red, green and blue marks correspond to sections encircled in Fig. 2b;
bottom: LS model fitting. CNN trained on synthetic images at PSNR = 30dB.

common plane, orthogonal to an agreed centerline, Fig. 4. The contours allow
computation of the section equivalent radius ρ(o)k =

√
A

(o)
k /π, where A

(o)
k denote

the area inside the contour, o = 1, 2, 3 and k is the section index. Their centers
of mass provide coordinates of centerline points according to observers, Fig. 4
red dots. The image intensity is not constant over the background region, Fig.
4. This causes convergence difficulties of LS model fitting, leading to errors and
excessive time of computation. The CNN is trained on real, nonideal images to
make it insensitive to spurious objects in the background.

Example results of training and testing a CNN for equivalent radius esti-
mation are shown in Fig. 5 for contours marked by Observer #1 on datasets
#0,#1,#3,#4,#5,#6 (558 sections). Testing was done on 51 sections of three
segments excluded from the training set. The mean absolute error (MAE) over
the training and test sets was 0.13 mm and 0.11 mm, respectively. Similarly,
MAE was less than 0.09 mm over the training set for each of dx and dy param-
eters, and it did not exceed 0.1 mm for the test set. Thus, subpixel accuracy is
achieved for the CE-CTA as well (∆s = 0.45 mm in this case).

4 Summary and conclusion

The CNN-based parameter predictions are in excellent agreement with the well-
established LS method, for images whose appearance is close to the lumen model
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(a) Observer #1 (b) Observer #2 (c) Observer #3

Fig. 4: Example lumen contours marked by three observers on sections k =
23, 24, 32, 33 of artery segment #8 in CE-CTA dataset #5. Blue cross: agreed
reference centerline, white line: manually marked contour, red dot: computed
contour centroid, red dashed line: equivalent circle.

of clear object and background (like TOF MR of the flow phantom, Fig. 2bc).
Although the time of CNN training can be substantial, the trained CNN is much
faster than LS fitting implementation.

Accuracy of the LS algorithm is poor for the CTA dataset, even with the
use of cumbersome constrained optimization. Since the CNN estimator can be
made robust to deviations from the model assumptions, it shows high, subvoxel
accuracy in the case of CTA images as well. In a number of cases, the contours
delineated by the observers are apparently placed off the regions of high image
intensity. Still, the network can extract such areas in its radius/centerline shift
predictions, for further intensity examination, e.g. in search for calcifications.

The obtained results demonstrate the potential usefulness of the CNN as an
accurate, fast and robust tool for blood-vessels’ lumen quantification – a possible
aid to medical diagnosis and automated image annotation. Future studies will
focus on the estimator uncertainty analysis, combined with design of training
datasets for transfer learning and usage of self-attention architectures to further
improve robustness to image imperfections. Collaborative work on applications
to other vascularity images, e.g. of the brain, has also been initiated.
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