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Abstract. Di�usion magnetic resonance imaging (dMRI) is an impor-
tant technique used in neuroimaging. It features a relatively low signal-
to-noise ratio (SNR) which poses a challenge, especially at stronger dif-
fusion weighting. A common solution to the resulting poor precision is to
average signal from multiple identical measurements. Indeed, averaging
the magnitude signal is su�cient if the noise is sampled from a distribu-
tion with zero mean value. However, at low SNR, the magnitude signal is
increased by the recti�ed noise �oor, such that the accuracy can only be
maintained if averaging is performed on the complex signal. Averaging
of the complex signal is straightforward in the non-di�usion-weighted
images, however, in the presence of di�usion encoding gradients, any
motion of the tissue will incur a phase shift in the signal which must be
corrected prior to averaging. Instead, they are averaged in the modulus
image space, which is associated with the e�ect of Rician bias. Moreover,
repeated acquisitions further increase acquisition times which, in turn,
exacerbate the challenges of patient motion. In this paper, we propose a
method to correct phase variations using a neural network trained on syn-
thetic MR data. Then, we train another network using the Noise2Noise
paradigm to denoise real dMRI of the brain. We show that phase cor-
rection made Noise2Noise training possible and that the latter improved
the denoising quality over averaging modulus domain images.

Keywords: Phase correction · Di�usion magnetic resonance imaging ·

Denoising · Convolutional neural networks · Transfer learning.

1 Introduction

Di�usion magnetic resonance imaging (dMRI, also di�usion-weighted MRI, DW
MRI, DWI) is one of the key tools used both in clinical neurological practice and
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in neuroscienti�c research [12]. For example, dMRI is used for visualizing the
white matter structures of the brain and can characterize features of the tissue
microstructure. The main contrast in dMRI comes from the relation between
di�usion encoding strength, characterized by the b-value, and the rate at which
water in the tissue is di�using, i.e., in places where the di�usion is fast, the signal
is more attenuated and vice versa. High b-values increase the di�usion-based
image contrast and can enable more elaborate analysis models, but the trade-
o� is a lower signal and thus lower SNR. At some b-value, depending on other
imaging parameters including resolution, the SNR becomes prohibitively low.
Typically, this problem is solved by repeating the same measurement multiple
times and averaging the repetitions (the number of which is referred to as NEX).

Although widely used in practice, averaging has signi�cant limitations. First
of all, the noise values converge to their mean value, so averaging should be
performed at such a step of image reconstruction where noise has zero-mean.
Secondly, averaging reduces the standard error of the mean for the signal in-
tensity proportionally to the square root of NEX, but increases the scan time
proportionally to the number of repetitions, so it is ine�cient. The maximal
NEX number may be limited by the hardware, for example to 32 in the Siemens
Avanto 1.5T machine. Since scan time is increased by each repetition, the risk
of patient motion and patient discomfort grows.

The condition for zero-mean noise is satis�ed for complex-valued images be-
fore coil signal combination and before computing modulus images. However, in
the presence of di�usion encoding gradients, the position of tissue is encoded in
the phase. If the position changes due to movement, vibration, pulsation etc., the
phase will be incoherent across the object [11]. This is, repeated images ideally
have the same intensity modulus, but di�erent values of the complex intensity
components. Thus, images acquired with non-zero di�usion weighting cannot be
straightforwardly averaged in the complex domain and are instead averaged in
the modulus domain. This results in convergence of intensity values to the non-
zero mean and formation of the so called noise �oor or Rician bias. This e�ect
is not observed for SNR levels greater than 3, but can bias di�usion measures in
most noisy image areas where SNR<3 [4].

A summary of MR-related phase correction methods was presented in [11].
The problems associated with phase correction in dMRI were analysed in a recent
work by Liu et al. [10].

In this paper, we �rst propose a neural network, called the Phase Shifter, to
equalize phase distribution between pairs of image slices taken from two scan
repetitions. The Phase Shifter network is trained using transfer learning, based
on synthetic echo planar images (EPI) [6]. We showed in a previous work that
denoising can be more e�ectively tackled using neural networks than by aver-
aging [6]. With phase-corrected images of zero-mean noise at hand, we use the
Noise2Noise training paradigm [9] to train a N2N Denoiser network without the
necessity for noise-free training targets. For both the phase correction and de-
noising tasks, we use simple and quick-to-train convolutional neural networks [3].
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In Section 2, we describe the image simulation process, introduce the Phase
Shifter and N2N Denoiser networks and how they were trained. In Section 3, we
show the results of training of both networks as well as their application on brain
dMRI. The Phase Shifter is compared to polynomial �tting. Section 4 closes the
paper with a discussion of the results.

(a) Phase map 1 (b) Phase map 2 (c) Di�erence of
phase maps 1 and 2

Fig. 1: Example simulated phase maps (a, b) and their di�erence (c), in radians.
Phase values can range between several multiples of π. In this work, the goal
is to correct image phase by estimating the phase di�erence, given images with
two non-agreeing phase maps (Eq. 1)

2 Materials and methods

Experiments were performed using dMRI of the brain acquired with b-values of 0
and 1000 s/mm2 on a Siemens Avanto 1.5 T machine at the Central Clinical Hos-
pital, Lodz Medical University, Poland. The scanning involved non-accelerated
echo-planar images with imaging parameters described in detail in [6]. Synthetic
complex MRI images with random phase were simulated based on the BrainWeb
phantom [1][2][7][8] as in [6].

2.1 Modelling synthetic training data for the Phase Shifter

We pose phase correction in dMRI as the problem of �nding the phase di�erence
map between two repetitions of the same complex-valued image slice. The ideal,
non-noisy modulus value of the complex signal is equal for the two repetitions, up
to motion, which we assume negligible in an EPI scan involving two successive
acquisitions. The individual real and imaginary values across repetitions are
di�erent, but contain noise sampled from a zero-mean distribution.

We performed real-MR-data-driven modelling on the BrainWeb volume to
obtain a synthetic training dataset with the required properties [6]. The Brain-
Web volume was cropped and downsampled to match the resolution of dMRI
data. This resulted in a single 160x160x25 voxels volume. For simplicity in setting
the SNR in experiments, the mean value of the tissue in the BrainWeb volume
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was normalized to 1 using the tissue mask. Phase maps were estimated based
on one of the real dMRI scans (Patient 0) by polynomial �tting (PF) [6], cubic
within the tissue and linear within background to avoid rapid phase changes in
the latter region. In total, 25 phase maps were obtained, one for each slice of the
selected dMRI scan. Representative phase maps and their di�erence are shown
in Fig. 1.

The original BrainWeb volume Im is real valued and thus can be treated
as a complex number with zero phase and zero imaginary component. Phase
variations within the slices were introduced by:

Ic = Imejθ = Re(Ic) + Im(Ic)j (1)

which yields a complex-valued slices Ic with non-zero real and imaginary parts
and phase θ, where θ is a function of pixel coordinates and j is the imaginary
unit.

Three di�erent phase maps were imposed on each slice to create triplets and
augment the training set (Fig. 2a-2b shows a pair):

Ici = Imejθi , i = 1, 2, 3 (2)

Then, complex noise maps obtained from the scanner were added to the
real and imaginary components of all slices. The standard deviation of noise was
normalized to 1. EPI regridding e�ects on noise were taken into account as in [6].
Noisy images with mean SNR = s were calculated as:

[Inci]
s = s ∗ Ici +N (3)

where [Inci]
s is the noisy complex image with phase θi and SNR s, and N is

the zero-mean Gaussian noise. From the triplets of the same slice with di�erent
phase, one instance was selected as the one to be corrected and two instances
were assumed to be repetitions with reference phase (i=2 and i=1, 3, respectively,
by random choice). The goal of [Inc2]

s phase correction in this setting is to shift
its phase from θ2 to θi:

([Inc2]
s)θi

′
= [Inc2]

se−j(θ2−θi) (4)

Note that ([Inc2]
s)θi

′
has the same phase θi but is not equal to [Inci]

s due to noise
(Fig. 2). By the same argument it satis�es the Noise2Noise criteria for identi-
cal image content and zero-mean independent noise. Applying a phase di�er-
ence computed using the two-argument arctangent, atan2([Inc2]

s)− atan2([Inci]
s)

(Fig. 3) would yield identical images including their noise values and thus is
not suitable. Using two target phase maps for each slice increased the number
of training examples to 50. Additionally, SNR values s = 1, 2, 3, 4, 5, 6, 7, 8,
9 were considered, resulting in 450 examples in total. Each input training ex-
ample was setup as a quadruple Re([Inc2]

s), Im([Inc2]
s),Re([Inci]

s), Im([Inci]
s), with

s = 1, 2, ..., 9 and i = 1, 3. Targets were setup as tuples Re([Inc2]
s)θi

′
, Im([Inc2]

s)θi
′
.
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(a) Repetition 1 (b) Repetition 2 (c) (d)

Fig. 2: Two noisy instances of the real part of same slice with di�erent phase (a,
b), Repetition 2 with corrected phase (c), the di�erence of images (a) and (c)
which are equal up to noise (d).

(a) (b) θa − θb (c) arg(A)− arg(B)

Fig. 3: The scheme of Phase Shifter operation (a) and an example of clean and
noisy phase di�erence maps computed using ideal phase maps (b) and the two-
argument arctangent function (c). Using (c) for phase correction would result
in two identical image instances, not suitable for averaging nor for Noise2Noise.
The desired phase di�erence map should be noise-free (b)

2.2 Phase correction

The Phase Shifter network architecture selected for correcting the phase is based
on the SRCNN [3]. SRCNN is three-layered, with the �rst layer performing 9x9
convolutions 64 times, the second performing 1x1 convolutions 32 times and the
�nal performing 5x5 convolutions 1 time. The output layer in our Phase Shifter
adaptation is modi�ed to perform the convolutions twice, so that it outputs
the real and imaginary parts of the phase-corrected image as two channels. The
input to the network is a quadruple of images as described above in Section 2.1.
(images A and B in Fig. 3a, with s = 1). The expected result of the Phase Shifter
is a shift in the phase of the �rst complex input image so that its (unknown)
non-noisy complex value is equal to the non-noisy complex value of the second
input image.

The Phase Shifter is setup to �rst output the phase-corrected complex image

estimate ̂Re(([Inc2]
s)θi

′
), ̂Im(([Inc2]

s)θi
′
) (denoted as C̃ in Fig. 3a). Then, the dif-

ference is computed between the phase of the input image to be corrected and
of the phase-corrected image at the network output, using the two-argument
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arctangent function:̂(θ2 − θi) = atan2([Inc2]
s)− atan2( ̂([Inc2]

s)θi
′
) (5)

The latter is applied to the input image to be corrected to obtain the �nal Phase
Shifter output (denoted as Ĉ in Fig. 3a):̂([Inc2]

s)θi
′′
= [Inc2]

se−j ̂(θ2−θi) (6)

The computed phase di�erence maps ̂(θ2 − θi) (denoted as ∆̂θ in Fig. 3a) may
initially contain small errors corresponding to discrepancies in the modulus value,
but its application keeps the modulus unchanged in the �nal output, while the
errors are minimized as the network is trained.

2.3 Denoising

The Noise2Noise training paradigm is explained in detail in [9]. The main idea
is that training a denoiser with clean targets and L2 loss (mean squared error,
MSE loss) has the same minimum as training with zero-mean noisy targets. This
approach can be applied with any neural network regression-type architecture.
For denoising, we again select the SRCNN architecture. We treat the real and
imaginary components of a complex image as separate images to denoise. The
N2N Denoiser receives a single noisy image slice as input and outputs a single
denoised image slice. Its �nal layer thus performs one 5x5 convolution. The N2N
Denoiser estimates the noise map for each image slice and then subtracts it from
the input [13]. It is optimized by minimizing the MSE between the denoised
images and the noisy phase-corrected targets. The minimum possible loss value
is thus, by de�nition of the MSE, the variance of noise in the target image.
Since the images in our experiments were normalized to unit noise standard
deviation [6], the optimum loss value is 1.

2.4 Evaluation methods

Phase correction accuracy in synthetic BrainWeb images was evaluated using the
Phase Shifter loss function (MSE) globally and by comparing MSE maps in se-
lected cases visually. Phase correction accuracy in dMR images was evaluated by
visual examination of the di�erence between target and phase-corrected images.
It was also validated by performing Noise2Noise training using phase-corrected
images. Denoising accuracy was evaluated using the MSE calculated in reference
to clean images for synthetic BrainWeb images at di�erent SNR levels and to
noisy images for real dMRI.

3 Results

3.1 Phase Shifter training and phase correction in dMR images

The Phase Shifter was trained using 450 160x160 synthetic examples using the
MSE loss, Adam optimizer, learning rate of 0.001, mini-batch training with batch
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size of 9 and shu�ing, implemented in PyTorch and executed in Google Colab-
oratory. The validation set was composed of the same image slices, but limited
to two phase maps θ1,θ2: Re([I

n
c1]

s), Im([Inc1]
s),Re([Inc2]

s), Im([Inc2]
s), and with

accordingly modi�ed target: Re(([Inc2]
s)θ1

′
), Im(([Inc2]

s)θ1
′
).

Thus, there were 225 validation examples. Early stopping was implemented
as in [5], with patience of 100 epochs, validation loss value checking in each
epoch, and minimum delta value of 1e-9. In this setting, the network reached its
best performance after 1645 epochs and training took 44 minutes. Validation
mean absolute error (MAE) between the target and estimated phase-corrected
images achieved the value of 0.1, which is markedly lower than the standard
deviation of the noise (equal to 1). Figs. 4 and 5 show chosen training results.

dMR images of the brain were reconstructed from k-space as in [6], which
involved the necessary correction steps: regridding and Nyquist ghosting cor-
rection, yielding complex-valued volumes from individual receiver coils. Phase
correction was performed using the trained Phase Shifter network on these im-
ages (Fig. 6). The network was run 100 times on a pair of 25-slice dMRI volumes
and processing duration was approximately 0.02 seconds on average.

Then, polynomial �tting was performed on the same dMRI volumes for com-
parison. Fitting was run 10 times on each of the volumes. The average run time
was approximately 1.55 seconds. Phase distribution after polynomial correction
was more similar to the target than prior to correction, but signi�cant errors
were noticed.

These errors were quanti�ed by calculating absolute di�erences between phase-
corrected slices and slices with desired phase. Ideally, these di�erences should be
due to noise only. To decrease the in�uence of noise on this measure and high-
light the errors, phase-correction was performed using polynomial �tting and the
Phase Shifter on the set of 32 repeated b=1000 s/mm2 dMR images (a single
coil was selected), i.e. 31 volumes were phase corrected and one was selected as
reference. Then, the real and imaginary components of all 25 slices and all 32
repetitions were averaged to decrease random noise variance and preserve deter-
ministic content of the error maps (Fig. 7). Averaging these 1600 slice instances
is expected to reduce the noise standard deviation by a factor of 40, from 1 to
0.025. The mean absolute error, calculated over the error maps of Fig. 7, was
indeed higher for polynomial �tting than it was for the neural network (1.208
vs. 1.127).

3.2 Averaging phase-corrected dMR images

Phase correction was also validated by averaging over the 32 repeated scans.
Fig. 8 shows the comparison for the noisy, non-averaged image, averaging without
phase correction, averaging after polynomial �tting and after application of the
Phase Shifter. For each case, the real and imaginary components are presented as
well as the modulus. It can be seen that without phase correction, the intensity
of the modulus image greatly deviates from the actual modulus (Figs. 8g and
8c). Both phase correction methods yielded much more similar modulus values.
However, it is noticed (Fig. 8l) that polynomial �tting may be locally inaccurate,
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(a) Input, Re, rep. 1 (b) Input, Im, rep. 1 (c) Input, Re, rep. 2 (d) Input, Im, rep. 2

(e) Output, Re (f) Output, Im (g) Target, Re (h) Target, Im

(i) Error (c)-(e) (j) Error (d)-(f) (k) Error (e)-(g) (l) Error (f)-(h)

Fig. 4: Phase shifter training results � a validation example shown at input (a-d)
and after Phase Shifter correction compared to targets (e-h). (a-b) is phase-
corrected to agree in phase with (c-d). Correction error maps were obtained
between the input with target phase and the phase-corrected image (i-j) and
between the target and estimated phase-corrected images (k-l). Error maps (i-j)
are indistinguishable from noise, which suggests good phase correction. In turn
(k-l) show that errors are concentrated within the object and have low value
compared to image noise. Re � real part, Im � imaginary part

leading to artifactual intensity variations. It is also visible for both correction
methods that they reduced the noise �oor compared to the average of slice
moduli (Fig. 8d).

3.3 N2N Denoiser training and denoising of brain dMR images

The N2N Denoiser was trained on b=1000 s/mm2 dMRI data of a single patient,
processed in four di�erent ways as described below. dMRI were 160x160x25 in
size, acquired for three di�usion directions and using four receiver coils. Each
time learning was performed on non-cropped slices, which yielded 300 examples
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(a) (b) (c)

Fig. 5: Phase di�erence map target (a), neural network estimate (b) and direct
calculation from noisy input images (c). The network seems to learn to estimate
a denoised version of the input images, so that Eq. 5 yields less noisy phase
estimates (b). Still, both phase estimates exhibit phase wrapping due to the use
of arctangent

(a) Rep. 1 (b) Rep. 2 (c) Phase shifter,
rep. 1

(d) PF, rep. 1

(e) Di�erence (c)-(b) (f) Di�erence (d)-(b)

Fig. 6: Example slice from a b=1000 s/mm2 dMR image, real component. Ex-
cellent phase correction is noticed for the Phase Shifter. (e) shows that the
correction error is small compared to noise for the Phase Shifter. Errors in phase
correction are noticed for polynomial �tting (PF) where it cannot �t the true
phase distribution accurately (f).

in total, from which 60 was held out for validation. Hyperparameter settings
were MSE loss, Adam optimizer, learning rate of 0.001, mini-batch training with
batch size of 9 and shu�ing, early stopping with patience of 25 epochs, validation
loss value checking in each epoch, and minimum delta value of 1e-6.
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(a) PF,
MAE = 1.208

(b) Phase Shifter,
MAE = 1.127

Fig. 7: Mean absolute error maps obtained for the b = 1000 s/mm2 dMRI volume
by averaging 1600 images (32 repetitions x 25 slices x 2 complex components)

The N2N denoiser was trained using four kinds of training data: a) without
phase correction, b) phase correction with polynomial �tting, c) phase correction
with the Phase Shifter, d) no phase correction, moduli of the complex slices were
taken as examples.

Additional validation sets were created. They did not have any e�ect on
training and were used to study the N2N learning process with the four kinds
of training data. One of them comprised 60 slices of real dMR images, with b
= 0 s/mm2. These dMR images were assumed to have identical phase variation
across repetitions. Another four validation sets were synthetic BrainWeb images
at SNR = 1, 3, 5 and 7. Validation MSE loss was computed two-fold on these:
Noise to Noise loss for noisy targets and Noise to Truth loss (N2T) for clean
targets.

Training the network on non-phase-corrected data failed due to substantial
di�erences in the signal phase, which violated Noise2Noise conditions.

Fig. 9 shows the MSE loss between the network output and the noisy phase-
corrected image (N2N loss), for the two correction methods, evaluated on the
b = 0 s/mm2 dMRI. Although these images have higher SNR than b = 1000
s/mm2 data used for training, the network gradually learns to denoise them. The
�gure shows that the learning process is simpler after phase correction using the
Phase Shifter and that the loss is constantly lower than for polynomial �tting.
This di�erence in the loss values may partly result from distortions introduced
to the meaningful content of the image by the network trained on images phase-
corrected with polynomial �tting. Similar results were obtained for the synthetic
validation data at all tested SNR values, where clean images were used as refer-
ence (N2T loss, Fig. 10). The fourth network, trained on modulus images, was
evaluated by studying the denoised images.

The four versions of the N2N Denoiser were compared based on visual ex-
amination of the denoised b = 1000 s/mm2 images and in comparison to noisy
ones. A single-coil and a multicoil image was considered (Fig. 11).

Comparison shows that both phase correction methods signi�cantly improve
the SNR of the image compared to the noisy one and to the results of the
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(a) Non-averaged, Re (b) Non-averaged,
Im

(c) Non-averaged
modulus

(d) Averaged mod-
uli

(e) Averaged, Re (f) Averaged, Im (g) Modulus of av-
erages

(h) Di�erence (d)-
(g)

(i) Averaged, Re , PF (j) Averaged, Im , PF (k) Modulus of av-
erages, PF

(l) Di�erence (d)-
(k)

(m) Averaged, Re ,
Phase Shifter

(n) Averaged, Im ,
Phase Shifter

(o) Modulus of
averages, Phase
Shifter

(p) Di�erence (d)-
(o)

Fig. 8: Phase correction results (e-p) after averaging of 32 scan repetitions, com-
pared to a single repetition with desired phase (a-d). Noise �oor is reduced due
to averaging in the complex domain for both correction methods, but polynomial
�tting is not accurate, leading to modulus value variations. Re � real part, Im �
imaginary part

N2N denoiser trained on non-phase-corrected data. This is also noticed for the
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Fig. 9: Validation loss evaluated on the b = 0 s/mm2 dMRI data while training
the N2N denoiser on two kinds of data: corrected with polynomial �tting and
the Phase Shifter network

Fig. 10: Validation N2T loss evaluated on the BrainWeb data while training the
N2N denoiser on two kinds of data: corrected with polynomial �tting and the
Phase Shifter network

network trained on modulus images but Rician bias becomes visible, especially
for the multicoil image. Although the N2N Denoiser trained on data that was
phase-corrected with polynomial �tting outputs well denoised images, errors in
intensity are visible.

4 Discussion

Phase correction is a necessary step to enable complex-domain averaging of dMR
images or, as it was shown, Noise to Noise training. Among the two compared
methods, polynomial �tting is slower than neural-network-based correction. It
requires brain segmentation, because the true background phase is zero and
including the background would yield phase discontinuity that is hard to �t
accurately using the cubic polynomial. More advanced �tting can be performed,
for example using a higher degree polynomial, Legendre polynomials of Radial
Basis Functions, which however is even more time-consuming and may involve
additional hyperparameters.

The proposed Phase Shifter network was trained on synthetic data, in which
phase maps were approximated using polynomial �tting. Despite this, the neural
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 11: Noisy image (a, e) and images denoised using the N2N Denoiser trained
using di�erent data: with polynomial �tting phase correction (b, f), with Phase
Shifter correction (c, g) and with modulus images (d, h). A slice from a selected
receiver coil for a b = 1000 s/mm2 image is shown in the upper row and from a
multicoil b = 1000 s/mm2 image in the lower row

network was able to capture the hidden dependencies and performed better on
real data than polynomial �tting, i.e. it was not limited to phase variations that
were easily approximated using the polynomial. Fig. 5 shows that the network
learns the correct function, i.e. it predicts a denoised phase di�erence having
only noisy complex image pairs as input and a phase-corrected noisy image as
target.

Although it may seem more natural to pose the learning problem so that
the clean phase maps are the target instead of the phase-corrected noisy images,
we encountered signi�cant obstacles using this approach. Namely, the resulting
phase maps estimated by the neural network contained non-continuities even if
the true phase was continuous, which most probably resulted from phase peri-
odicity. In general, discontinuities of the true phase can also appear naturally
due to non-continuous magnetic susceptibility of the tissue, which causes �eld
inhomogeneity. The chosen approach was free of such inaccuracies for continuous
true phase and was thus selected. In the future, however, we plan to study in
more detail other Phase Shifter training options.

The Phase Shifter uses a two-step approach to estimate the phase-corrected
image, in which the �rst estimate (C̃ in Fig. 3a) is used to compute the phase
di�erence, and then this phase di�erence is used to compute the �nal estimate
(Ĉ in Fig. 3a). This solution was applied to ensure that the modulus value of

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_61

https://dx.doi.org/10.1007/978-3-031-36021-3_61
https://dx.doi.org/10.1007/978-3-031-36021-3_61


14 J. Jurek et al.

the phase-corrected image was identical to the modulus value of the image to be
phase-corrected.

We did not notice phase-correction-related signal loss of the kinde described
in [10], in the phase-corrected images obtained using polynomial �tting and the
Phase Shifter.

One of the reasons for improving the current network design is other inaccu-
racies observed from the Phase Shifter phase correction, visible in the results on
N2N denoising (Figs. 8, 11). Some background noise was observed to remain in
the denoised images, to a greater extent than for polynomial �tting. It is not sure
if these distortions are also present within the tissue regions. The probable source
is inaccurate estimation of the phase in the background by the Phase Shifter.
Although the Phase Shifter network should output zero for the background, it
may do so with errors, which may disturb the background noise distribution
and lead to noise mean value shifts from zero. In such circumstances, the neural
network may learn denoising inaccurately. Alternatively, the network may intro-
duce noise correlation between the N2N inputs and targets. This e�ect will be
more thoroughly studied in our future works. A simple solution would be to use
brain masks to exclude the background from phase-shifting, which was the case
for polynomial �tting.

Although we tested the phase correction method on b=0 and 1000 s/mm2

dMRI, it is expected to be applicable, in general, to any b-value or di�usion
encoding direction. The limit is probably imposed by decreasing SNR associated
with increasing the b-value. Identifying this limit, however, will be the subject
of our future studies.

In the future, we also plan to quantify the reduction of bias in the averaged
phase-corrected dMRI and the impact of phase correction on image-derived dif-
fusion parameters.

To conclude, neural network phase correction in dMR images is a fast and
accurate alternative for polynomial �tting. Training can be performed on sim-
ulated images. It enables Noise to Noise denoising in complex dMRI data as
well as complex-domain averaging of repeated scans for noise reduction. Future
studies are required to study the identi�ed pitfalls and test the phase correction
method in more real-life dMRI scenarios.
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