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Abstract. Anomalies of gait sequences are detected on the basis of
an autoencoder strategy in which input data are reconstructed from
their embeddings. The denoising dense low-dimensional and sparse high-
dimensional autoencoders are applied for segments of time series repre-
senting 3D rotations of the skeletal body parts. The outliers – misre-
constructed time segments – are determined and classified as abnormal
gait fragments. In the validation stage, motion capture data registered
in the virtual reality of the Human Dynamics and Multimodal Interac-
tion Laboratory of the Polish-Japanese Academy of Information Tech-
nology equipped with Motek CAREN Extended hardware and software
are used. The scenarios with audio and visual stimuli are prepared to
enforce anomalies during a walk. The acquired data are labeled by a hu-
man, which results in the visible and invisible anomalies extracted. The
neural network representing the autoencoder is trained using anomaly-
free data and validated by the complete ones. AP (Average Precision)
and ROC-AUC (Receiver Operating Characteristic – Area Under Curve)
measures are calculated to assess detection performance. The influences
of the number of neurons of the hidden layer, the length of the analyzed
time segments and the variance of injected Gaussian noise are investi-
gated. The obtained results, with AP = 0.46 and ROC-AUC = 0.71, are
promising.

Keywords: anomaly detection, motion capture, gait analysis, autoen-
coder, CAREN Extended, neural networks

1 Introduction

The motion capture acquisition gives precise measurements of human move-
ments. The attached markers on the anatomically significant body points are
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tracked by the calibrated multicamera system. Thus, their 3D positions in the
global system for the subsequent time instants are reconstructed. As a result, the
relative orientations between adjacent skeletal segments can be established. They
are represented by a 3D rotation of joints connecting segments. Motion capture
data have a form of multivariate time series of successive poses described by
Euler angles or unit quaternions. There are plenty of applications for motion
capture registration. Among others, it was successfully used in the diagnosis of
movements abnormalities related to selected diseases [16], human gait identifica-
tion [23], kinematic analysis of body movements performed by sport athlets [6],
daily activities classification [2] or assessments of personal nonverbal interactions
[5].

Anomalies can be defined as data instances that significantly deviate from
the majority of them [18] or patterns that do not conform to expected typi-
cal behavior [8]. Their detection is a semi-supervised classification problem. It
means that the training set contains only normal data. There are no anomaly
instances; their nature is unknown. The problem is similar to the determination
of outliers (this term is further used interchangeably with anomaly), the values
which are very different from all the others. Anomaly detection is broadly con-
ducted for numerous types of data. It was applied in the detection of host-based
and network-based intrusion, banking systems and mobile phone frauds, mon-
itoring of medical and public health, unmasking industrial damages as well as
text and sensor data [18].

Although the problem of anomaly detection is extensively studied, there are
no publications strictly devoted to gait data and highly precise motion capture
measurements, which is the subject of the paper. Two variants of autoencoder
strategy – denoising dense low-dimensional and sparse high-dimensional – are
selected, adapted and successfully validated in human gait anomaly detection.
Moreover, the contribution of the paper is related to the innovative collected
dataset, with the registration taking place in the virtual reality of the Motek
CAREN Extended laboratory.

2 Related work

According to [7], multivariate time sequence anomalies can be categorized as
point, subsequence or time series ones. It means that a single time instant –
point, the consecutive points in time – subsequence, or entire time series con-
structed by subset of its variables, that behaves unusually when compared to the
other values either locally or globally are detected. The model-based approaches
are most commonly used to accomplish the task. They rely on the determina-
tion of the expected value and its comparison to the actual one. Depending on
the difference, the anomaly is identified or not. There are two major variants –
estimation and prediction. In the first one, the expected value is computed on
the basis of previous and current time instants, while in the second variant, only
previous values are taken. The most simple models are based on baseline statis-
tics such as the median [3], local means and standard deviations [9]. Other ones
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try to estimate the unlikeness of values, assuming, for instance, that data with-
out outliers have mixed normal distribution [21]. Alternative proposals which
analyze the trends of local changes are slope-based. In [22], constraints are es-
tablished as a maximum and a minimum possible difference between consecutive
points and in [24] there is an assumption of insignificant local slope changes.

However, in the estimation approaches of the model-based category, the most
broadly applied are the autoencoders [1,10]. They are typically neural networks
that learn only the most common and significant features, which can be real-
ized by determining low-dimensional embeddings in a hidden layer or sparse
connections between neurons. Due to the training being based on anomaly-free
data, the anomalies correspond to non-representative features, which means that
their precise reconstruction fails. To take into account temporal dependencies,
overlapping sliding windows are processed as in [14].

In the prediction approaches, an auto-regressive moving average (ARMA)
model [25], convolutional neural networks (CNN) [17] or long-short memory
(LSTM) units [11] are used.

Another category of anomaly detection techniques are density-based methods
[7]. They assume that in every surrounding of analyzed time instant, there are
only a few outliers. Thus, the distances between a given time instant and the
ones in its surrounding are calculated. Further, the number of instances with
dissimilarities greater than specified threshold value is counted and decides about
the anomaly identification.

As regards the methods strictly devoted to subsequence anomalies, discord
approaches [13] are quite common. They determine the most unusual subseries
by comparing dissimilarities between every pair of subsequences. For time series
anomalies, dimensionality reduction techniques can be employed as for instance
Principal Component Analysis [12]. In other common variants clustering as k-
means algorithm [20] or agglomerative hierarchical one [15] is carried out. In [4]
additionally Dynamic Time Warping is utilized to align and compare complete
time series.

3 Method

Due to the pioneering application of anomaly detection to gait motion capture
data, the baseline and most broadly used approach is selected – the autoencoder
strategy. Its structure consists of three main components – encoder, decoder and
hidden layer. Input data are reconstructed on the basis of their representation by
the hidden layer, typically with lower dimensionality as visualized in Fig. 1. If E
and D are encoder and decoder transfer functions to and from the hidden layer,
respectively, x and x′ denote input and output, the working of the autoencoder
is described by the following formula:

x′ = D(E(x)) (1)

It is assumed that normal data are highly correlated and can be represented
by low-dimensional embeddings of the hidden layer from which efficient recon-
struction is feasible. In the training stage, anomaly-free data are used to establish
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Fig. 1. Autoencoder strategy.

the encoder and decoder workings. Finally, using selected metrics, for instance,
Euclidean one, the reconstruction error rE is computed to identify outliers:

rE = ∥x′ − x∥ (2)

However, the problem of thresholding the rE value on the basis of which
anomalies are recognized is not a trivial task. If the normal distribution of the
reconstruction error for typical data is naively assumed, the estimated average
value increased by two or three standard deviations may be taken. In another
possible variant, percentiles of the rE distribution can be used.

Two neural network architectures are chosen for the autoencoder implemen-
tation. Primarily, it is a dense low-dimensional variant visualized in Fig. 2a with
fewer neurons of the hidden layer than a number of input values. Thus, it works
in the standard previously described way – low-dimensional embeddings are de-
termined and reconstruction of the input data is carried out. The second chosen
architecture is a sparse high-dimensional network (Fig. 2b) with a greater num-
ber of neurons of the hidden layer. To avoid just a simple copy of the input to the
output, L1 regularization is applied. It penalizes for high absolute values of neu-
rons’ weights. Thus, it tries to determine inactive, sparse connections between
neurons with assigned weights close to zero.

To incorporate temporal relationships of motion time series, subsequence
anomalies are detected. It is realized by processing by the autoencoders in every
detection, fixed-length segments of motion sequences. Moreover, for greater noise
resistance, a kind of data augmentation is carried out. During the training stage,
input data are modified by a random variable taken from the zero-mean Gaussian
distribution with different standard deviations.

4 Dataset

The acquisition took place in the Human Dynamics and Multimodal Interac-
tion Laboratory of the Polish-Japanese Academy of Information Technology. It
is equipped with the Computer Assisted Rehabilitation ENvironment Extended
system (CAREN Extended) manufactured by the Motek Company. It integrates
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(a) Dense low-dimensional (b) Sparse high-dimensional

Fig. 2. The concept of the selected autoencoder architectures.

a 3D motion capture registration, dual-belt treadmill with 6 degrees of freedom
(DoF) motion base and adaptive speed in the range (0m

s , 15
m
s ), ground reac-

tion forces (GRF) and wireless electromyography (EMG) measurements, as well
as immersive virtual/augmented reality environment with panoramic video and
surround 5.1 audio subsystems. The laboratory is presented in Fig. 3. In the
perspective (a) and front (b) views, the treadmill with the registered participant
and curved screen are visible. In the bottom view (c), the construction with 6
DoF located below the motion base is shown.

(a) Perspective view (b) Front view (c) Bottom view

Fig. 3. Human Dynamics and Multimodal Interaction Laboratory of the Polish-
Japanese Academy of Information Technology.

The motion capture camera setup and applied skeleton model are visualized
in Fig. 4. However, in the experiments, only segments followed by hip, knee, an-
kle, and wrist joints are taken into account. They are described by angles triplets
expressed in the notation representing flexion/extension, adduction/abduction,
and internal/external rotations in sagittal (lateral), frontal (coronal), and trans-
verse planes. It means that body is divided into left/right, anterior/posterior
(front/back), and superior/inferior (upper/lower) parts, respectively. There is
only one exception – knee joints with single DoF have only a flexion angle.
Thus, in total, the pose space is 20-dimensional.
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Fig. 4. Mocap camera setup and skeleton model.

To observe gait anomalies, three registration scenarios are proposed. They
are located in the virtual reality of a forest, as visualized in Fig. 5. The first one
is normal walking without any perturbations and provides anomaly-free data
used in the training stage. The second one is related to video stimuli appearing
in random time instants. There is a deer crossing the walking path, a simulation
of the temporary darkness – the screen is off for one second – and a simulation
of dizziness by floating visualization on the screen. In the last scenario, audio
disturbances are included. The sounds of the horn, gunshot, and animal roar are
generated.

Twelve participants were involved in the registration experiment. Every sce-
nario was repeated three times, the duration of the recordings was approximately
one minute, and the frequency of the acquisition was 100Hz. Time instants of
the stimuli are exported, and they denote possible anomaly occurrences. Finally,
on the basis of video recordings, manual labeling of the data was carried out to
identify ultimate anomalies detected in the testing stage.

Fig. 5. Prepared virtual forest.
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5 Results

For labeled recordings of the scenarios with video and audio stimuli, anomaly
detection is carried out by autoencoders trained using the data of the first sce-
nario. On the basis of comparison with ground truth detections, true (TP) and
false positives (FP) – numbers of properly and improperly recognized anoma-
lies – as well as true (TN) and false (FN) negatives – the numbers of correctly
determined normal instances and unidentified anomalies – are calculated. They
are normalized through dividing by the total number of positives and negatives,
respectively:

TPR =
TP

TP + FN
(3)

FPR =
FP

FP + TN
(4)

The balance between TPR and FPR is controlled by applying a threshold
for the reconstruction error from equation (2). Thus, the curve called Receiver
Operating Characteristic (ROC) representing the relationship between TPR and
FPR values can be prepared. The area under this curve (ROC-AUC) is a measure
of the detection performance.

However, in the faced anomaly identification challenge, the number of true
negatives usually is much greater than true positives, which may have an influ-
ence on the ROC-AUC value. Therefore another measure is used in our eval-
uation protocol. It is based on precision and recall, which are true positives
normalized by the total number of all positive identifications and all ground
truth anomalies, respectively:

precision =
TP

TP + FP
(5)

The recall is literally a true positive rate TPR. Once again, the balance be-
tween precision and recall is controlled by the threshold of the reconstruction
error. It allows for determining precision for uniformly distributed recall val-
ues and calculating the average of them. This is, in fact, the area under the
precision-recall curve and it is called average precision (AP). Moreover, to ob-
tain a monotonic dependency, smoothing is carried out in such a way that every
precision value is substituted by the maximum calculated for recalls equal to or
greater than the current one.

The obtained results for dense low-dimensional and sparse high-dimensional
autoencoders are depicted in Table 1 and Table 2, respectively. The lengths of
the processed segments SL expressed by a number of time instants are 50 and
100. It means that half- and one-second subsequences are analyzed, which ap-
proximately correspond to half of and complete gait cycle with a single and
double step performed. The number of inputs and outputs of the neural network
is a product of SL and the dimensionality of pose space, which is 20. The angles
are stored in degree scale, which means that injected Gaussian noises with stan-
dard deviations – 0.05, 0.1, 0.3, 0.5, 0.7 – are insignificant. The achieved AP and
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ROC-AUC values for the vast majority of cases are higher than 0.4 and 0.65,
respectively. The best performance with AP = 0.462 and ROC-AUC = 0.708
is obtained by sparse autoencoder analyzing the one-second subsequences and
having 3000 neurons of the hidden layer. For the considered variants, some gen-
eral observations can be made: (i) slightly better precision of anomaly detection
is achieved by high-dimensional sparse autoencoders and longer subsequences
containing 100-time instants, (ii) there is an impact of injected noise on the ef-
fectiveness of the training process, but it differs depending on the autoencoder
variant, (iii) both taken quality measures – AP and ROC-AUC – are partially
correlated.

Table 1. Detection performances – AP and ROC-AUC (denoted as R-AUC) measures
– of dense low-dimensional autoencoder with different standard deviations of injected
Gaussian noise, number of neurons of the hidden layer D and length of the processed
segments SL.

Noise 0.05 0.1 0.3 0.5 0.7
D SL AP R-AUC AP R-AUC AP R-AUC AP R-AUC AP R-AUC
25 50 0.394 0.660 0.405 0.667 0.390 0.654 0.373 0.649 0.343 0.621
50 50 0.408 0.667 0.406 0.667 0.402 0.668 0.382 0.651 0.371 0.646
100 50 0.405 0.677 0.424 0.679 0.405 0.678 0.403 0.666 0.393 0.662
200 50 0.436 0.683 0.428 0.679 0.415 0.672 0.402 0.670 0.393 0.658
400 50 0.423 0.672 0.434 0.682 0.441 0.693 0.430 0.683 0.408 0.675
50 100 0.414 0.677 0.412 0.672 0.416 0.674 0.389 0.678 0.380 0.634
100 100 0.419 0.678 0.436 0.694 0.423 0.679 0.398 0.662 0.393 0.650
200 100 0.430 0.683 0.432 0.693 0.424 0.680 0.430 0.686 0.384 0.646
400 100 0.438 0.688 0.428 0.681 0.442 0.694 0.439 0.686 0.410 0.672

Table 2. Detection performances – AP and ROC-AUC (denoted as R-AUC) measures
– of sparse high-dimensional autoencoder with different standard deviations of injected
Gaussian noise, number of neurons of the hidden layer D and length of the processed
segments SL.

Noise 0.05 0.1 0.3 0.5 0.7
D SL AP R-AUC AP R-AUC AP R-AUC AP R-AUC AP R-AUC

1500 50 0.448 0.703 0.433 0.683 0.443 0.703 0.446 0.697 0.352 0.619
3000 100 0.462 0.708 0.461 0.704 0.417 0.673 0.445 0.700 0.432 0.699
5000 100 0.458 0.706 0.426 0.684 0.412 0.670 0.445 0.692 0.393 0.650
1250 50 0.423 0.670 0.447 0.691 0.413 0.675 0.344 0.617 0.327 0.592
2500 50 0.446 0.690 0.447 0.694 0.439 0.682 0.448 0.703 0.415 0.670
3500 50 0.455 0.691 0.445 0.692 0.434 0.687 0.439 0.700 0.437 0.688

The obtained results are at least promising and substantially better than
random detection. They differ for successive participants as presented in Table 3
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Table 3. Best results – AP and ROC-AUC – obtained by the successive participants
for sparse high-dimensional autoencoder (D = 3000, SL = 100).

Participant AP ROC-AUC Percent of anomalies
1 0.578 0.833 0.082
2 0.541 0.750 0.167
3 0.227 0.695 0.109
4 0.636 0.761 0.204
5 0.396 0.619 0.201
6 0.377 0.646 0.113
7 0.223 0.615 0.113
8 0.454 0.690 0.135
9 0.305 0.709 0.113
10 0.848 0.828 0.383
11 0.739 0.816 0.257
12 0.216 0.531 0.187

– for some of them, anomalies are recognized pretty efficiently and for others,
poorly. The balance between TPR and FPR as well as between precision and
recall can be controlled by applying different threshold values for the recon-
struction error. The example relationships for the best sparse autoencoder and
successive participants are visualized in Fig. 6 and Fig. 7.

6 Summary and conclusions

The denoising dense low-dimensional and sparse high-dimensional autoencoders
are applied in the anomaly detection of gait motion capture data. Due to the
low number of samples of the training set, architectures containing only a single
hidden layer are investigated. Obtained preliminary results with AP = 0.462 and
ROC-AUC = 0.708 measures are certainly promising and prove that process of
efficient gait anomaly identification is feasible.

The faced problem of abnormality detection of motion capture data is pretty
challenging. The mocap sequences are described by highly multivariate time se-
ries, their anomalies may occur quite differently and depend on individual incli-
nations. What is more, the pose parameters are correlated and gait is performed
in a chaotic way [19].

There are numerous possible improvements to investigate in future research.
More exhaustive experiments related to neural network architectures and train-
ing parameters can be conducted. Moreover, instead of the angles representing
segments’ orientation in sagittal, frontal and transverse planes, Euler angles with
the joint rotation or 3D position of the markers attached to the human body may
be taken. The feature selection in the pose space or downsampling in the time
domain reduces the number of trainable parameters of the autoencoder, which
also may be advantageous. Ultimately, there are plenty of other techniques suc-
cessfully applied for anomaly detection of similar data. Particularly approaches
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Fig. 6. Receiver Operating Characteristic (ROC) curves (sparse high dimensional au-
toencoder: D = 3000, SL = 100, noise std = 0.05) for subsequent participants. The
blue and red colors correspond to the autoencoder and random guess classifier results,
respectively.

predicting actual state on the basis of preceding time instants and LSTM net-
works [11] seem to be reasonable. In addition, it is planned to enlarge the dataset
not only with measurements of new participants but also with extra scenarios.
The effect of the stimuli will be intensified by their simultaneous occurrence, and
new stimuli will be used.

Ethics statement

During the acquisition process, a non-invasive Vicon motion capture system was
used. The measurements took place in the Human Dynamics and Multimodal In-
teraction Laboratory of the Polish-Japanese Academy of Information Technology
and were assisted by the certified staff. The registration protocol contains nor-
mal gait and it is consistent with the Declaration of Helsinki. All the volunteers
participating in the experiments were informed about the rules of acquisition
and agreed to use their collected data for research purposes.
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Fig. 7. Precision-recall curves (sparse high dimensional autoencoder: D = 3000, SL =
100, noise std = 0.05) for subsequent participants.
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