
Parallel algorithm for concurrent integration of
three-dimensional B-spline functions

Anna Szyszka1[0000−0002−3179−7863] and Maciej Woźniak1[0000−0002−5576−5671]

AGH University of Science and Technology, Kraków, Poland
macwozni@agh.edu.pl

Abstract. In this paper, we discuss the concurrent integration applied
to the 3D isogeometric finite element method. It has been proven that in-
tegration over individual elements with Gaussian quadrature is indepen-
dent of each other, and a concurrent algorithm for integrating a single el-
ement has been created. The suboptimal integration algorithm over each
element is developed as a sequence of basic atomic computational tasks,
and the dependency relation between them is identified. We show how
to prepare independent sets of tasks that can be automatically executed
concurrently on a GPU card. This is done with the help of Diekert’s
graph, which expresses the dependency between tasks. The execution
time of the concurrent GPU integration is compared with the sequential
integration executed on CPU.

Keywords: Trace Theory · Concurrency · Isogeometric Finite Element
Method · Numerical Integration

1 Introduction

The isogeometric analysis (IGA-FEM) [7,8] is a modern technique for the integra-
tion of geometrical modeling of CAD systems with engineering computations of
CAE systems. The IGA-FEM has multiple applications from phase field model-
ing [10],shear deformable shell theory [3], wind turbine aerodynamics [21], phase
separation simulations [16], in compressible hyperelasticity [12], to turbulent flow
simulations [6] and biomechanics [20,5]. IGA-FEM computations consist of two
phases: (1) generation of the system of linear equations and (2) execution of an
external solver algorithm of the global system of linear equations. The generated
system of linear equations for elliptic problems is solved with multifrontal direct
solvers [13,14] such as MUMPS [2], SuperLU [22] or PaStiX [18], or iterative
solvers. It is possible to obtain linear computational cost for two-dimensional
h-refined grids with point or edge singularities [1,15,17].

This work is a summary of [26,24] dealing with concurrent integration. We
have parallelized the integration routines of the three-dimensional IGA code.
This is done by localizing basic undividable tasks and finding sets of tasks that
can be executed concurrently [11]. We concentrate on B-spline basis functions
employed in a 3D isogeometric finite element method L2-projection problem. The
presented analysis can be applied to any elliptic problem in 3D with analogous
results.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_57

https://dx.doi.org/10.1007/978-3-031-36021-3_57
https://dx.doi.org/10.1007/978-3-031-36021-3_57


2 A. Szyszka, M. Woźniak

2 Integration algorithm

2.1 Formulation of the model problem

The goal of this study is to evaluate the cost of using different integration meth-
ods to build IGA matrices. To illustrate this, we will use the heat equation
discretized in time using the forward Euler method and focus specifically on
the cost of assembling the Mass matrix. Find u ∈ C1

(
(0, T ) , H1 (Ω)

)
such that

u = u0 at t = 0 and, for each t ∈ (0, T ), it holds:∫
Ω

∂u

∂t
v dx = −

∫
Ω

∇u · ∇v dx, ∀ v ∈ H1 (Ω) . (1)

For simplicity, we consider a discrete-in-time version of the problem employing
the forward Euler method.∫

Ω

un+1v dx =

∫
Ω

unv dx−∆t

∫
Ω

∇un · ∇v dx, ∀ v ∈ H1 (Ω) . (2)

Then, the matrix element is computed as:

Aα
β,δ =

P1∑
n1=1

P2∑
n2=1

P3∑
n3=1

ωn1ωn2ωn3 Π(xn) J(xn), (3)

This study focuses on using 3D tensor B-spline basis functions with uniform
polynomial degree order and regularity on the interior faces of the mesh for ease
of demonstration. However, it should be noted that the techniques presented
can be easily adapted to other types of basis functions. For the construction of
B-spline basis functions, we used Cox-de-Boor recursive formulae [4].

2.2 Algorithms and computational cost

We compared two algorithms, the classical integration algorithm and the sum
factorization algorithm. In the classical integration algorithm, the local contribu-
tions to the matrix on the left side A are represented as the sum of the quadrature
points. For the classical integration algorithm, the associated computational cost
scales, concerning the polynomial degree p as O(p9) [19].

After a relatively simple observation, we can reorganize the integration terms
of Equation (3). In practice, Equation (3) is written as:

Aα
β,δ =

P3∑
n3=1

ωn
3 Bj(x

n
3 )Bm; p(x

n
3 )C(i2, i3, j2, j3, k1), (4)

where buffer C is given by

C(i2, i3, j2, j3, k1) =

P2∑
n2=1

ωn
2 Bi(x

n
2 )Bl; p(x

n
2 )

P1∑
n1=1

ωn
1 Bh(x

n
1 )Bk; p(x

n
1 ) J(x

n)︸ ︷︷ ︸
D(i3,j3,k1,k2)

.

(5)

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_57

https://dx.doi.org/10.1007/978-3-031-36021-3_57
https://dx.doi.org/10.1007/978-3-031-36021-3_57


Parallel integration of 3D B-spline functions on shared memory machines 3

With the practical implementation, we end up with three distinct groups of loops
and several buffers. As a consequence, the computational cost associated with
sum factorization decreases to O(p7) [19].

2.3 Concurrency model for integration

For both algorithms, we used the identical methodology described in [24]. We
introduced four basic types of computational tasks.

– Computational tasks that evaluate the 1D basis function on the element Eα

at the coordinate of the quadrature point.
– Computational tasks to evaluate the 3D basis function on the element Eα

at the coordinate of the quadrature point.
– Computational tasks that evaluate the value of the product of two basis

functions (from the test and trial space) on the element Eα at the quadrature
point.

– Computational task that evaluates the value of the integral of the scalar
product of two base functions (from the test and trial space) on the element
Eα.

Next, we define an alphabet of tasks Σ and a set of dependencies between them
D.

We also applied methodology to the sum factorization algorithm to obtain
optimal scheduling and theoretical verification from the trace theory method.
Next, we did a series of numerical experiments to measure parallel performance.

All the tasks mentioned in each layer of the Foata Normal Form are meant
to be performed on a homogeneous architecture. All tasks within the particular
Foata class should take nearly identical amounts of time, and can be effectively
scheduled as a common bag. The method should be very useful with practical
implementation for large clusters, such as modern supercomputers [9,25,23] with
multiple GPUs per computational node.

2.4 Results

algorithm tserial tOpenMP tGPU

classical 11752.54 1125.72 (12 cores) 5.87
sum factorization 394.28 112.65 (4 cores) 10.78

Table 1:

We observed an unexpected performance behavior of the parallel sum factor-
ization. Despite utilizing parallel loops across all elements, it was scaling only
up to 4 cores. Beyond 4 cores, there was a plateau in speedup, indicating poor

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_57

https://dx.doi.org/10.1007/978-3-031-36021-3_57
https://dx.doi.org/10.1007/978-3-031-36021-3_57


4 A. Szyszka, M. Woźniak

Fig. 1: Part of reduced dependency graph for calculating the frontal matrix using
linear basis functions. To maintain the transparency of the chart, the most of
relationships are marked with a fill.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_57

https://dx.doi.org/10.1007/978-3-031-36021-3_57
https://dx.doi.org/10.1007/978-3-031-36021-3_57


Parallel integration of 3D B-spline functions on shared memory machines 5

performance in a multicore environment. Note that sum factorization requires
significantly more memory synchronization compared to the classical method.

We evaluated the performance of classical integration and sum factorization
in various scenarios. We focus on p = 9 polynomial order basis functions as it
was expected to be the most advantageous scenario for sum factorization. We
examined three scenarios for a mesh size of : 1) single-core CPU execution, 2)
shared-memory CPU computation, and 3) GPU execution. The classical integra-
tion on a single core took 11752.54 seconds, the 12-core OpenMP implementation
took 1125.72 seconds, and estimated GPU implementation was expected to take
5.87 seconds. For sum factorization integration, single-core execution took 394.28
seconds, 4-core OpenMP implementation took 112.65 seconds, and the estimated
GPU implementation was expected to take 10.78 seconds.

The performance of a single core shows that the classical algorithm scales
as O(p9), while sum factorization as O(p7). However, sum factorization does
not take advantage of concurrent implementations because of its nature of deep
data dependencies. Even in the Figures presented in [26,24] we can observe a
single reduction for the classical algorithm, and three such reductions for the
sum factorization. In practical implementations, reduction costs O(log n), where
n is the number of threads / machines / cores from which we reduce. In the case
of integration, n would mean the number of quadrature points.

Computations were performed on a Banach Linux workstation equipped with
an AMD Ryzen 9 3900X processor, 64GB RAM, a GeForce RTX 2080 SUPER
graphic card equipped with 8 gigabytes of memory, and 3072 CUDA cores. The
code was compiled with nvcc and gcc, for GPU and CPU, respectively, and -O2
level of optimization.

3 Conclusions

Our approach validates the scheduling for the integration algorithm by utilizing
trace theory. We compared the execution of the integration algorithm on a CPU,
and a GPU. We can extrapolate its scalability for various elliptic problems.
Furthermore, the trace-theory based analysis of concurrency in the integration
algorithm can be adapted to different integration methods. The methodology is
versatile and can be expanded to include higher-dimensional spaces.

Acknowledgement

The work of Maciej Woźniak was partially financed by the AGH University of
Science and Technology Statutory Fund.

References

1. AbouEisha, H., Moshkov, M., Calo, V., Paszyński, M., Goik, D., Jopek, K.: Dy-
namic programming algorithm for generation of optimal elimination trees for multi-
frontal direct solver over h-refined grids. Procedia Computer Science 29, 947–959
(2014)

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_57

https://dx.doi.org/10.1007/978-3-031-36021-3_57
https://dx.doi.org/10.1007/978-3-031-36021-3_57


6 A. Szyszka, M. Woźniak

2. Amestoy, P.R., Duff, I.S., L’Excellent, J.Y.: Multifrontal parallel distributed sym-
metric and unsymmetric solvers. Computer Methods in Applied Mechanics and
Engineering 184, 501–520 (2000)

3. Benson, D.J., Bazilevs, Y., Hsu, M.C., Hughes, T.J.R.: A large deformation,
rotation-free, isogeometric shell. Computer Methods in Applied Mechanics and
Engineering 200, 1367–1378 (2011)

4. de Boor, C.: Subroutine package for calculating with b-splines. SIAM Journal on
Numerical Analysis 14(3), 441–472 (1971)

5. Calo, V.M., Brasher, N.F., Bazilevs, Y., Hughes, T.J.R.: Multiphysics model for
blood flow and drug transport with application to patient-specific coronary artery
flow. Computational Mechanics 43, 161–177 (2008)

6. Chang, K., Hughes, T.J.R., Calo, V.M.: Isogeometric variational multiscale large-
eddy simulation of fully-developed turbulent flow over a wavy wall. Computers &
Fluids 68, 94–104 (2012)

7. Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis: Toward Inte-
gration of CAD and FEA. John Wiley & Sons, Ltd. (2009)

8. Cottrell, J.A., Hughes, T.J.R., Bazilevs, Y.: Isogeometric Analysis: Toward Inte-
gration of CAD and FEA. John Wiley & Sons, Ltd. (August 2009)

9. Cyfronet, https://kdm.cyfronet.pl/portal/Main page: Cyfronet KDM

10. Dedè, L., Borden, M.J., Hughes, T.J.R.: Isogeometric analysis for topology opti-
mization with a phase field model. Archives of Computational Methods in Engi-
neering 19, 427–465 (2012)

11. Diekert, V., Rozenberg, G.: The Book of Traces. World Scientific (1995)

12. Duddu, R., Lavier, L.L., Hughes, T.J.R., Calo, V.M.: A finite strain eulerian formu-
lation for compressible and nearly incompressible hyperelasticity using high-order
b-spline finite elements. International Journal for Numerical Methods in Engineer-
ing 89, 762–785 (2012)

13. Duff, I.S., Reid, J.K.: The multifrontal solution of indefinite sparse symmetric
linear. ACM Transactions on Mathematical Software 9, 302–325 (1983)

14. Duff, I.S., Reid, J.K.: The multifrontal solution of unsymmetric sets of linear equa-
tions. SIAM Journal on Scientific and Statistical Computing 5, 633–641 (1984)

15. Goik, D., Jopek, K., Paszyński, M., Lenharth, A., Nguyen, D., Pingali, K.: Graph
grammar based multi-thread multi-frontal direct solver with galois scheduler. Pro-
cedia Computer Science 29, 960–969 (2014)

16. Gomez, H., Hughes, T.J.R., Nogueira, X., Calo, V.M.: Isogeometric analysis of
the isothermal navier-stokes-korteweg equations. Computer Methods in Applied
Mechanics and Engineering 199, 1828–1840 (2010)

17. Gurgul, P.: A linear complexity direct solver for h-adaptive grids with point sin-
gularities. Procedia Computer Science 29, 1090–1099 (2014)

18. Hénon, P., Ramet, P., Roman, J.: Pastix: A high-performance parallel direct solver
for sparse symmetric definite systems. Parallel Computing 28, 301–321 (2002)

19. Hiemstra, R.R., Sangalli, G., Tani, M., Calabrò, F., Hughes, T.J.: Fast formation
and assembly of finite element matrices with application to isogeometric linear
elasticity. Computer Methods in Applied Mechanics and Engineering 355, 234–
260 (2019). https://doi.org/https://doi.org/10.1016/j.cma.2019.06.020

20. Hossain, S.S., Hossainy, S.F.A., Bazilevs, Y., Calo, V.M., Hughes, T.J.R.: Math-
ematical modeling of coupled drug and drug-encapsulated nanoparticle transport
in patient-specific coronary artery walls. Computational Mechanics 49, 213–242
(2012)

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_57

https://doi.org/https://doi.org/10.1016/j.cma.2019.06.020
https://dx.doi.org/10.1007/978-3-031-36021-3_57
https://dx.doi.org/10.1007/978-3-031-36021-3_57


Parallel integration of 3D B-spline functions on shared memory machines 7

21. Hsu, M.C., Akkerman, I., Bazilevs, Y.: High-performance computing of wind tur-
bine aerodynamics using isogeometric analysis. Computers & Fluids 49, 93–100
(2011)

22. Li, X.S.: An overview of superlu: Algorithms, implementation, and user interface.
TOMS Transactions on Mathematical Software 31, 302–325 (2005)

23. ORNL, https://www.olcf.ornl.gov/summit/: Summit, Oak Ridge National Labo-
ratory

24. Szyszka, A., Woźniak, M., Schaefer, R.: Concurrent algorithm for integrating three-
dimensional b-spline functions into machines with shared memory such as gpu.
Computer Methods in Applied Mechanics and Engineering 398, 115201 (2022).
https://doi.org/https://doi.org/10.1016/j.cma.2022.115201

25. TACC, https://portal.tacc.utexas.edu/user-guides/stampede2: Stampede2 User
Guide

26. Woźniak, M., Szyszka, A., Rojas, S.: A study of efficient concurrent integration
methods of b-spline basis functions in iga-fem. Journal of Computational Science
64, 101857 (2022). https://doi.org/https://doi.org/10.1016/j.jocs.2022.101857

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_57

https://doi.org/https://doi.org/10.1016/j.cma.2022.115201
https://doi.org/https://doi.org/10.1016/j.jocs.2022.101857
https://dx.doi.org/10.1007/978-3-031-36021-3_57
https://dx.doi.org/10.1007/978-3-031-36021-3_57

