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Abstract. This paper discusses the use of optimal control for improving the per-
formance of industrial processes. Industry 4.0 technologies play a crucial role in
this approach by providing real-time data from physical devices. Additionally,
simulations and virtual sensors allow for proactive control of the process by pre-
dicting potential issues and taking measures to prevent them. The paper proposes
a new methodology for proactive control based on machine learning techniques
that combines physical and virtual sensor data obtained from a simulation model.
A deep temporal clustering algorithm is used to identify the process stage, and
a control scheme directly dependent on this stage is used to determine the ap-
propriate control actions to be taken. The control scheme is created by an expert
human, based on the best industrial practices, making the whole process fully
interpretable. The performance of the developed solution is demonstrated using
a case study of gas production from an underground reservoir. The results show
that the proposed algorithm can provide proactive control, reducing downtime,
increasing process reliability, and improving performance.

Keywords: machine learning · artificial intelligence · simulations · optimal con-
trol

1 Introduction

Proper process control is crucial to avoid mistakes and downtime that are costly in the
case of real-world processes. Optimal control is a key approach that can help industrial
processes achieve their maximum potential and improve their overall performance. It
involves designing a control algorithm that adjusts the inputs to the process in real-
time to achieve the desired output while satisfying certain constraints. Optimal control
aims to identify control actions that maximize the desired objective function. The use of
Industry 4.0 technologies [1], which offer real-time access to numerous parameters of
the process and low-level operational status of the physical devices, can greatly enhance
optimal control. Such information can be used to optimize the process in ways that
were not possible before. Moreover, simulations play a critical role in the operation of
complex industrial processes. They can be used to develop and test control algorithms
before implementation helping engineers and operators to make informed decisions,
optimize the performance of the process, improve efficiency, and ensure safety [20].
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In addition to Industry 4.0, simulations can give the possibility to make use of virtual
sensors. Virtual sensors provide estimates of process variables that are important for
process control but cannot be directly measured by a physical sensor. Virtual sensors
based on simulation models enable engineers to estimate process variables that would
otherwise be difficult or impossible to measure, and allow for real-time monitoring and
control of these variables [4]. The use of virtual sensors based on simulation models
provides proactive control of the process, allowing engineers to predict potential issues
and take measures to prevent them before they occur, reducing downtime and increasing
the reliability of the process [6]. This is different from reactive process control which
responds to problems after they have occurred.

Using simulation models vast amounts of synthetic data from industrial processes
can be generated, including those that can be measured physically as well as virtual
measurements. Machine learning (ML) techniques can be used to analyze this data and
develop predictive models that enable proactive control and optimization of the process
[17]. One approach is to use simulation models to generate training data for supervised
learning algorithms that can predict process behavior and identify optimal control pa-
rameters. Unsupervised learning techniques can also be used to identify hidden patterns
in the data and provide insights into process behavior [3]. Another approach is to use
simulation models to create a digital twin of the process, which can be used to optimize
control policies using reinforcement learning algorithms [12]. Overall, the combination
of simulations with ML provides a powerful tool for process optimization and control.
By leveraging the insights gained from simulation data analysis with ML engineers can
make data-driven decisions that improve process performance.

1.1 Paper contribution

In this paper, we propose a new method for proactive control of industrial processes
based on ML techniques. The idea is to combine both physical and virtual sensor data
obtained from a simulation model through an ML algorithm to identify the current stage
of the industrial process, which is then used to proactively determine appropriate control
actions. The proposed approach can be applied to a single asset/process or to multiple
assets if the simulation model includes a fleet of them. In this paper, we applied a deep
temporal clustering algorithm that employs an autoencoder for temporal dimensionality
reduction and a temporal clustering layer for cluster assignment, to combine simulation
data and identify the process stage. The appropriate control actions to be taken are then
determined according to the current process stage. Although stage identification is fully
unsupervised, decision control is defined by a human expert, making the process more
transparent and interpretable. This cooperative rather than substitutive role of AI in
industrial applications follows the Industry 5.0 paradigm, which places more emphasis
on human-AI collaboration rather than black-box automation [18].

1.2 Paper outline

The rest of the paper is organized as follows: In Section 2 we describe papers that cover
ML approaches for determining industrial process control and we introduce our moti-
vations. In Section 3 we introduce our methodology for establishing proactive process
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control using ML methods. Next, we apply the developed method to define proactive
control of wells on the gas reservoir which is shown in Section 4. In Section 5 we ex-
plore the possible applications of the proposed approach and discuss its potential and
limitations. Finally, we summarise our work in Section 6.

2 Related works and motivation

In industrial practice, numerous sensors are installed at various locations to collect pro-
cess data. If physical measurements are combined with synthetic data generated by
virtual sensors from simulation models of the process the process’s historical databases
are massive. While there has been an increase in the availability of sensors, the raw data
collected from these sensors will eventually become useless without proper data anal-
ysis, information extraction, and knowledge exploitation techniques. Data from indus-
trial processes can be analyzed with machine learning techniques to develop predictive
models for process control and optimization. In this section, we provide an overview of
process control approaches that utilize machine learning methods.

In [7] the Authors discuss the importance of soft sensors, called virtual sensors,
in the modern industry as an alternative to physical sensors. The development of soft
sensors has been facilitated by achievements in data science, computing, communica-
tion technologies, statistical tools, and machine learning techniques. The article also
discusses the significance of soft sensing in improving production safety and product
quality management from the perspectives of system monitoring, control, and optimiza-
tion.

In [5] the Authors discuss the challenges of interpreting large volumes of data col-
lected from smart factories, which often contain information from numerous sensors
and control equipment. Principal component analysis (PCA) is a common method for
summarizing data, but it can be difficult to interpret in the context of fault detection
and diagnosis studies. Sparse principal component analysis (SPCA) is a newer tech-
nique that can produce PCs with sparse loadings, and the article introduces a method
for selecting the number of non-zero loadings in each PC using SPCA. This approach
improves the interpretability of PCs while minimizing information loss.

The paper [13] begins by introducing the recent advancements in machine learning
and artificial intelligence, which have been driven by advances in statistical learning
theory and big data companies’ commercial successes. They provide three attributes
for process data analytics to make machine learning techniques applicable in process
industries. The paper discusses the currently active topics in machine learning that could
be opportunities for process data analytics research and development.

The article [15] discusses the most commonly used machine learning techniques in
the context of production planning and control. The authors grouped the ML techniques
into families to facilitate the analysis of results, and neural networks, Q-Learning, and
decision trees were found to be the most frequently used techniques. The high usage of
clustering techniques is likely due to the nature of data in manufacturing systems. The
study also observed a strong growth in the use of neural networks since 2015, possibly
due to the development of specialized frameworks and growing computing power. The
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results also suggest a growing interest in ensemble learning techniques, possibly at the
expense of decision trees since random forests can achieve better performance.

In [21] the Authors perform a diagnosis that uses supervised learning models to de-
tect quality anomalies caused by abnormal process variations. This approach is different
from diagnosis based on unsupervised learning models which can only analyze abnor-
mal changes in process variables. The goal of supervised monitoring and diagnosis is
to detect quality anomalies before they are measured and confirmed.

The authors of [16] emphasizes that deep learning is highly effective in modelling
complex nonlinear processes, but it still faces several challenges in its application to
process control. These challenges include difficulties with interpreting the features ex-
tracted from data and their relationship to outputs, sensitivity to network hyper-parameters,
and the influence of the available training dataset’s size.

The issue of optimal process control can be generalized to a wide range of statistical
process control (SPC) approaches, such as the most commonly used in manufacturing,
Six Sigma approach [19]. In the survey paper [14] the authors provide a comprehensive
review of machine learning approaches in SPC tasks. While they notice that the appli-
cations of ML in that field is growing rapidly, they also point out several challenges that
such approaches are facing nowadays. They define several requirements for Industry
4.0/5.0 technologies have to address in order to efficiently implement ML-based sys-
tem in their process control setups. One of which is the requirement of interpretability
of control charts for complex data and data fusion from multiple sources to improve the
performance of the quality control mechanism. In following section we describe how
our work fits in that requirements.

2.1 Motivation

The papers described above demonstrate the successful application of machine learn-
ing techniques in analyzing industrial process data. Prediction and interpretation are
the two essential aspects of ML applications to process data analysis, with deep neural
networks being better suited for accurate prediction and simpler models preferred for
interoperability. However, interpretability is critical for industrial adoption as it helps to
establish trust in the analytics algorithms. While deep learning is commonly applied to
sensor data, achieving a balance between model complexity and maintainability is nec-
essary to achieve a trade-off between accuracy and complexity. In our work we do not
substitute human with black-box machine learning model, but rather include the human
expert in the decision process. We approach this challenge by carefully separating tech-
nical aspect of the process control from human aspect. The technical aspect is related to
data preprocessing, reduction, and unsupervised identification of higher-level concepts
(i.e., clusters that represent different stages of the system). The human aspect is related
to actual decision making, which is done by the expert in the field. In practice, expert
knowledge was encoded in the form of simple rules and automatically executed given
the stages of the process discovered in the previous step with a deep learning-based
clustering algorithm.
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3 Methodology

This paper considers the practical limitations of typical industrial processes that enforce
control changes within a discrete-time framework. As a result, we propose dividing the
control determination process into smaller subproblems and creating a control scheme
that can establish process control within a single time step and then use it in future
steps. Furthermore, we assume that this control scheme should be generic enough to be
applicable to all components.

We propose an algorithm that analyzes process parameters, such as temperature and
pressure, not only at physical sensor locations but also at virtual sensors placed near
them in order to proactively respond to process changes. Hence, the proposed procedure
assumes the application of a process simulation model that is used to compute features
to be analyzed. Then, data from both sources are combined by time series clustering
algorithm to determine the current stage of the process, which can be unambiguously
interpreted physically. In the proposed procedure these clusters representing the process
stages are interpreted by experts based on domain knowledge and physical parameters
of the process. The control actions to be taken at each time step are dependent on the de-
termined process stage resulting in proactive process control. In the proposed approach
the control scheme’s structure is developed by engineers based on industrial practices.
It makes it easily understandable for operators and adaptable to any specific case. An
algorithm proposed in this work is presented as a block diagram in Fig. 1.

Fig. 1. Block diagram of the proposed ML-based proactive process control.

In this study, we apply deep temporal clustering (DTC) [11] method to define the
process stage. The DTC algorithm is a new method for classifying temporal data. It
uses advanced deep-learning techniques to reduce the complexity of the data and find
patterns that allow the data to be split into different classes. As presented in Fig. 2, the
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method first uses an autoencoder to reduce the dimensionality of the data, a Convolu-
tional Neural Network (CNN) to identify dominant short-term patterns, and finally a
bi-directional Long Short Time Memory neural network (BI-LSTM) to identify longer-
term temporal connections between the patterns. The clustering layer then groups the
data into classes based on the identified patterns. The neural network architecture em-
ploys leaky rectifying linear units (L-ReLUs). The unique aspect of this method is its
ability to handle complex temporal data without losing any time-related information,
resulting in high classification accuracy.

Fig. 2. The overview of the DTC algorithm [11].

The learning process in both the 1D CNN and BI-LSTM models relies on minimiz-
ing two cost functions in an interleaved manner [11]. The first cost function is based on
the mean square error (MSE) of the reconstructed input sequence obtained from the BI-
LSTM latent representation. This cost function ensures that the sequence remains well
represented after undergoing dimensionality reduction. The second cost function is de-
rived from the clustering metric, KL divergence. This cost function guarantees that the
high-level features defining the subspace spanned by the cluster centroids successfully
separate the sequences into distinct clusters exhibiting different spatio-temporal behav-
ior. Optimization of the clustering metric modifies the weights of both the CNN and BI-
LSTM models. Consequently, the high-level features encoded by the BI-LSTM model
optimally segregate the sequences into clusters, effectively disentangling the spatio-
temporal patterns.

To implement this deep learning method, it is necessary to divide the proposed al-
gorithm into two phases: offline learning and online process stage assignment. During
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the learning phase, the DTC algorithm learns to identify the process stage by analyzing
historical values of virtual sensor measurements and physical characteristics. Conse-
quently, the trained algorithm can classify the process stage based on the events that
happen around the physical sensors, enabling proactive response.

In the online phase, the trained DTC algorithm analyzes parameter values provided
by the simulation model and identifies the current process stage in each time step of
the process simulation. Based on the decision scheme proposed, the appropriate control
actions to be taken are determined in accordance with the current process stage. These
actions are then transferred to the simulation model, resulting in a self-modifying con-
trol strategy.

4 Case study: gas production from underground reservoir

To illustrate the performance of the developed solution, it was tested on the problem of
gas production from an underground reservoir.

4.1 Problem definition

The majority of gas reservoirs have a production profile that is closely linked to the
presence of water. The production of water as a by-product is associated with the con-
ning problem, which is the upward movement of water in the vicinity of the production
well. If the critical rate is exceeded and water infiltrates the production well, gas and
water will flow out concurrently. This problem is considered one of the most difficult
challenges as it can significantly impact the productivity of the well, overall recovery ef-
ficiency, and increase production costs. Hence, the main focus of this paper is to identify
the appropriate control mechanism that facilitates the reduction of water production.

Reducing well production to the critical rate is a clear solution, but it’s not commer-
cially viable. Therefore, proper production control is essential for gas wells that produce
water. The production of hydrocarbons is regulated by maintaining a flow rate of wells
situated in the reservoir. However, optimizing well control using classical methods is
challenging as it is not feasible to establish a functional relationship between the de-
cision variables and the quality indicator being optimized. This is because of the com-
plicated geological structure of hydrocarbon reservoirs, which have complex geometry
and spatial heterogeneity of petrophysical parameters. Moreover, the multidimensional
physics of fluid flow makes it difficult to describe the system’s dynamics. As a result,
reservoir simulators are used to model the processes occurring in hydrocarbon reser-
voirs, which can predict the behavior of the reservoir.

Given the practical constraints of the gas production process that require discrete
control changes, it is possible to break down the problem of well control determination
into sub-problems. Therefore, modeling a control scheme that determines individual
well control in a single time step is sufficient [8]. However, it remains challenging to
accurately determine the actions that should be taken at a particular production stage to
prevent water infiltration and optimize gas production. In industrial practice, gas wells
producing water are typically managed using a reactive control approach that relies
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on trial and error. However, a proactive control approach that takes preemptive con-
trol actions before undesirable changes in flow reach the well can improve the techno-
economic efficiency of the production process. To go from reactive to proactive control
this paper proposes a solution that utilizes reservoir simulation and virtual active sensors
located near the production well. By monitoring reservoir parameters before undesired
flow changes reach the well, these virtual sensors enable proactive inflow control and
form the foundation for the proposed control system for gas wells conning water.

4.2 Methodology adjustment for the well control

In the case of well control, the idea of the proposed solution is to analyze reservoir
parameters surrounding a production well measured by the virtual sensors combined
with ground production data. Then, in each time step of the reservoir simulation, use
the trained DTC algorithm to determine the current production stage of the well based
on the reservoir parameters computed by the reservoir simulator. The control of gas
wells that are affected by water influx is then automatically determined based on the
production stage of the well.

4.3 Proposed solution application

The solution proposed in this paper was evaluated by its application on a real gas reser-
voir where a water coning problem occurs. The reservoir is modelled with the ECLIPSE
reservoir simulator (Schlumberger Limited, Houston, TX, USA) that uses finite differ-
ence methods to model fluid flow in complex geological formations and well configura-
tions. It allows for the simulation of a wide range of scenarios and is used for predicting
reservoir performance, improving reservoir understanding and optimizing production
strategies. The behavior of the reservoir is described by a system of non-linear partial
differential equations that describe fluid flow in porous media [2]. The equations are
solved numerically using Newton’s iterative method.

In the case of the analyzed reservoir, there are 8 production wells, and 3 virtual
active sensors are located in close proximity to each well as shown in Fig. 3. The ground
production attributes, such as gas and water flow rates, are monitored in each well and
the virtual sensors measure water saturation and reservoir pressure in the vicinity of the
well to determine its production stage as shown in Fig. 4. These reservoir parameters
are analyzed by the DTC model to detect clusters corresponding to the stages of the
production process.

The proposed solution was applied to a historical production period to evaluate
its effectiveness. In the offline stage, the DTC model was trained using multivariable
historical data from the initial 20 years of production. The next 20 years of historical
production data were used for validation. Both training and validation data are generated
by the numerical reservoir model.

For the DTC model learning, data related to the well with the most complex reser-
voir situation with respect to water production (the highest water production) were used
as it is the most representative. All the analyzed features measured by both physical and
virtual sensors are represented as floating point values sampled at regular intervals (in
the example provided, every hour). Hence, the input data include 8 attributes measured
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Fig. 3. Visualization of the analyzed reservoir (example of the virtual sensors location for P8
well).

Fig. 4. Block diagram of the proposed control scheme for gas production for the underground
reservoir.

in 175 200 time steps. The DTC model was trained using the Adam optimizer with a
learning rate 0.01. Parameters of the neural network architecture were selected based
on the values proposed in [11]. The output of the DTC model is an array with a class
label assigned to each record of input data described above.

In the presented approach, the number of clusters was selected by the human ex-
pert based on the characteristics of the analyzed process. In the case of the water con-
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ning problem, three distinct stages can be identified in the production process. The
first stage involves low water inflow during the initial production period. The second
stage is characterized by a gradual increase in water inflow. Finally, when water inflow
reaches a high level, it indicates the final stage of production from the well, which is no
longer economically viable. Taking into account this phenomenon, the proposed control
scheme also includes 3 stages, to keep the solution easily understandable for the opera-
tor. When the trained DTC model assigned one of the three clusters to each time step,
these clusters were interpreted by experts based on water saturation in the virtual sen-
sor presented in Fig. 5. Cluster 0 represents low water inflow, cluster 1 denotes medium
water inflow, and cluster 2 indicates high water inflow. This interpretation facilitates a
clear physical understanding of the suggested gas well control.
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Fig. 5. Block diagram of the proposed ML-based proactive process control.

The online phase was tested using the last 20 years of production data. In this phase,
the trained DTC model predicts the production stage of each well at every time step of
the reservoir simulation. The well rates are then automatically adjusted according to the
decision scheme presented in Fig. 4 that is developed based on engineering knowledge
and simulation tests. The decision scheme involves categorizing production wells into
three groups that correspond to the interpreted DTC clusters. If a well exhibits high
water inflow, its flow rate is decreased. If water inflow is at a medium level, the well
performance remains unchanged. However, for wells with low water inflow, the well
rate is increased. This approach to determining the appropriate actions to be taken at
each production stage results in self-modifying intelligent well control.

4.4 Results

The application of the developed solution resulted in proactive control of the production
wells located on the analyzed gas reservoir. This intelligent control allows cumulative
water production from the reservoir to be reduced by 15% compared to historical data
based on operator experience (Fig. 6). Cumulative gas production remained at the same
level, indicating increased production efficiency. The results demonstrate that the de-
veloped control strategy accurately manages the water coning phenomenon, reduces
operational costs, and increases overall income without incurring extra expenses, as
only the control system is changed. Furthermore, the difference between the results ob-
tained using the developed control system and the historical data increases with time,
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implying that the ML-based solution is more effective in complicated production sit-
uations as with time water saturation in the vicinity of the production wells is higher.
Thus, the generated control outperforms human control, but the operator can still verify
it.
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Fig. 6. Comparison of water production depending on the process control).

5 Discussion and potential applications

The approach proposed in this paper enables better management of the process under
consideration. As data from virtual sensors are incorporated into this procedure, it al-
lows for reacting proactively. However, the limitation of the proposed proactive control
is that there is a need to use a process simulation model which may be difficult in the
case of real-time applications. However, the trained ML model defining the process
stage can be used directly (without simulation) as long as the process simulation model
used to train it is valid.

Thanks to the use of advanced machine learning algorithms, the appropriate control
can be determined also in situations that are not trivial for a human. As input features
from both physical and virtual sensors are combined into a process stage that is physi-
cally interpretable it makes the whole decision procedure easily explainable what is the
main differentiator of the proposed method.

However, the method presented here is not fully automatic as it requires interaction
with a domain expert. In the proposed method, the time series clustering algorithm com-
bines the simulation data into clusters corresponding to process stages, but the meaning
of these clusters is given by an expert based on domain knowledge about the analyzed
process and values of physical parameters.

In the developed solution, the final structure of the decision scheme is developed
by domain experts based on the best industrial practices and domain knowledge. It
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makes the decision process understandable for the operator, which is especially impor-
tant considering real applications. In addition, the decision scheme can be adapted to
any particular process which makes the proposed method general.

As the proposed solution is generic, it can be applied to process control at different
levels of granulation which confirms its scalability. It can be used to define the control of
the process as a whole. The proposed approach can be applied also to each component
of the process. For example, the temperature of each component of the wind turbine
can be measured and the proposed actions can be enough general to be applicable to all
components. Another possibility is to apply this approach to a fleet of assets, such as
wind turbines for which the same measurements are available. Then, the scheme can be
used to define the control of the individual wind turbine and utilized for all of the assets
in the fleet as in the presented example of gas wells.

The proposed method can be also adapted as a predictive maintenance tool. In this
case, the process stage defined by ML algorithm can be interpreted as the component
wear. For an example of a bearing, its temperature can be measured by the physical
sensor and virtual sensors can tell about the temperature distribution around this physi-
cal measurement to react proactively. Then, the process stage determined based on the
ML algorithm, assuming three clusters, can present a component in good condition,
a component in wear, or a faulty component. As virtual sensors are utilized the pro-
posed approach makes it possible to proactively predict the moment when maintenance
is needed. As the proposed procedure not only defines the process stage but also defines
actions to be taken it can also be used as a prescriptive maintenance tool. These actions
can regulate operating conditions which allows asset maintenance to be scheduled in
order to achieve specific objectives.

Future work of the study reported here includes replacing the simple control actions
directly dependent on the process stage with an auto-adaptive decision tree introduced
in [9, 10] where control actions are parametrized and can be optimized to reach optimal
control. Since the input for this parameterized decision tree comprises simulation data
rather than the process stage, the decision-making process is entirely automated while
remaining straightforward to interpret. Therefore, it would be reasonable to extend the
proposed procedure with an auto-adaptive parameterized decision tree as an automated
and directly interpretable method.

6 Conclusion

The paper proposes a new method for proactive control of industrial processes using
machine learning techniques. The approach involves combining physical and virtual
sensor data obtained from a simulation model to identify the current stage of the pro-
cess and proactively determine appropriate control actions. The deep temporal cluster-
ing algorithm is used to combine simulation data and identify the process stage, and a
decision scheme proposed by engineers is used to determine control actions dependent
on the identified stage.

The performance of the developed solution was illustrated in the problem of gas
production from an underground reservoir. In this case, the proposed solution allowed
for managing the considered water coning phenomenon, reducing of unfavourable water
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inflow, and increasing overall income without incurring extra expenses, as only the
control system is changed.

The proposed method is generic and scalable. It can be applied to a single asset or
multiple assets if the simulation model includes a fleet of them. It can also be adapted
as a predictive and prescriptive maintenance tool. Future work includes optimizing the
control actions to reach optimal control.
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