
Towards understanding of Deep Reinforcement
Learning Agents used in Cloud Resource

Management

Andrzej Małota, Paweł Koperek[0000−0003−3613−2390], and Włodzimierz
Funika[0000−0003−3321−7348]

AGH University of Krakow, Faculty of Computer Science, Electronics and
Telecommunication, Institute of Computer Science, al. Mickiewicza 30, 30-059,

Kraków, Poland

email:malota.andrzej@gmail.com, funika@agh.edu.pl, pkoperek@gmail.com

Abstract. Cloud computing resource management is a critical compo-
nent of the modern cloud computing platforms, aimed to manage com-
puting resources for a given application by minimizing the cost of the
infrastructure while maintaining a Quality-of-Service (QoS) conditions.
This task is usually solved using rule-based policies. Due to their lim-
itations more complex solutions, such as Deep Reinforcement Learning
(DRL) agents are being researched. Unfortunately, deploying such agents
in a production environment can be seen as risky because of the lack of
transparency of DRL decision-making policies. There is no way to know
why a certain decision is made. To foster the trust in DRL generated poli-
cies it is important to provide means of explaining why certain decisions
were made given a specific input. In this paper we present a tool applying
the Integrated Gradients (IG) method to Deep Neural Networks used by
DRL algorithms. This allowed to obtain feature attributions that show
the magnitude and direction of each feature’s influence on the agent’s
decision. We verify the viability of the proposed solution by applying it
to a number of sample use cases with different DRL agents.

Keywords: cloud resource management, deep reinforcement learning,
explainable artificial intelligence, explainable reinforcement learning, deep
neural networks

1 Introduction

In the recent years using cloud computing infrastructure became the dominat-
ing approach to provisioning computing resources. Thanks to virtually unlimited
resources and usage-based billing, creating the cost-effective applications which
automatically adjust the amount of used resources became straightforward. At
the same time, the Cloud Service Provider (CSP) can increase the utilization
of hardware by using it to serve multiple users in the same time. Managing re-
sources in cloud computing infrastructures is a challenging task. The resource

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_55

https://dx.doi.org/10.1007/978-3-031-36021-3_55
https://dx.doi.org/10.1007/978-3-031-36021-3_55

2 A. Małota et al.

management algorithms can, unfortunately, provide too much or too few re-
sources for the services. To mitigate this issue many CSP provide tools which
allow for on-demand dynamic resource allocation (auto-scaling). Such tools im-
plement typically a horizontal scaling approach in which resources (e.g. Virtual
Machine (VM)s) of the same type are added or released [5]. Horizontal scal-
ing can use various methods of triggering scaling actions including rule-based
methods [24] or predicting resource requirements using polynomial regression
[5]. Nowadays, many methods are based on more advanced techniques such as
deep learning and reinforcement learning.

Reinforcement Learning (RL) is a method of learning from interactions with
an environment [23]. During a training process, a RL agent learns to map obser-
vations into actions through an iterative trial-and-error process. Upon executing
an action, the agent receives a positive or negative reward signal and its objec-
tive is to maximize the sum of rewards received. Deep Reinforcement Learning
(DRL) is one of the subfields of Machine Learning (ML) that combines RL and
Deep Learning (DL) by employing Deep Neural Network (DNN), e.g. as various
function approximators. In recent years it has attracted much attention and has
been successfully applied to many complex domains: playing computer games
[15], robotics [18], Natural Language Processing (NLP) in human- machine dia-
logue [4], traffic signal control [8], or cloud resource management [26].

Applying DNN suffers from the lack of explainability (also called inter-
pretability). It is difficult to explain why a certain result has been produced by
a DNN. Furthermore, the user of a machine learning algorithm may be legally
obliged to provide explanations for certain decisions made with use of those algo-
rithms. That issue can be mitigated by utilizing one of the Explainable Artificial
Intelligence (XAI) techniques which aim at providing additional information on
how ML algorithms produce their outputs. Whereas explainability can be con-
sidered well developed for standard ML models and neural networks [19, 21], in
the case of RL there are still many issues that need to be resolved in order to
enable using it in fields where it is imperative to understand its decisions [11].
Explainable Reinforcement Learning (XRL) is a recently emerged new subfield
of XAI which receives a lot of attention. The goal of XRL is to explain how de-
cisions are generated by policies employed by the DRL agents [14]. Such policies
can be very complex and difficult to debug. Providing more insight into how
they function allows to improve the design of the training environments, reward
functions and DNN model architectures.

In this paper we extend the prior work [6, 7], where the use of the policy
gradient optimization approach for automatic cloud resource provisioning has
been studied. We implement a tool that allows to explain the actions of the
cloud computing resource management policies trained with the use of DRL.
This approach enables post hoc attributing input features to decisions made by
the DRL agent which dynamically creates or deletes VMs based on an observed
application requirements and resource utilization. The tool is available as an
open source project [13]. To the best of authors’ knowledge, this paper is the

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_55

https://dx.doi.org/10.1007/978-3-031-36021-3_55
https://dx.doi.org/10.1007/978-3-031-36021-3_55

Towards understanding of DRL Agents 3

first example of using the Integrated Gradients (IG) XAI technique to interpret
DRL agents in the cloud resource management setting.

This paper has the following structure: Section 2 presents related work on
the use of DRL in cloud resource management and application XAI techniques
on DRL agents. Section 3 describes a cloud resource management simulation
environment. In Section 4 we analyze the experimental results of the interpre-
tation scheme applied in various scenarios. Lastly, Section 5 draws conclusions
from the experiments and outlines future work.

2 Related Work

2.1 DRL in Cloud Resource Management

In recent years, the usage of DRL in cloud resource provisioning gained signif-
icant attention. In [25], authors explore the use of standard RL and DRL for
cloud provisioning. They utilize a system where the users specify rewards based
on cost and performance to express their goals. In such an environment they
compare the use of the tabular-based Q- learning algorithm with the Deep Q-
Networks (DQN) approach to achieve the objectives set by the users. The policy
trained with the DQN approach achieved the best results.

In their study, authors of [2] utilized the Double Deep Q-Networks (DDQN)
algorithm to reduce power consumption in CSP. The proposed DRL-based cloud
resource provisioning and task scheduling method consist of two stages. The first
one allocates the task to one of the server farms. The second one chooses the
exact server to run the task in. The reward function is calculated using the energy
cost of the performed action. The proposed DRL-Cloud system compared with
a round-robin baseline improved the energy cost efficiency while maintaining a
low average reject rate.

In [6] three DRL policy gradient optimization methods (Vanilla Policy Gra-
dient (VPG), Proximal Policy Optimization (PPO) and Trust Region Policy
Optimization (TRPO)) are used to create a policy used to control the behavior
of an autonomous cloud resources management agent. The agent interacts with a
simulated cloud computing environment which processes a stream of computing
jobs. The environment state is represented by a set of metrics that are calculated
in each step of the simulation. The reward function is set up as the negative cost
of running the infrastructure with added penalties for breaching the Service-
Level-Agreement (SLA) conditions. The policy which achieved the lowest cost
was created using the PPO algorithm. In [7], the PPO-based autonomous man-
agement agent is compared with the traditional auto-scaling approach available
in Amazon Web Services (AWS). As a sample workload an evolutionary exper-
iment, consisting of multiple variable size phases, has been chosen. The policy
training has been conducted within a simulated cloud environment. Afterwards
the policy has been deployed to a real cloud infrastructure, the AWS Elastic
Compute Cloud. The total cost of managed resources was slightly lower (0.7%)
when a PPO-trained policy has been used, compared with a threshold-based ap-

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_55

https://dx.doi.org/10.1007/978-3-031-36021-3_55
https://dx.doi.org/10.1007/978-3-031-36021-3_55

4 A. Małota et al.

proach. The trained policy was considered to be able to generalize well enough
to be re-used across multiple similar workloads.

2.2 Explainable AI in Deep Reinforcement Learning

DRL has shown great success in solving various sequential decision-making prob-
lems, such as playing complicated games or controlling simulated and real-life
robots. However, existing DRL agents make decisions in an opaque fashion, tak-
ing actions without accompanying explanations. This lack of transparency cre-
ates key barriers to establishing trust in an agent’s policy and significantly limits
the applicability of DRL techniques in critical application fields such as finance,
self-driving cars, or cloud resource management [10]. So far, most of the research
on the usage of XAI in DRL has been focused on finding the relationship between
the agent’s action and the input observation at the specific time step - detecting
the features that contributed most to the agent’s action at that specific time.
According to the XAI taxonomies in [1], it is possible to classify all recent studies
into two main categories: post hoc explainability and transparent methods.

When dealing with images as input data, one can provide explanations through
saliency maps. A saliency map is a heat map that highlights pixels that hold the
most relevant information and the value for each pixel shows the magnitude of
its contribution to the Convolutional Neural Network (CNN)’s output. Unfortu-
nately, saliency maps are sensitive to input variations. The authors of [9] aim to
fix that with their perturbation-based saliency method applied to agents trained
to play Atari games via the Asynchronous-Advantage-Actor-Critic (A3C) algo-
rithm. They conducted a series of investigative explorations aiming to explain
how agents made their decisions. First, they identified the key strategies of the
three agents that exceed human baselines in their environments. Second, they
visualized agents throughout training to see how their policies evolved. Third,
they explored the use of saliency for detecting when an agent is earning high
rewards for the wrong reasons. This includes a demonstration that the saliency
approach allows non-experts to detect such situations. Fourth, they found Atari
games where the trained agents performed poorly and used saliency to debug
these agents by identifying the basis of their low-quality decisions. The approach
presented in [9] is an example of post hoc explainability.

In [12] the authors applied a post hoc interpretability to the DRL agent
which learned to play the video game CoinRun [3]. They used PPO [20] algo-
rithm, with the agent’s policy model being a CNN. Attribution shows how the
neurons affect each other, usually how the input of the network influences its
output. Dimensionality reduction techniques [17] have been applied to the input
frames from the game and attributions were calculated using IG. IG computes
the gradient of the model’s prediction output to its input features. This allows
to produce the feature attributions that display the feature’s influence on the
prediction. Furthermore, IG requires no modification to the original DNN. Au-
thors built an interface for exploring the detected objects that shows the original
image and also positive and negative attributions, to explain how the objects
influence the agent’s value function and policy. Their analysis consists of three

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_55

https://dx.doi.org/10.1007/978-3-031-36021-3_55
https://dx.doi.org/10.1007/978-3-031-36021-3_55

Towards understanding of DRL Agents 5

main parts: dissecting failure (trying to understand what the agent did wrong
and what reasons behind it were), hallucinations (model detected a feature that
was not there), model editing (manually editing the model weights so that the
agent would ignore certain observations).

In [16], an interpretability analysis of the DRL agent with a recurrent atten-
tion model on the games from the ALE environment is performed. The authors
observed basic attention patterns using an attention map, which is a scalar
matrix representing the relative importance of layer activations at different 2D
spatial locations with respect to the target task. It was also discovered that the
model attends to task-relevant things in the frame - player, enemies, and score.
The ALE environment is predictable, e.g. enemies appear at regular times and
in regular configurations. It is important, to ensure that the model truly learns
to attend to the objects of interest and act upon the information, rather than
to memorize and react only to certain patterns in the game. In order to test it,
they injected an enemy object into the observation at an unexpected time and
in an unexpected location. They observed that the agent correctly attends to
and reacts to the new object. They discovered that the model performs forward
planning/scanning - it learns to scan through available paths starting from the
player character, making sure there are no obstacles or enemies in the way. When
the agent does see the enemy, another path is produced in order to avoid it.

3 Environment Setup

The simulation environment used in our research is a result of the prior work [6].
A fundamental component of the simulation process is implemented with the
CloudSim Plus simulation framework [22]. The environment is wrapped with
the interface provisioned by the Open AI Gym framework. Figure 1 presents the
system architecture.

Fig. 1: Components of the system [6].

The workload used in this work is a simple evolutionary experiment which
improves the architecture of a network that recognizes handwritten digits. The
main objective of the agent is to allocate cloud infrastructure resources in an
optimal way to the running workload. The environment in which the agent’s
training was conducted was simulated to avoid the high costs of provisioning a
real computing infrastructure. In order to finish the experiment in a reasonable

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_55

https://dx.doi.org/10.1007/978-3-031-36021-3_55
https://dx.doi.org/10.1007/978-3-031-36021-3_55

6 A. Małota et al.

time, simulation time was sped up and the number of steps per episode was
limited.

The reward function R (Equation 1) equals the negative cost of running
the infrastructure added to the SLA penalty. The SLA penalty adds some cost
for every second delay in task execution and was calculated by multiplying the
number of seconds of the delay of task execution by the penalty value. The cost
of running the infrastructure was calculated by multiplying the number of VMs
by the hourly cost of using the VM.

R = −(NumberOfVMs ∗ HourlyCostOfVM + SlaPenalty) (1)

where:
HourlyCostOfVM = $0.2,
SlaPenaltyNumberOfSecondsOfDelay ∗ Penalty,
Penalty = 0.00001$

The environment state is represented by a vector of cloud infrastructure met-
rics that are being calculated at each time step of the simulation. These metrics
include: the number of running virtual machines (vmAllocatedRatio), average
RAM utilization (avgMemoryUtilization), 90-th percentile of RAM utilization
(p90MemoryUtilization), average CPU utilization (avgCPUUtilization), 90-th
percentile of CPU utilization (p90CPUUtilization), total task queue wait time
(waitingJobsRatioGlobal), recent task queue wait time (waitingJobsRatioRe-
cent). The set of available actions is limited to the following: do nothing, add or
remove a small VM, add or remove a medium VM, add or remove a large VM.

4 Understanding of DRL agents used in Cloud Resource
Management

In this paper, we develop a tool to interpret the decision-making process of DRL
agents used in cloud resource management. Identifying the relationships between
the input data and the agent’s output allows to understand why certain deci-
sions were made. To achieve this we employ the IG method which shows the
magnitude and direction of each feature’s influence on the agent’s output. It re-
quires minimal modification of the original network and can inform on the cloud
infrastructure metrics that influenced the agent’s decision-making process. The
attribution value for a feature can be positive or negative, indicating its con-
tribution towards or against a certain prediction, respectively. We demonstrate
the usefulness of the discussed approach in a few scenarios: attributing input
metrics to the action chosen by the policy (for two DRL algorithms: DQN with
an MultiLayer Perceptron (MLP) model and PPO with a CNN model), pro-
viding a policy summarization, explaining how a policy evolves during training,
debugging policy decisions, removing irrelevant features.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_55

https://dx.doi.org/10.1007/978-3-031-36021-3_55
https://dx.doi.org/10.1007/978-3-031-36021-3_55

Towards understanding of DRL Agents 7

4.1 Input metric attribution

The DNN model used in the DQN algorithm produces approximations of q-values
which denote the value of taking action a in state s. The model produces q-values
for each possible action. The final output is chosen using a greedy approach which
selects the action with the highest value. Figure 2a presents an overview of the
neural network model used in DQN.

(a) Model used as a policy for the DQN
algorithm

(b) Model used as a policy for the PPO al-
gorithm.

Fig. 2: Simplified diagrams of used DNN models.

The IG can calculate feature attributions for each possible action separately,
however, we focus on the action which has the highest q-value, which is then
chosen for execution. In the DQN approach we have applied it to a MLP net-
work. The MLP architecture is straight-forward to understand. Due to its sim-
plicity it is also faster to calculate its output’s attributions. MLP accepts a
one-dimensional (1D) vector of feature observations as an input, which allows
to visualize attributions as a simple to read bar-chart. Figure 3 presents the
attributions for a sample action chosen by the policy. It consists of two parts.
The first one (top) shows the environment state (y-axis presents metric value
(0-1)). The second one (bottom) shows the attributions value for the best action
(positive in green, negative in red).

The PPO policy model has an actor-critic architecture and produces two
outputs. The policy (actor) network provides a distribution of the probabilities
of the actions possible to execute in a given state. Since an action is selected by

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_55

https://dx.doi.org/10.1007/978-3-031-36021-3_55
https://dx.doi.org/10.1007/978-3-031-36021-3_55

8 A. Małota et al.

sampling the provided distribution the actor is considered to be directly respon-
sible for choosing the action. The critic network estimates the value function,
which quantifies the expected reward if the agent follows the policy until the
terminal state. Typically, to optimize the amount of computational resources
required for training, the actor and critic networks are combined into a single
network with two distinct outputs, what is presented in Figure 2b.

In the context of PPO the IG is used to calculate attributions for the in-
put features in relation to the action chosen by sampling the distribution. To
demonstrate the capabilities of such an approach we have applied the discussed
method to a model which included CNN layers. CNN are best known for their
usage in the image recognition, however they can be also used in the time se-
ries prediction. The main advantage of CNN over MLP while performing the
attribution is that CNN can present feature attributions from previous n time
steps for the action that takes place at time step t. It is important because the
agent’s decision is not always based on the immediate state of the environment
but may depend upon an observation that took place sometime in the past. Fig-
ure 4 presents the example attributions for the CNN architecture for the best
action. It consists of three plots. The upper left chart shows the frame of the
input to the neural network, x-axis shows time steps, from 0 - the current one
down to the -14 time step (15-th time step from the past), the y-axis presents a
value (0-1) for each environment metric. The upper right one shows the positive
attribution values while the bottom one shows the negative attribution values
for the best action.

4.2 Debugging the training process

The interpretability tool can be leveraged to investigate the rationale behind
an agent’s decision for a given observation. The aim is to discern whether the
decision was adequate given the observed circumstances and if it was triggered
by the expected inputs. If this is not the case, the tool should help to discover
which feature values might have influenced an incorrect decision.

Fig. 3: Attributions for example observation - DQN agent with MLP architecture.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_55

https://dx.doi.org/10.1007/978-3-031-36021-3_55
https://dx.doi.org/10.1007/978-3-031-36021-3_55

Towards understanding of DRL Agents 9

In Figure 3 we observe the attributions underlying the DQN-MLP agent’s de-
cision to remove a large VM. Such a result was primarily influenced by the CPU
utilization features (avgCPUUtilization, p90CPUUtilization). However, given
the context of high CPU utilization, long waiting times for job execution (wait-
ingJobsRatioGlobal), and low resource allocation (vmAllocatedRatio), we can
consider removing resources as an incorrect decision. A human operator would
have rather avoided taking an action or increased the number of VMs.

Fig. 4: Attributions for example observation - PPO agent with CNN architecture.
Heatmaps are presented in grayscale to improve readability.

In Figure 4 we present the attributions underlying the PPO-CNN agent’s
decision to remove a large VM, which at the time was deemed to be the appro-
priate course of action. The top plot illustrates the state of the environment at
the time of the decision. The vmAllocatedRatio feature exhibited consistently
high values across all time steps, indicating that most of the available VMs were
being utilized, while the values of all other features were close to zero. Examin-
ing the middle plot, which illustrates positive attributions (i.e., reasons to make
the decision), we can confidently conclude that the decision to remove a large
VM was primarily driven by the vmAllocatedRatio feature. The bottom chart
shows negative attributions (i.e., reasons to not make the decision), with the
waitingJobsRatioGlobal feature - denoting the number of jobs waiting to be ex-
ecuted due to insufficient resources - being assigned a small negative attribution
against the decision to remove the large VM. In other words, the decision to

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_55

https://dx.doi.org/10.1007/978-3-031-36021-3_55
https://dx.doi.org/10.1007/978-3-031-36021-3_55

10 A. Małota et al.

remove the large VM was appropriate because at the time, a substantial number
of VMs were already in use, and there were very few jobs waiting in the queue
to be executed.

4.3 Policy summarization

To identify general behavioral patterns of the agents, we must examine the policy
predictions of the agent across multiple examples , in other words use a global
interpretation approach. To accomplish this, we determine the global feature
importance for the policy, which is achieved by calculating the mean absolute
attributions over hundreds of predictions. Figure 5 illustrates the policy summa-
rization for the DQN agent with the MLP architecture. It is apparent that the
agent relies primarily on three features - avgCPUUtilization, vmAllocatedRatio,
and p90CPUUtilization. The remaining features have little to no influence on
the agent’s predictions. In contrast, the recurrent PPO agent with MLP policy
relies primarily on one feature (vmAllocatedRatio) when making decisions.

Fig. 5: Absolute mean attributions - Feature Importance - DQN-MLP (top),
Recurrent PPO-MLP (bottom).

The feature importance analysis for the CNN based architectures provides
more detailed information, allowing to observe the exact mean influence that
each feature had at each time step. Figure 6 presents the feature importance
for the agents with a CNN architecture. The agent relies primarily on three
features: avgCPUUtilization, vmAllocatedRatio, and waitingJobsRatioGlobal.
In contrast, the feature importance for the PPO agent with CNN architecture
is more balanced, as it makes decisions based on five out of the seven available
features across all time steps.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_55

https://dx.doi.org/10.1007/978-3-031-36021-3_55
https://dx.doi.org/10.1007/978-3-031-36021-3_55

Towards understanding of DRL Agents 11

Fig. 6: Absolute mean attributions - Feature Importance - DQN-CNN (top),
Recurrent PPO-CNN (bottom). Heatmaps are presented in grayscale to improve
readability.

4.4 Evolution of policies during training

In the process of training, DRL agents begin with a random policy and adjust
their weights to optimize their performance. This unfortunately means that the
decisions made during the first training iterations might have a negative effect
on the managed system, e.g. the amount of resources might be reduced instead
of getting increased. In this study we investigate how the resource management
strategy of the DRL agents evolves over time. The insights learnt from this
analysis allow to understand whether a policy is making progress during training.
Furthermore, in case the results are inadequate, such an analysis can be a starting
point for debugging the training process. The presented analysis demonstrates
that the agents training in our experiments underwent significant changes in
their attributions during the training process.

Figure 7 presents changes in an absolute mean attribution in a sample ex-
periment with training a DQN agent using a policy including CNN layers. The
figure includes five plots: attribution in the initial model without any train-
ing (top), attribution while the model is being trained (middle three), attribu-
tion in the final model after training (bottom). As expected, the initial model’s
attributions are dispersed across various features and time steps. However, as
the training progresses, the policy begins to emerge, and the number of at-
tributed features is being reduced. By the end of the training, the attributions
are only present for three features: vmAllocatedRatio, avgCPUUtilization, and
waitingJobsRatioGlobal. Furthermore, the policy seemed to have focused solely
on the three most recent time steps and began to ignore earlier time steps. These
insights suggest that we could reduce the number of past steps included in ob-
servations since they are not being utilized. That in turn would result in creating
a smaller model and, as a consequence, a faster training.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_55

https://dx.doi.org/10.1007/978-3-031-36021-3_55
https://dx.doi.org/10.1007/978-3-031-36021-3_55

12 A. Małota et al.

Fig. 7: Mean absolute attributions throughout the training process of the DQN
agent with CNN policy. Heatmaps are presented in grayscale to improve read-
ability.

4.5 Removing irrelevant features

The global feature importance can be quantified by calculating the absolute
mean attributions over a given dataset, and can serve as a useful tool for selecting
only the most relevant features for an agent’s decision-making. There are several
benefits of using a smaller feature set, including a simpler and more compact
model, improved interpretability of the agent’s decision-making process, and
faster training times.

An example of such a situation is presented in Figure 8. The absolute mean
attributions for the Recurrent PPO-MLP agent reveal that the feature waiting−

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_55

https://dx.doi.org/10.1007/978-3-031-36021-3_55
https://dx.doi.org/10.1007/978-3-031-36021-3_55

Towards understanding of DRL Agents 13

JobsRatioRecent has a negligible influence on the agent’s decisions. To vali-
date the feature attributions as a metric for the feature selection, we removed
waitingJobsRatioRecent and retrained the agent. The bottom chart in Figure
8 presents the mean attributions of the new agent, which are nearly identical to
those of the original agent trained with all the features. The comparable perfor-
mance of the agent trained with and without the feature waitingJobsRatioRecent
indicates that the IG and other XRL techniques can effectively aid in the feature
selection process for DRL agents.

Fig. 8: Absolute mean attributions - Feature Importance - Recurrent PPO-MLP.
The top chart presents attributions including the waitingJobsRatioRecent. Bot-
tom one presents attributions in the case when that metric is excluded.

5 Conclusions

In this paper an approach allowing to explain the actions of an automated cloud
computing resource management policy has been implemented. It was demon-
strated how it can help understand why a neural network model returned a par-
ticular value (which can be translated, e.g. into a scaling action in the context of
the resource management) by applying the IG method. To evaluate its correct-
ness and utility, a number of experiments with training policies using DRL algo-
rithms have been conducted. Two approaches were analyzed: Q-learning (DQN
with MLP and CNN models) and policy gradient optimization (PPO with MLP,
CNN, recurrent with MLP or CNN feature extractor). As the training environ-
ment a simulated cloud computing system processing a sample, dynamic work-
load has been chosen. The agent embedded in that system was controlled by the
policy trained with the use of the mentioned algorithms and could increase or
reduce the amount of used resources (virtual machines).

The presented experiments demonstrated how the described approach can be
used to identify which input metrics contributed towards making a decision. It

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_55

https://dx.doi.org/10.1007/978-3-031-36021-3_55
https://dx.doi.org/10.1007/978-3-031-36021-3_55

14 A. Małota et al.

is worth noting that such metrics were different depending on the combination
of the model architecture and the training algorithm. We have demonstrated
that removing a feature with a little to no influence on the predictions did not
affect the quality of decisions made by the policy. Additionally we have analyzed
how metric changes in time being influenced the policies’ output in the case of
models that use CNN. Finally, we have demonstrated how Integrated Gradients
method can be used to determine whether the decisions made by the policies
were taken using the right premises (e.g. if a decision to remove a VM is taken
when the usage of available resources is low).

The information obtained with the use of the IG method during the agent’s
training provided insight into the direction of the learning process. This allowed
to confirm whether the policy was in fact making progress during training and
that its decisions were in fact taken in connection to the discovered relationships
between metrics. We believe that ability to provide evidence of such behavior
can help accelerate the adoption of automated resource management systems.
Understanding how the input to the policy affects its output allows to debug
situations when an improper resource scaling decision is made. Furthermore,
tracking such information might be necessary to fulfill legal obligations. Without
that deploying automated resource management software might not be allowed.

Acknowledgements The research presented in this paper was supported by
the funds assigned to AGH University of Krakow by the Polish Ministry of
Education and Science.

References

1. Barredo Arrieta, A., et al.: Explainable Artificial Intelligence (XAI): Concepts, tax-
onomies, opportunities and challenges toward responsible AI. Information Fusion
58, 82–115 (2020). https://doi.org/10.1016/j.inffus.2019.12.012

2. Cheng, M., et al.: DRL-cloud: Deep reinforcement learning-based resource provi-
sioning and task scheduling for cloud service providers. In: 2018 23rd Asia and
South Pacific Design Automation Conference (ASP-DAC). pp. 129–134 (2018)

3. Cobbe, K., et al.: Quantifying Generalization in Reinforcement Learning (2018).
https://doi.org/10.48550/ARXIV.1812.02341

4. Cuayáhuitl, H.: SimpleDS: A Simple Deep Reinforcement Learning Dialogue Sys-
tem (2016). https://doi.org/10.48550/ARXIV.1601.04574

5. Dutta, S., et al.: SmartScale: Automatic Application Scaling in Enterprise Clouds.
In: 2012 IEEE Fifth International Conference on Cloud Computing. pp. 221–228
(2012)

6. Funika, W., Koperek, P.: Evaluating the Use of Policy Gradient Optimization Ap-
proach for Automatic Cloud Resource Provisioning. In: Wyrzykowski, R., Deelman,
E., Dongarra, J., Karczewski, K. (eds.) Parallel Processing and Applied Mathemat-
ics. pp. 467–478. , LNCS 12043, Springer International Publishing, Cham (2020)

7. Funika, W., Koperek, P., Kitowski, J.: Automatic Management of Cloud Appli-
cations with Use of Proximal Policy Optimization. In: Computational Science –
ICCS 2020: 20th International Conference, June 3–5, 2020, Proceedings, Part I.
pp. 73–87. , LNCS 12137, Springer-Verlag, Berlin, Heidelberg (2020)

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_55

https://dx.doi.org/10.1007/978-3-031-36021-3_55
https://dx.doi.org/10.1007/978-3-031-36021-3_55

Towards understanding of DRL Agents 15

8. Gregurić, M., et al.: Application of Deep Reinforcement Learning in Traffic Signal
Control: An Overview and Impact of Open Traffic Data. Applied Sciences 10(11)
(2020)

9. Greydanus, S., et al.: Visualizing and Understanding Atari Agents (2017).
https://doi.org/10.48550/ARXIV.1711.00138

10. Guo, W., et al.: EDGE: Explaining Deep Reinforcement Learning Policies. In: Ran-
zato, M., Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W. (eds.) Advances
in Neural Information Processing Systems. vol. 34, pp. 12222–12236. Curran As-
sociates, Inc. (2021)

11. Heuillet, A., et al.: Explainability in Deep Reinforcement Learning. CoRR
abs/2008.06693 (2020)

12. Hilton, J., et al.: Understanding RL Vision. Distill (2020).
https://doi.org/10.23915/distill.00029

13. Małota, A., et al.: Trainloop-driver. https://github.com/andrzejmalota/trainloop-
driver/tree/master/examples (2023)

14. Milani, S., et al.: A Survey of Explainable Reinforcement Learning (2022).
https://doi.org/10.48550/ARXIV.2202.08434

15. Mnih, V., et al.: Playing Atari with Deep Reinforcement Learning. In: NIPS Deep
Learning Workshop (2013), http://arxiv.org/abs/1312.5602

16. Mott, A., et al.: Towards Interpretable Reinforcement Learning Using Attention
Augmented Agents (2019). https://doi.org/10.48550/ARXIV.1906.02500

17. Olah, C., et al.: The Building Blocks of Interpretability. Distill (2018).
https://doi.org/10.23915/distill.00010

18. OpenAI, et al.: Solving Rubik’s Cube with a Robot Hand (2019).
https://doi.org/10.48550/ARXIV.1910.07113

19. Ribeiro, M.T., et al.: "Why Should I Trust You?": Explaining the Predictions of
Any Classifier. In: Proceedings of the 22nd ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining. p. 1135–1144. KDD ’16, Associa-
tion for Computing Machinery, New York, NY, USA (2016)

20. Schulman, J., et al.: Proximal Policy Optimization Algorithms (2017).
https://doi.org/10.48550/ARXIV.1707.06347

21. Selvaraju, R.R., et al.: Grad-CAM: Visual Explanations from Deep Networks via
Gradient-Based Localization. International Journal of Computer Vision 128(2),
336–359 (2019)

22. Campos da Silva Filho, M., et al.: CloudSim Plus: A cloud computing simulation
framework pursuing software engineering principles for improved modularity, ex-
tensibility and correctness. In: 2017 IFIP/IEEE Symposium on Integrated Network
and Service Management (IM). pp. 400–406 (2017)

23. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. The MIT
Press, second edn. (2018)

24. Tighe, M., Bauer, M.: Integrating cloud application autoscaling with dynamic
VM allocation. In: 2014 IEEE Network Operations and Management Symposium
(NOMS). pp. 1–9 (2014)

25. Wang, Z., et al.: Automated Cloud Provisioning on AWS using Deep Reinforcement
Learning (2017). https://doi.org/10.48550/ARXIV.1709.04305

26. Zhang, Y., et al.: Intelligent Cloud Resource Management with Deep
Reinforcement Learning. IEEE Cloud Computing 4(6), 60–69 (2017).
https://doi.org/10.1109/MCC.2018.1081063

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_55

https://dx.doi.org/10.1007/978-3-031-36021-3_55
https://dx.doi.org/10.1007/978-3-031-36021-3_55

