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Abstract. We present the hierarchical matrix compression algorithms
to speed up the computations to solve unstable space-time finite element
method. Namely, we focus on the non-stationary time-dependent advec-
tion dominated diffusion problem solved by using space-time finite ele-
ment method. We formulate the problem on the space-time mesh, where
two axes of coordinates system denote the spatial dimension, and the
third axis denotes the temporal dimension. By employing the space-time
mesh, we avoid time iterations, and we solve the problem "at once" by
calling a solver once for the entire mesh. This problem, however, is chal-
lenging, and it requires the application of special stabilization methods.
We propose the stabilization method based on least-squares. We derive
the space-time formulation, and solve it using adaptive finite element
method. To speed up the solution process, we compress the matrix of
the space-time formulation using the low-rank compression algorithm.
We show that the compressed matrix allows for quasi-linear computa-
tional cost matrix-vector multiplication. Thus, we apply the GMRES
solver with hierarchical matrix-vector multiplications. Summing up, we
propose a quasi-linear computational cost solver for stabilized space-time
formulations of advection dominated diffusion problem.

Keywords: Finite element method · Space-time formulation · Isogeo-
metric analysis · H-matrices · Matrix compression · SVD.
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1 Introduction

With increasing supercomputer power, the space-time finite element method is
becoming more and more popular. The method employs an n-dimensional space-
time mesh, with n−1 axes corresponding to the spatial dimension, and one axis
corresponding to the temporal dimension. One of the advantages of the method is
the fact that we can refine the computational mesh in space-time domain. The
space-time formulation does not process a sequence of computational meshes
from consecutive time moments. We formulate and solve the problem on one big
mesh, and we can simultaneously refine the mesh to improve the quality of the
solution in space and time.

The problem of developing stabilization methods for space-time finite ele-
ment is a very important scientific topic nowadays. There are several attempts
do develop stabilized FEM solver. Different methods have been employed for this
purpose. Paper [1] employs space-time stabilized formulation using an adaptive
constrained first-order system with the least squares method. Another space-
time discretization for the constrained first-order system least square method
(CFOSLS) are discussed in [2]. It is also possible to employ Discontinuous Petrov-
Galerkin method for the stabilization of the space-time formulation, as it is
illustrated for the Schrödinger equation in [5] and for the acoustic wave propa-
gation in [6, 7]. The least-square finite element method has been applied for the
stabilization of the parabolic problem in [8].

The most crucial aspect when developing the space time formulations is the
computational cost of the solver [10]. Paper [3] summarizes different fast solvers
for space-time formulations. In [4] the authors discuss the applications of the al-
gebraic multigrid solvers for an adaptive space-time finite-element discretization
in 3D and 4D.

The hierarchical matrices have been introduced by Hackbush [11, 12]. They
employ the low-rank compression of matrix blocks to speed up the solution
process.

In this paper, we present the hierarchical matrix compression algorithms to
speed up the computations of difficult, unstable space-time finite element method
together with the stabilization method. The described approach is used to solve
the stabilized space-time formulations of advection dominated diffusion problem
with quasi-linear computational time.

The novelties of our paper are:

– We consider advection-dominated diffusion transient problem formulated in
space-time finite elements with the stabilization based on the least squares
method.

– We employ adaptive finite element algorithm implemented in FeniCS library
refining the elements in the space-time domain.

– We introduce the idea of the hierarchical matrices for the space-time for-
mulation. We generate and compress the matrices resulting from the finite
element method discretization using the truncated SVD algorithm applied
for blocks of the global matrix.
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– We show that the hierarchical matrices can be processed by the GMRES
iterative solver one order of magnitude faster than regular matrices.

2 Model problem

As a model problem, we study the advection-diffusion equation over a domain:

∂tφ = ε∆φ− β · ∇u+ f,
φ(x, 0) = u0 for x ∈ Ω,
φ(x, t) = 0 for (x, t) ∈ ∂Ω × [0, T ].

For small ε/ ‖β‖, the problem is advection-dominated and the standard Galerkin
method encounters stability issues.

3 Space-time formulation

The space-time formulation we employ is a first-order formulation based on
the idea of a constrained least squares problem (CFOSLS), and has been first
introduced in [2].

3.1 First-order formulation

Let ΩT = Ω×(0, T ) denote the space-time domain, and ΓS = ∂Ω×(0, T ) denote
the spatial boundary. We start by writing the equation in the divergence form

∂tφ+ divx (−ε∇φ+ βφ)︸ ︷︷ ︸
Lφ

= f, (1)

which allows us to reformulate it as

divx,t σ = f, (2)

where σ = (Lφ, φ) and Lφ = (Lxφ,Lyφ), and divx,t denotes the full space-time
divergence operator (as opposed to the spatial divergence divx). Introducing σ
as a new unknown, we can rewrite our equation as a first-order system

divx,t σ = f,

σ −
[
Lφ
φ

]
= 0,

(3)

where σ ∈ R = H(div, ΩT ), φ ∈ V = {v ∈ H1(ΩT ) : v|ΓS
= 0}.

For convenience, let us separate components of σ as σ = (σ, σ∗), where σ∗
is a scalar function.
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3.2 Variational formulation

Let

J(σ, φ) =
1

2

∥∥∥∥σ − [Lφφ
]∥∥∥∥2 =

1

2
‖σ − Lφ‖2 . (4)

The solution of the system (3) is also a solution of the following minimization
problem:

min
(τ ,ω)∈R×V

J(τ , ω) subject to divx,t τ = f, (5)

since J(σ, φ) = 0. Applying the Lagrange multipliers method to this constrained
minimization problem, we search for the critical points of the functional

G(σ, φ, λ) =
1

2
‖σ − Lφ‖2 + 1

2
‖σ∗ − φ‖2 + (divx,t σ − f, λ), (6)

where λ ∈ L2(ΩT ) is the Lagrange multiplier. In this formulation, we need to
find (σ, φ, λ) ∈W such that for all (τ , ω, µ) ∈W

(σ − Lφ, τ − Lω) + (σ∗ − φ, τ∗ − ω)
+ (divx,t τ , λ) + (divx,t σ − f, µ) = 0.

(7)

where W = R × V × L2(ΩT ). To make the structure of the resulting discrete
matrix more apparent, we can rewrite the above equation as

(φ, ω) + (Lφ,Lω)− (σ∗, ω) − (σ,Lω) = 0,

− (φ, τ∗) + (σ∗, τ∗) + (λ, ∂tτ∗) = 0,

− (Lφ, τ ) + (σ, τ ) + (λ,divx τ ) = 0,

+ (∂tσ∗, µ) + (divx σ, µ) = (f, µ) .

3.3 Discrete problem

We approximate the independent variables φ, σx, and σy using quadratic B-
splines. Let us define {ui} the B-spline basis functions and φh, σh∗, σ

h
x, σ

h
y, λ

h
x

the corresponding vectors of coefficients of the B-spline expansion of φ, σx, σx,
respectively. We can write the system in the following matrix structure

M +K −M −LTx −LTy 0
−M M 0 0 ATt
−Lx 0 M 0 ATx
−Ly 0 0 M ATy
0 At Ax Ay 0



φh

σh∗
σhx
σhy
λh

 =


0
0
0
0
fh


whereM represents the mass matrix such that (M)ij := (ui, uj)L2 , (Aγ), is such
that (Aγ)ij = (∂γui, uj) and Lγ such that (Lγ)ij := (Lγui, uj). Moreover, fh is
also the vector of coefficients related to the expansion of f in the B-spline basis.
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4 Matrix compression

The core of the low-rank matrix compression is the SVD algorithm, illustrated
in Figure 1. The matrix A is decomposed into UDV , namely the matrix of
"columns" U , the diagonal matrix of singular values D, and the matrix of "rows"
V.

A = UDV , [U,D, V ] = SV D(B),

U ∈Mn×n, D – diagonal m× n, V ∈Mm×m.

n

m

=n

n

n

m

    m

m

=n

r

    r

mr

r

=n

r

    r

m

  SVD                                                COMPRESSION                        MULTIPLICATION

Fig. 1. SVD algorithm for the low-rank matrix compression.

The entries of D (singular values) are sorted in descending order. The di-
agonal values less than the compression threshold δ are removed together with
corresponding columns of U and rows of V . The entries of D (singular values)
are sorted in descending order. The diagonal values less than the compression
threshold δ are removed together with corresponding columns of U and rows of
V . As the result we obtain the low-rank compressed matrix HA, where s = rank
HA = max{i : dii > δ}. The matrix HA is the best approximation of A in the
Frobenious norm among all the matrices of rank s.

The compression is performed in a recursive way, as expressed by Algorithms
1 and 2. We partition the matrix recursively into blocks, we check how many
singular values are larger than the prescribed δ. If the compression of the block
with δ results in viewer singular values than the prescribed threshold b, we
stop the recursion and store the sub-matrix in a compressed way. Otherwise, we
continue with the recursive partitions.

Standard LAPACK subroutine dgesvd for the SVD computations has time
complexity O(N3) for a square matrix. We, however, employ the truncated SVD
that computes only r singular values, having the complexity of O(N2r). Thus,
the compression of the space-time matrix has a time complexity of a similar
order as the matrix r vectors multiplication.

The compression of the space-time matrix results in a structure presented in
Figure 2.

5 Compressed matrix-vector multiplication

We illustrate in Figure 3 the process of multiplication of a compressed matrix
by s vectors. There are two cases to consider.
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Algorithm 1 compress_matrix
Require: A ∈Mm×n, δ compression threshold, b maximum rank
1: if A = 0 then
2: create new node v; v.rank ← 0; v.size← size(A); return v;
3: end if
4: [U,D, V ]← SV D(A); σ ← diag(D);
5: rank ← card ({i : σi > δ}) ;
6: if rank < b then
7: create new node v; v.rank ← rank;
8: v.singularvalues← σ(1 : rank);
9: v.U ← U(∗, 1 : rank);
10: v.V ← D(1 : rank, 1 : rank) ∗ V (1 : rank, ∗);
11: v.sons← ∅; v.size← size(A);
12: return v;
13: else
14: return process_matrix(A, δ, b);
15: end if

Algorithm 2 process_matrix
Require: A ∈Mm×n, δ compression threshold, b maximum rank
1: v ← create_node()
2: A11 ← A(1 : m

2
, 1 : n

2
)

3: A12 ← A(1 : m
2
, n
2
+ 1 : n)

4: A21 ← A(m
2
+ 1 : m, 1 : n

2
)

5: A22 ← A(m
2
+ 1 : m, n

2
: n)

6: n1 ← compress_matrix(A11, δ, b)
7: n2 ← compress_matrix(A12, δ, b)
8: n3 ← compress_matrix(A21, δ, b)
9: n4 ← compress_matrix(A22, δ, b)
10: v.sons← [n1, n2, n3, n4]
11: return v
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Fig. 2. Exemplary compressed matrix

– The first case is located at the leaves of the compressed matrix, where we
multiply the compressed submatrix by a corresponding part of the vector.
This is illustrated on the left panel in Figure 3. In this case, the compu-
tational cost of matrix-vector multiplication with compressed matrix and s
vectors is O(rms+ rns), when n = m = N � r it reduces to O(Nrs)

– The second case is related to the multiplication of a matrix compressed
into four SVD blocks by the vector partitioned into two blocks. This is
illustrated on the right panel in Figure 3. We employ the recursive formula[
C2 ∗ (C1 ∗X1) +D2 ∗ (D1 ∗X2)
E2 ∗ (E1 ∗X1) + F2 ∗ (F1 ∗X2)

]
. The computational cost is O(Nrs).

The pseudocode is illustrated in Algorithm 3.
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Fig. 3. SVD-compressed matrix multiplication
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Algorithm 3 matrix_vectors_multiply
Require: node v, Compressed matrix A(v) ∈Mm×n, Y ∈Mn×c vectors to multiply
1: if v.sons = ∅ then
2: if v.rank = 0 then
3: return zeros(size(A).rows);
4: end if
5: return v.U ∗ (v.V ∗X);
6: end if
7: rows = size(X).rows;
8: X1 = X(1 : rows

2
, ∗); X2 = X( rows

2
+ 1 : size(A).rows, ∗);

9: C1 = v.son(1).U ;C2 = v.son(1).V ;
10: D1 = v.son(2).U ;D2 = v.son(2).V ;
11: E1 = v.son(3).U ;E2 = v.son(3).V ;
12: F1 = v.son(4).U ;F2 = v.son(4).V ;

13: return
[
C2 ∗ (C1 ∗X1) +D2 ∗ (D1 ∗X2)
E2 ∗ (E1 ∗X1) + F2 ∗ (F1 ∗X2)

]
;

The critical from the point of view of the computational cost is the structure
of the compressed matrix. If we have the structure of the matrix as presented in
Figure 4, we have the quasi-linear multiplication cost. Namely, at each level, we
have 2 leaves and 2 interior nodes

C(N) = 2C(N/2) + 2O(Nrs/2)︸ ︷︷ ︸
multiplication

+ O(N)︸ ︷︷ ︸
addition

, C(N0) = O(N0rs)

⇒ C(N) = O(N logN)

Fig. 4. Optimal structure of the compressed matrix

Fortunatelly, the structure of the space-time problem matrix has this optimal
shape in several sub-blocks, see Figure 2.
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6 GMRES solver

We employ the GMRES iterative solver with hierarchical matrix-vector multi-
plication, illustrated in Algorithm 4.

Algorithm 4 Pseudo-code of the GMRES algorithm
Require: HA compressed matrix, b right-hand-side vector, x0 starting point

Compute r0 = b−HAx0
Compute v1 = r0

‖r0‖
for j = 1, 2, ..., k
Compute hi,j = (HAvj , vi) for i = 1, 2, ..., j
Compute v̂j+1 = HAvj −

∑
i=1,...,j hi,jvi

Compute hj+1,j = ‖v̂j+1‖2
Compute vj+1 = v̂j+1/hj+1,j

end for
Form solution xk = x0 + Vkyk where Vk = [v1...vk], and yk minimizes J(y) =

‖βe1 − Ĥky‖ where Ĥ =



h1,1 h1,2 · · ·h1,k

h2,1 h2,2 · · ·h2,k

0
. . .

. . .
...

...
. . . hk,k−1 hk,k

0 · · · 0 hk+1,k



7 Numerical results

For the numerical tests, we use the model problem (2) on a regular domain Ω×
(0, T ) = (0, 1)3 with β = (0, 0.3), ε = 10−5, no forcing (f = 0), and the initial
state u0 given by u0(x) = ψ(10‖x− c‖), where c = (0.5, 0.5) and

ψ(r) =

{
(1− r2)2 for r ≤ 1,

0 for r > 1.

As a result, the initial state is zero except for a small region in the center of the
domain. Tests were performed using basis functions of degree p = 1 for all the
discrete spaces.

Starting with the coarse initial mesh, we perform adaptive mesh refinements
using the value of J(σh, φh) as the error indicator and the Dörfler marking cri-
terion [9] with θ = 0.5. The improvement of the solutions at particular adaptive
iterations is denoted in Figure 6. Finally, the sequence of generated adaptive
space-time meshes is presented in Figure 7. We also present in Table 1 the
convergence of the adaptive space-time finite element method, as well as the ex-
ecution times for the solver without the compression, and after the compression,
for a sequence of adaptive grids. Figure 5 presents execution times for the solver
without the compression, and after the compression, for a sequence of adaptive
grids.
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Table 1. Results of the adaptive mesh refinement process

level DoFs J(σUh, φh) solver for A [s] solver for HA [s]
0 3019 0.0137 0.046 0.005
1 11540 0.0039 0.567 0.076
2 25963 0.0052 4.280 0.774
3 63033 0.0040 14.573 2.573
4 163755 0.0031 31.190 5.048
5 359658 0.0023 101.335 20.120
6 730953 0.0017 279.838 45.606

Fig. 5. Execution times for solver without the compression, and after the compression,
for a sequence of adaptive grid.
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Fig. 6. Solutions in the six consecutive refinement steps
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Fig. 7. Mesh in the six consecutive refinement steps
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8 Conclusions

In this paper, we considered the space-time formulation of the advection domi-
nated diffusion problem. The stabilization was obtained by introducing the con-
strained minimization problem with Lagrange multipliers. The obtained system
of linear equations was discretized with B-spline basis functions. Next, we em-
ployed the low-rank compression of the discrete form of the space-time matrix.
The obtained hierarchical form of the space-time matrix has several blocks that
has been compressed into a hierarchical "diagonal" form. The hierarchical ma-
trix can be multiplied by the vector in a O(NlogN) computational cost. This
allows to construct a GMRES solver with hierarchical matrices that is one order
of magnitude faster than the GMRES solver with the original sparse matrix.
Future work may include research on a proper perconditioner for the GMRES
solver. For example, we may investigate if the deep compression of the matrix,
with a large compression threshold, can be applied as an efficient preconditioner
for the iterative solver.
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