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Abstract. Cloud computing is gaining popularity in the context of high-
performance computing applications. Among other things, the use of
cloud resources allows advanced simulations to be carried out in circum-
stances where local computing resources are limited. At the same time,
the use of cloud computing may increase costs. This article presents an
original approach which uses anomaly detection and machine learning for
predicting cloud resource usage in the long term, making it possible to op-
timize resource usage (through an appropriate resource reservation plan)
and reduce its cost. The solution developed uses the XGBoost model for
long-term prediction of cloud resource consumption, which is especially
important when these resources are used for advanced long-term simu-
lations. Experiments conducted using real-life data from a production
system demonstrate that the use of the XGBoost model developed for
prediction allowed the quality of predictions to be improved (by 16%)
compared to statistical methods. Moreover, techniques using the XG-
Boost model were able to predict chaotic changes in resource consump-
tion as opposed to statistical methods.

Keywords: Cloud computing · Resource prediction · High-performance
computing · Machine learning.

1 Introduction

Cloud computing is increasingly becoming an alternative to supercomputers for
some high-performance computing (HPC) applications [6, 8]. Among the poten-
tial use areas of cloud computing are various advanced simulations such as, for
instance, HPC simulations of disease spread or social simulations [21]. Hybrid
environments are also being used, where part of the sensitive computation is per-
formed locally and part in a public cloud [14]. Public clouds can be used where
the demand for computing resources is greater and cannot be satisfied by local
resources. Of course, the cost of using cloud resources in HPC has to be taken
into account, which is why the issue of optimizing their use is so important.
In this context, it is very important to be able to predict the consumption of
cloud resources in order to reserve them optimally. Reserving too many resources
may result in increased costs and reserving too few resources may cause prob-
lems with simulation execution. Although cloud resource usage prediction (and
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subsequent scheduling) is discussed in the literature, it is almost always in the
context of autoscaling and short-term prediction. For HPC applications such as
advanced simulations, many tasks may require resources in the long term, and
therefore the time horizon of mechanisms such as autoscaling and short-term
prediction may prove too short for this type of computing. The long-term pre-
diction solution developed by the authors (using machine learning) allows for a
longer prediction horizon, which can be useful for advanced simulations using
HPC.

The major contributions of this paper can be summarized as follows:

– designing a solution that provides long-term resource usage predictions for
advanced simulations using HPC;

– developing a self-adapting system that can operate in production-grade en-
vironments with long-term load changes;

– conducting evaluation using data collected from a real-life production sys-
tem;

– comparing the results obtained using different prediction techniques based
on the XGBoost model with statistical methods.

The rest of this paper is structured as follows: Section 2 contains a description
of related work, Section 3 focuses on the description of a long-term cloud resource
usage prediction system, Section 4 describes the experiments performed, and
Section 5 contains the conclusion and further work.

2 Related Work

There are many publications dealing with the use of cloud computing resources
for HPC applications. In [7], the author discusses the use of a virtual cluster
for this type of computing (using Elastic Computing Cloud – EC2 as an exam-
ple). Clusters of computer systems are a common HPC architecture. However,
small local clusters, although cost-effective, may not be efficient enough. On the
other hand, large clusters are more expensive and it is not always possible to
provide them with a sufficient sustainable load. Therefore, virtual clusters us-
ing cloud resources offer a viable alternative. In this case, public commercial
cloud environments provide users with storage and CPU power to build their
own dedicated clusters of computers that can be used in scientific computing
applications. Based on the experiments performed, the author shows that it is
possible to use a virtual cluster to realize various computations including HPC.
The author also analyzes the cost of using cloud solutions; however, he does not
explore the possibility of optimization of cloud resource consumption.

In [5], the authors discuss scalability, interoperability, and achieving guaran-
teed Quality of Service (QoS) in a High-Performance Computing Cloud (HPCC)
environment. The authors propose a cloud resource management framework to
handle a large number of user HPC application requests and manage multiple
cloud resources. System tests were performed using a large number of real-world
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HPC applications. To evaluate the performance of the system proposed, the au-
thors used performance metrics such as response time, the number of requests
successfully handled and user satisfaction. What is missing from this work, how-
ever, is an analysis of the cost of using cloud resources using the system developed
and the possibility of optimizing them.

In [17], the authors present the possibilities of using HPC in the Google Cloud
Platform in emergency situations when efficient processing of large amounts
of traffic data is required. This allows for effective disaster management using
massive data processing and high performance computing. Another application
of HPC in cloud computing is presented in [9] where the authors describe a
platform for computer vision applications that enables audio/video processing
and can use high performance computing cloud resources for this purpose.

An extensive analysis of the possibilities of cloud solutions related to High
Performance Computing, among other things, is presented in [2]. The authors
analyze the capabilities of the four most popular environments – Amazon Elas-
tic Compute Cloud, Microsoft Azure Cloud, Google Cloud and Oracle Cloud.
Today, HPC workloads are increasingly being migrated to the cloud. This is due,
among other things, to the flexible nature of the cloud where resources can be
expanded and reduced on demand, which optimizes the cost of using cloud com-
puting. At the same time, computationally intensive workloads can be performed
efficiently on cloud resources that are connected via a high-speed network. The
most suitable cloud model for HPC users is Infrastructure as a Service (IaaS),
where it is possible to specify all the details of the infrastructure needed to create
clusters. There are many areas where the cloud is being used for HPC, including
financial risk simulations, molecular dynamics, weather prediction, and scientific
or engineering simulations.

As it can be gathered from the above analysis, the use of cloud resources for
HPC is now commonplace. There are also appropriate mechanisms for manag-
ing cloud resources so as to adjust them for HPC purposes and, for instance,
predict the placement of containers [1]. However, there is a lack of mechanisms
to optimally reserve cloud resources for HPC, especially in the long term. One
way to conduct such optimization is to use prediction mechanisms to determine
what resources will be required in the future for HPC and establish an opti-
mal reservation plan. The most common strategy for using cloud computing
resources is to reserve resources at the highest potential demand level, which,
however, generates unnecessary costs for unused cloud resources. Predictive re-
source utilization can prevent this, helping to reserve only the cloud resources
needed. However, the majority of research on cloud resource management and op-
timization concerns autoscaling [20, 4], predictive autoscaling (autoscaling with
workload forecasting) [18, 22] and short-term prediction [19, 3]; there are very
few studies of long-term prediction.

The authors’ earlier works indicate that cloud resource usage prediction
makes it possible to create optimal plans for resource reservation, leading to
significant savings. Those works included research on using machine learning
and adaptive resource planning for cloud-based services [10], anomaly detection
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in the context of such planning [13], cloud resource usage prediction mechanisms
taking into account QoS parameters [11, 15], data-driven adaptive cloud resource
usage prediction [12] and resource usage cost optimization in cloud computing
[16]. However, none of the previous works analyzed HPC needs in the context
of cloud computing resources. In the research described in this article, the au-
thors paid particular attention to the need for long-term prediction (relevant to
HPC) and used a full data set from more than one year to develop the model.
In previous work (such as in [16, 15]), only selected data from three months were
considered. In addition, the XGBoost model was used, in which prediction was
conducted for one-week periods with feature enrichment: using lagged features
from the previous week, features derived from the Fast Fourier Transform (FFT),
moving window statistics and calendar features, taking into account holidays.

3 Long-term cloud resource usage prediction system

The prediction system developed was designed to forecast weekly CPU usage by
predicting 168 sample resource usage metrics with hourly resolution. The system
consists of seven modules and the starting point for its operation is the use of
historical data to obtain an initial prediction (Figure 1).

5. Monitoring 
Module

2. Feature 
Enrichment 

Module

4. Prediction 
Module

1. Anomaly 
Detection 
Module

prediction has expired

6. Data 
Acquisition 

Module

prediction has not expired

3. Model 
Training Module

Historical data

7. Prediction 
Assessment 

Module

Fig. 1. Prediction system concept

At the start of prediction system operation, historical values of CPU usage
metrics are recorded and fed into the Anomaly Detection Module. This module
is flexible in terms of the ranges of data to which the anomaly detection model is
applied. It is noteworthy that anomalies are understood as samples that are out-
lying in the data, effectively translating into drastic resource consumption peaks.
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Conceptually, anomaly detection can be applied either to the entire dataset or
locally to smaller subsets of data independently. Such a configuration enables
conducting multiple simulations and checking whether the anomalous data de-
tected are undesirable or constitute a valuable contribution. Subsequently, the
Feature Enrichment Module is responsible for enriching data in diverse ways
to create an expressive data representation. For time-series, there are several
techniques that can be implemented at that level to extract maximum valuable
information from the dataset, which will positively impact the results of the pre-
diction model. The training of the prediction model itself is carried out through
the Model Training Module. After completing the training of the model and its
initial evaluation on the validation set, either through walk-forward validation
technique or on a separate validation set, long-term prediction for a weekly pe-
riod is performed. Multi-step prediction can be achieved in various ways, with
direct, iterative, and multi-output prediction being among the most popular.
After performing the prediction using the Prediction Module, the system tran-
sitions from the outer loop to the inner loop. The Monitoring Module checks
whether the prediction is valid at hourly intervals, which correspond to the
granularity intervals of the recorded metrics. If the prediction has not expired
and is valid, the resource usage level is recorded and metrics are stored (Data
Acquisition Module) for the indicated time period, and the prediction previously
made is verified against actual usage (Prediction Assessment Module). When
the Monitoring Module detects that the expiration time has been reached, the
system exits the inner loop and returns to the outer loop of the prediction sys-
tem. At this point, the system has acquired new data, which can be scanned for
anomalies, enriched and used to re-adapt the prediction model. This is especially
important for dynamic, chaotic time series where the model needs to adjust to
the current data distribution. In this way, the system can operate in a continu-
ous optimization loop, adapting to newly recorded data and making predictions
for the configured horizon. The specific implementation employs Isolation For-
est and XGBoost as the main models in the anomaly detection and prediction
modules, respectively. However, the overall concept is generic and flexible, allow-
ing for the use of various techniques within the individual modules. Flexibility
and self-adaptation are especially important in the context of HPC resources,
where different prediction schemes can be evaluated to select the appropriate
one regarding future resource reservations for supercomputing.

4 Evaluation

As part of the evaluation of the prediction system, historical records of CPU
usage were utilized, with a particular focus on this metric among the various
options available from cloud monitoring services. This data is considered crucial
in the realm of high-performance computing, alongside Random Access Memory
(RAM) usage. The data were collected from a real-life production environment.
The recorded CPU usage metrics are closely tied to a timestamp, thus the data
are represented in the form of a time series. Ultimately, historical records rep-
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resent consolidated CPU utilization over a period of exactly 80 weeks, where
metric values were registered at 1-hour intervals. Moreover, several sequences in
the acquired dataset were found to have missing data, which were imputed using
a Simple Moving Average (SMA) approach with a window size equal to the pre-
diction horizon of 168 samples. The starting point for research was analyzing the
data, specifically by arbitrarily partitioning them into training, validation, and
testing sets. This was done to enable a focused application of methods to the
training set, performance evaluation using the validation set, and critical assess-
ment of generalization abilities without unwanted knowledge leakage from the
testing set during the training process. Due to high variance in the dataset and
significant changes in the characteristic features that amplify the chaotic nature
of the time series, effectively distinguishing the sizes of the datasets proved to be
a challenge. Ultimately, 10,920 and 2,520 samples were used for the training and
testing sets, respectively. Additionally, the last 840 samples from the training
set were selected as the validation set. In order to examine the nature of the
dataset, a Jarque-Bera test was conducted on the training set (without the val-
idation portion) to assess its normality and skewness. The initial output value
(58.96), represented the test statistic of the Jarque-Bera test. This was used to
evaluate the deviation of the sample data from a normal distribution, with a
higher test statistic indicating a greater deviation from normality. The second
value, 1.58 × 10−13, represents the p-value of the test, which suggests strong
evidence against the null hypothesis that the data is normally distributed. Fur-
thermore, the stationary test indicated non-stationarity, thereby implying that
the variable under investigation does not exhibit constant statistical properties
over time.

The main prediction model utilized in the system developed is XGBoost,
which was optimized for evaluation using grid search with selected parameters
of 240 estimators, 7 as the maximum depth, and a learning rate of 0.28. To en-
hance prediction accuracy, various features were incorporated, including lagged
features from the preceding week, exogenous features derived from the calendar,
such as day of week, month, hour, holidays, and statistical parameters calculated
within the scope of a moving window. Two sizes of moving windows (168 and 72)
were selected to capture statistics from the last week and the last three days, re-
spectively. The statistical features included classical metrics such as the median
and the mean as well as more sophisticated statistics such as interquartile dif-
ferences, values above the mean, skewness, kurtosis, and features resulting from
decomposing the time series into the frequency domain using Fast Fourier Trans-
form. Additionally, cyclical features from all calendar parameters were enriched
using the cosine and sine functions. Cumulatively, the feature enrichment phase
made it possible to obtain 250 features. The XGBoost algorithm was trained for
single-step-ahead prediction. To enable long-term forecasting, an iterative ap-
proach was employed where each prediction was used as a training sample in the
following step until the end of the prediction horizon. Features were computed
for each sample in real time, in a manner preventing information leakage.
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In the context of long-term prediction, identifying outlying samples that are
understood as drastic and local fluctuations in the resource usage that do not
translate into a permanent change in characteristics, and determining whether
they contribute to the model as anomalies or provide valuable information are
crucial factors. In order to tackle this challenge, we employed an unsupervised
Isolation Forest model for evaluation. The parameters of the Isolation Forest
model were also determined using grid search, with a selection of 90 estimators
and a contamination fraction of 0.05. Other parameters were left at default values
to reduce the search space, which, in the case of walk-forward validation, was less
computationally complex. The strategy selected for handling outlying samples
was their removal. Imputing the mean value of a certain horizon of samples
was considered as well, but was not utilized due to the rich feature engineering
approach that also took into account statistical parameters calculated within
the windows in question.

Prior to evaluating the implemented prediction system based on the XG-
Boost model, certain reference results were established using statistical meth-
ods, which served as a baseline. Typically, naive prediction (repeating the last
observed value throughout the entire prediction horizon) or more sophisticated
methods such as Simple Exponential Smoothing serve as a solid reference point.
However, for comparison purposes, neither of the aforementioned methods nor
other methods such as Holt’s Exponential Smoothing with a damped trend were
used. Although these methods can produce good error metric values, they do not
reflect the data characteristics that are crucial for resource demand prediction
in HPC. Consequently, Holt-Winter’s Seasonal Smoothing methods were used as
baselines, namely Method 1 (with a 1-day seasonality), Method 2 (with a 3-day
seasonality), and finallyMethod 3 (with a 1-week seasonality). At the end of each
prediction horizon, statistical methods were re-adapted to account for the new
data. The listed seasonality periods to be explored were determined by analyzing
the autocorrelation function (ACF) and partial autocorrelation function (PACF)
as well as by decomposing the data into trend and seasonality, both in terms
of additive and multiplicative models. However, at the data exploration stage,
it was discovered that no singular principal seasonal/frequency component was
present, a finding which was additionally confirmed using the FFT (Fast Fourier
Transform) and DWT (Discrete Wavelet Transform) techniques.

Figure 2 presents the forecasting results using three baseline methods. In
cases where the time series exhibit stability over a given period, simple meth-
ods can adequately reflect utilization values. However, naive methods and the
usual statistical models that often assume linear and stationary data, while per-
forming well when the characteristics of the data are stable, may fall short in
predicting sudden fluctuations, chaotic increases or decreases in resource utiliza-
tion, which can be observed in Figure 3. As far as the analysis of error metrics
is concerned, it should be carried out in tandem with the examination of trend
characteristics to objectively assess the generalization capabilities of methods as
well as their strengths and potential weaknesses where inefficiencies may arise.
Table 1 summarizes the error metric values obtained for the entire testing set
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for baseline methods. Method 2 has the lowest RMSE (Root Mean Squared Er-
ror) and NRMSE (Normalized RMSE) values, which indicate a lower overall
error in prediction compared to the other methods. Additionally, Method 2 has
a slightly higher MAE (Mean Absolute Error) compared to Method 1. On the
other hand, Method 3 exhibits the poorest performance, except for the MAPE
(Mean Absolute Percentage Error), where typically the highest amplitudes and
oscillations in forecasts can be observed, and in majority of cases forecasts are
below ground truth. The MdAE (Median Absolute Error) indicated a clear ad-
vantage for Method 1. Finally, based on this analysis, Method 1 and Method
2 yield comparably promising results. However, despite their relatively good
prediction results in terms of error metrics, these methods completely failed to
handle sudden changes in resource consumption. This provides a strong moti-
vation to explore more advanced prediction systems or models, particularly in
HPC systems where overprovisioning leads to high costs and underprovisioning
results in undesired drops in QoS. The usage of such baselines in production
may heighten the risk of user service unavailability.
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Fig. 2. CPU usage prediction results for baseline methods (first sample period)

Table 1. Error metrics for baseline methods obtained for the entire test set

Reference RMSE NRMSE MAE MAPE MdAE

Method 1 2.223 0.141 0.914 0.267 0.327

Method 2 2.168 0.137 0.936 0.276 0.374

Method 3 2.339 0.148 0.999 0.261 0.415
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Fig. 3. CPU usage prediction results for baseline methods (second sample period)

Following the conclusions drawn from baselines and their limited applicabil-
ity, in order to evaluate the prediction system based on the XGBoost model, mul-
tiple different simulations and comparisons were conducted, resulting in eleven
prediction methods that serve as a robust foundation for drawing conclusions.
When evaluating diverse prediction methods, specific components of the predic-
tion system were selectively utilized, as some of the tested prediction methods
did not employ the anomaly detection module. Firstly, Method 4 represents the
basic approach, which utilizes a one-week prediction system without the anomaly
detection module and without XGBoost model retraining (thus without adapting
to newly acquired CPU usage metrics). Subsequently, Method 5, Method 6 and
Method 7 extend the previous approach with anomaly detection within the train-
ing set and handling such anomalies using the removal strategy. The differences
between these methods concern the scope of anomaly detection: the detection
was applied to the entire training set, 4-week portions and weekly portions, re-
spectively. In the context of time series data, it is crucial to determine whether
samples identified as anomalies introduce noise and perturbations to the predic-
tion models or rather provide valuable information for generalization purposes.
Furthermore, Method 8 involves refitting the model after the weekly prediction
validity period expires, while taking into account newly collected metrics. How-
ever, the anomaly detection module was not involved. Subsequently, Method 9,
Method 10 and Method 11 extend the periodical (weekly) re-training approach
but include anomaly detection also for the entire training set, 4-week and 1-week
portions, respectively. Finally, Method 12, Method 13 and Method 14 are basi-
cally extensions of Methods 9, 10 and 11, but Anomaly Detection is additionally
applied to newly collected data before each refit so all data on which the model
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is trained are scanned against the outliers. Figure 4 indicates that in the case of
stable resource usage values, it is evident that the prediction characteristics of
the methods applied closely match real-life CPU consumption values from the
test set. Particularly noteworthy and inspiring results that lie at the heart of the
problem are presented in Figure 5, where the methods predicted an increase in
consumption, approaching the actual recorded consumption, which was entirely
missed by the baseline. The predictions dynamically followed the consumption
trend, with various methods reacting differently but each responding to the pos-
sible change in resource usage trend. This indicates a huge advantage of the
implemented prediction model over baselines, which results from its dynamics
and reactive attitude.
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Fig. 4. CPU usage prediction results for XGBoost-based methods (first sample period)

As concerns the error metrics of methods that did not involve periodic adap-
tation to new data, it was found that anomaly detection within this specific
dataset did not contribute to improved accuracy. The values identified by the
anomaly detection module as outliers were found to have valuable positive im-
pact. Therefore,Method 4 outperformedMethods 5, 6 and 7 as removing anoma-
lies led to the removal of valuable information and a dramatic reduction in ac-
curacy. Moreover, the local applicability of anomaly detection also contributed
to a significant accumulation of errors because scanning was applied without the
broader context that was necessary for these data and for this model. Method
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Fig. 5. CPU usage prediction results for XGBoost-based methods (second sample pe-
riod)

Table 2. Error metrics for XGBoost-based methods obtained for the entire test set

Reference RMSE NRMSE MAE MAPE MdAE

Method 4 2.477 0.157 1.355 0.502 0.407

Method 5 6.757 0.428 5.756 3.316 7.051

Method 6 14.762 0.936 9.352 5.121 1.882

Method 7 19.45 1.233 13.565 7.819 5.353

Method 8 1.814 0.115 0.909 0.335 0.335

Method 9 2.701 0.171 1.359 0.526 0.332

Method 10 2.573 0.163 1.185 0.58 0.321

Method 11 2.332 0.148 1.082 0.317 0.325

Method 12 2.627 0.167 1.195 0.546 0.321

Method 13 3.209 0.203 1.851 0.75 0.419

Method 14 3.209 0.192 1.399 0.646 0.334
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8, which incorporated re-adaptation to new data and no anomaly detection,
proved best in terms of RMSE, NRMSE and MAE metrics. The assessment of
this method improved significantly because it uses walk forward validation. In a
chaotic time series, validation error may sometimes be smaller than test error due
to the variability of data distribution over time and differences between sample
distributions among the training, validation and test sets. Chaotic time series
are characterized by high variability and unpredictability, and models trained on
training data may not be able to generalize correctly to new data. In this case,
using a validation set may lead to a situation where the model is strictly opti-
mized for validation data, which may represent only a small subset of test data.
To prevent this, cross-validation techniques allow the model to be evaluated on
multiple data subsets, reducing the risk of overfitting and allowing a more gen-
eral model to be obtained. One advantage of this approach is that the model is
trained on an increasing amount of data, which allows for continuous improve-
ment over time. However, walk forward cross-validation in connection with grid
search turned out be time-consuming, because it requires multiple iterations that
involve training and testing the model on successive time windows. Therefore,
it was important to carefully consider the appropriate validation method for
the specific problem at hand. Refitting the model on an increasing amount of
data enabled a better generalization to be to achieved. Additionally, all the sub-
sequent methods incorporated this approach but also used anomaly detection.
The results obtained using these methods confirmed that samples identified as
anomalies in this particular time series have high information value and should
not be discarded from the training set. However, this behavior should be con-
stantly monitored as data characteristics may change over time. Generally, in
the case of chaotic time series, in most cases the resource usage metrics recorded
from HPC systems are in a form which makes continuous adaptation to new data
useful, as data distribution is very dynamic and needs to be taken into account
in order to maintain the accuracy of the predictive model.

5 Conclusions

Currently, cloud computing cannot fully replace supercomputers for applications
such as advanced simulations using HPC, but it may play a complementary role,
allowing calculations to be conducted where local resources are limited. In this
work, we present a solution that enables long-term prediction of cloud resource
consumption. A longer time horizon of resource consumption prediction is espe-
cially important when HPC is used for various simulations, which often run for
a longer period of time. The proposed prediction system utilizes the XGBoost
model and over a year of historical data to predict CPU resource usage. Ex-
periments are conducted using real-life data from the production system. Their
results indicate that proactive resource usage prediction, which models future
usage and enables dynamic resource reservation in advance, is superior to re-
active approaches. In the traditional approach, resources are reserved at their
maximum capacity. In normal usage scenarios without prediction, reservation
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remains at the highest level, even during periods of low demand. However, with
the use of dynamic reservations, predictive capabilities are leveraged to scale
resources dynamically in response to fluctuating demand.

It is worth noting that in our system, we have observed the superiority of
the prediction system based on XGBoost over traditional statistical methods
selected as the baselines. The best prediction method developed was found to
outperform the best baseline model by approximately 16% in terms of RMSE.
In addition to quantitative evaluation, the model exhibited significantly better
qualitative responses to chaotic changes in data characteristics, suggesting that
it is a more reliable predictor of system behavior. The output of the prediction
system can subsequently be utilized to create a resource reservation plan, which
can be used to scale resources.

Standard supervised learning operates under the assumption that each sam-
ple is drawn independently from an identical underlying distribution. However,
chaotic time series and data from HPC systems are dynamic and often exhibit
changes in data distribution, non-linearities, and non-stationarity, which makes
accurate predictions difficult. Long-term prediction is a less explored area com-
pared to the more prevalent short-term prediction, especially predicting one step
ahead. However, the longer the prediction horizon, the less certain it becomes,
but is at the same time more valuable, since it enables more informed decision-
making, cost management and optimization of energy consumption. Setting a
single universal rule is challenging, but evaluating multiple methods, especially
using an incremental approach, allows strong conclusions to be drawn. In-depth
exploratory data analysis may result in becoming more familiar with the data
and putting forward solid predictions.

In further research, we would like to evaluate several models, such as LSTM
(Long short-term memory Neural Network), TCN (Temporal Convolutional Net-
work) and TFT (Temporal Fusion Transformer), to compare their effective-
ness and conduct experiments using real HPC monitoring data. Additionally,
we would like to explore multivariate prediction to incorporate dependencies
between various HPC resource metrics, such as CPU, RAM, I/O, etc. More-
over, our objective is to dynamically evaluate the importance of features and
reduce feature dimensionality by selecting a specific number of features for the
model and summarizing the remaining features via Principal Component Analy-
sis (PCA) or t-SNE. In addition, long-term prediction is of great significance and
critical in HPC as it enables a balance between cost reduction and maintaining
high-quality QoS by provisioning an appropriate amount of dynamically scalable
resources rather than relying on statically reserved resources.
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