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Abstract. Advection-dominated diffusion is a challenging computatio-
nal problem that requires special stabilization efforts. Unfortunately, the
numerical solution obtained with the commonly used Galerkin method
delivers unexpected oscillation resulting in an inaccurate numerical so-
lution. The theoretical background resulting from the famous inf-sup
condition tells us that the finite-dimensional test space employed by the
Galerkin method does not allow us to reach the supremum necessary for
problem stability. We enlarge the test space to overcome this problem.
We do it for a fixed trial space. The method that allows us to do so is
the residual minimization method. This method, however, requires the
solution to a much larger system of linear equations than the standard
Galerkin method. We represent the larger test space by its set of optimal
test functions, forming a basis of the same dimension as the trial space in
the Galerkin method. The resulting Petrov-Galerkin method stabilizes
our challenging advection-dominated problem. We train the optimal test
functions offline with the neural network to speed up the computations.
We also observe that the optimal test functions, usually global, can be
approximated with local support functions, resulting in a low computa-
tional cost for the solver and a stable numerical solution.

1 Introduction

The neural networks can be introduced as a non-linear function

yout = ANN(xin) = θnσ(...σ(θ2σ(θ1xin + ϕ1) + ϕ2) + ...) + ϕn, (1)

where {θj}j=1...n are matrices, possibly with different numbers of rows and
columns, and {ϕj}j=1...n are bias vectors, possibly with a different number of
rows. The selected architecture of the neural network results in a different num-
ber and dimensions of matrices and bias vectors. The classical choice for the
activation function is the sigmoid function σ(x) = 1

1+e−x , besides several other
possibilities (rectified linear unit (ReLU) or leaky ReLU [2,20]).

Recently, in computational science, the classical finite element methods are
often augmented with the neural networks [3,8,15,21]. An overview of the appli-
cation of the Deep Neural Networks into finite element method is presented in [8].
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Paper [15] considers the problem of representing some classes of real-valued uni-
variant approximators with Deep Neural Networks based on the rectified linear
unit (ReLU) activation functions. The space generated by the neural networks
with ReLU activation functions contains the space of the linear finite element
method. The authors claim that the convergence rate of the DNN to the solu-
tion is of a similar order to the convergence rate of the classical finite element
method. By taking (ReLU)k this result can be generated to higher-order finite
element method as well [21]. The Deep Neural Networks can also help guide
refinements in goal-oriented adaptivity [3].

The finite element method utilizes high-order basis functions, e.g., Lagrange
polynomials which are C0 between finite elements [5, 6], or B-spline basis func-
tions, which can be of higher order and continuity [1, 4, 9].

The simulations of difficult, unstable time-dependent problems, like advection-
dominated diffusion [12,13], high-Reynolds number Navier-Stokes equations [11],
or high-contrast material Maxwell equations, have several important applications
in science and engineering. These challenging engineering problems require spe-
cial stabilization methods, such as Streamline-Petrov Upwind Galerkin method
(SUPG) [10], discontinuous Galerkin method (DG) [14, 17], as well as residual
minimization (RM) method [11–13].

2 Methodology

2.1 Galerkin method

Let us introduce an advection-diffusion problem in the strong form: Find u ∈
C2(0, 1) such that

−ϵ
d2u(x)

dx2
+ 1

du(x)

dx
= 0, x ∈ (0, 1). (2)

The advection part “wind" coefficient is given as 1, and the ϵ represents a diffu-
sion coefficient. We recall that the problem is numerically unstable for small val-
ues of ϵ; thus solution cannot be correctly approximated by the classical Galerkin
method without a very large computational mesh. The weak formation, suitable
for the Galerkin method, is the following:∫ 1

0

−ϵ
d2u(x)

dx2
v(x)dx+

∫ 1

0

1
du(x)

dx
v(x)dx = 0, ∀v ∈ V. (3)

We apply a Cauchy boundary condition

−ϵ
du

dx
(0) + u(0) = 1.0, u(1) = 0, (4)

and we rewrite the formula in a simpler form

−ϵ(u′′, v)0 + (u′, v)0 = 0, ∀v ∈ V. (5)
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We integrate by parts to get

ϵ(u′, v′)0 + (u′, v)0 + u(0)v(0) = v(0) ∀v ∈ V. (6)

Now, we select a finite set of test functions, and we formulate a discrete form
as: Find uh ∈ Uh, uh =

∑
i=1,...,21 uiBi(x):

b(uh, vh) = l(vh) ∀vh ∈ Vh (7)
b(uh, vh) = ϵ (u′

h, v
′
h)0 + (u′

h, vh)0 + uh(0)vh(0) (8)
l(vh) = vh(0). (9)

In the discrete formulation, our equation is "averaged" by the test functions
v(x). This is why the accuracy of the numerical solution uh depends on the
quality of the test space Vh. In the classical Galerkin method, we seek a solution
as a linear combination of basis functions. In the Galerkin method, the trial
space, where we seek the solution, is equal to the test space. We choose Uh = Vh;
thus, vh are the same 21 basis functions that are used to approximate the solution
uh. For example, we choose quadratic B-splines with C0 separators as they are
equivalent to the Lagrange basis functions.

2.2 Petrov-Galerkin method

More proper results numerical results give Petrov-Galerkin method, where we
choose a different basis for a solution and a different basis for testing. Still, our
solution is a linear combination of basis functions, for example, linear B-splines.
We test with another basis, for example, quadratic B-splines with C0 separators.
The Petrov-Galerkin formulation is similar to the Galerkin method, but the trail
space is different than the test space: Find uh ∈ Uh, uh =

∑
i=1,...,11 uiBi(x) such

that:

b(uh, vh) = l(vh) ∀vh ∈ V̂h (10)
b(uh, vh) = ϵ (u′

h, v
′
h)0 + (u′

h, vh)0 + uh(0)vh(0) (11)
l(vh) = vh(0). (12)

where vh contains carefully selected 11 elements of Vh. These test functions
are linearly independent, and they are linear combination of the original basis
functions from Vh.

V̂h ∋ vi = {αi
1w1 + · · ·+ αi

21w21|wj ∈ Vh, α
i
j ∈ R}, i = 1, . . . , 11 (13)

Here Vh is the space of all 21 test functions, and V̂h are sub-space defined by
selected 11 basis functions:

11 = dimUh = dim V̂h ≤ dimVh = 21. (14)
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2.3 Advection-diffusion problem with arbitrary coefficients

When we simulate real-life applications with the advection-diffusion equations,
the advection and diffusion coefficients can change from one time step to another.
We generalize our problem into arbitrary ϵ coefficient as then it would be more
general and could be used in real-life simulation.

For a given ϵ ∈ R find uh ∈ Uh such that:

b̂(ϵ, uh, vh) = l(vh) ∀vh ∈ V̂h

b̂(ϵ, uh, vh) = ϵ (u′
h, v

′
h)0 + (u′

h, vh)0 + uh(0)vh(0). (15)

The problem is difficult to solve since it requires proper space of the optimal
test functions V̂h for stabilization with the Petrov-Galerkin method. The optimal
test functions vh can be different for every ϵ. The problem remains numerically
unstable for small ϵ, and we want the optimal test functions to be quickly adapted
for a new problem for different ϵ values.

2.4 Theoretical Uh Vh space implications and limitations

To find the optimal test functions we recall that b(·, ·) satisfies the following
inequality

α∥u∥2 ≤ b(u, u) ≤ M∥u∥2, (16)

where M is the continuity constant b(u, v) ≤ M∥u∥∥v∥ and α is coercivity
constant b(u, u) ≥ α∥u∥2. Since α ≤ M , the constant is always M

α ≥ 1.
In the ideal case, we would like to have the approximation error resulting

from the Galerkin solution uh equal to the distance of the trial space from the
exact solution.
Cea Lemma [Céa, Jean (1964). Approximation variationnelle des problèmes
aux limites (Ph.D. thesis)]

||u− uh|| ≤
M

α
dist{Uh, u}. (17)

Unfortunately, this is only the case if M
α = 1. In reality, M

α ≥ 1, and the best
solution in the approximation space can be worse than the distance of the space
to the exact solution.

The coercivity constant can be estimated from the following:
Babuška theorem (inf-sup condition) [Babuška, Ivo (1970). "Error-

bounds for finite element method". Numerische Mathematik]

inf
u∈U

sup
v∈V

b(u, v)

∥v∥∥u∥
= α > 0. (18)
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The problem is that during the simulation, we select finite dimensional spaces
Uh ⊂ U and Vh ⊂ V , and we seek uh ∈ Uh, vh ∈ Vh. Then we have:

inf
u∈U

sup
v∈V

b(u, v)

∥v∥∥u∥
=α > αh = inf

uh∈Uh

sup
vh∈Vh

b(uh, vh)

∥vh∥∥uh∥
,

M

αh
>

M

α
≥ 1.

(19)

Fig. 1: Comparison of the Galerkin method with trial=test=quadratic B-splines
with C0 separators, and the Petrov-Galerkin method with linear B-splines for
trial and quadratic B-splines with C0 separators for test, and the exact solu-
tion.Ideally, the approximation of a solution should be as good as the distance
of the space where it lives (trial space) to the exact solution.

The supremum may not be realized in the finite-dimensional subset of the
infinite-dimensional test space. This gives the conclusion that we need to test
with larger test space Vh, so it realizes the supremum for α, and M

α is closer to
1.

In order to get a better solution, we need to solve in a fixed trial space and
test in the larger test space. This approach is used in Petrov-Galerkin Uh ̸= Vh,
but in the case of the "classical" Galerkin method, trial space is equal to test
space Uh = Vh.

For example, we employ linear B-splines for the trial space Uh = {Bi,1(x)}1,...,nx ,
and quadratic B-splines for the test space Vh = {Bi,2(x)}1,...,Nx . We seek the
solution in the trial space Uh with 11 basis functions. Our larger test space Vh

has 21 basis functions. We need to compute 11 optimal test functions. They are
linear combinations of the 21 base functions of Vh.

2.5 Residual minimization - optimal test functions for given ϵ

In the residual minimization method we need to prescribe the norm and scalar
product, e.g, g(u, v) =

∫ 1

0
(uv + u′v′)dx or Gij = g(Bi,2, Bj,2) =

∫ 1

0
(Bi,2Bj,2 +

dBi,2

dx
dBj,2

dx )dx to minimize the residual of the solution (or the numerical error).
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Fig. 2: First plot show 11 linear B-splines, second plot show 21 quadratic B-
splines with C0 separators. In the classical Galerkin method the same basis is
used for solution and for testing: Uh = Vh. For the Petrov-Galerkin algorithm
we carefully choose linearly independent 11 basic functions from the test space
of 21 quadratic B-splines.

In the residual minimization problem we minimize the norm under the con-
strained defined as the solution of our problem[

G B
BT 0

] [
r
u

]
=

[
F
0

]
, (20)

where G is the Gram matrix (scalar product matrix) B and F are the problem
matrix and right-hand side.

G =

 g(B1,2, B1,2) · · · g(B1,2, BNx,2)
...

. . .
...

g(BNx,2, B1,2) · · · g(BNx,2, BNx,2)

 , B =

 b(B1,1, B1,2) · · · b(Bnx,1, B1,2)
...

. . .
...

b(B1,1, BNx,2) · · · b(Bnx,1, BNx,2)

 ,

u =

 u1

...
unx

 , r =

 r1
...

rNx

 , F =

 l(B1,2)
...

l(BNx,2)

 .

where by Bi,2 we denote basis functions from the test space, and by Bi,1 we
denote basis functions from the trial space. Our solution is (u1, ..., unx). Here
(r1, ..., rNx

), represents the residual - the local error map.
The residual minimization method is equivalent to the Petrov-Galerkin for-

mulation with the optimal test functions. The coefficients {wk
i }i=1,...,nx

of k =
1, ..., nx optimal test functions
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{w1, · · · , wnx} are obtained by solving Gw = B.


g(B1,2, B1,2) · · · g(B1,2, BNx,2)

.

.

.
. . .

.

.

.
g(BNx,2, B1,2) · · · g(BNx,2, BNx,2)




w1
1 w2

1 · · ·wnx
1

.

.

.
. . .

.

.

.
w1

Nx
w2

Nx
· · ·wnx

Nx

 =


b(B1,2, B1,1) · · · b(B1,2, Bnx,1)

.

.

.
. . .

.

.

.
b(Bnx,2, B1,1) · · · b(Bnx,2, Bnx,1)



This gives system of linear equations with multiple right-hand sides. Solving the
above system gives the optimal test functions V opt

h = span{w1, · · · , wnx} that
form a subspace V opt

h ⊂ Vh. The Petrov-Galerkin formulation with the optimal
test functions gives the best possible, up to the trial space used, solution. We
get this best possible solution by solving: b(B1,1, w

1) · · · b(Bnx,1, w
1)

...
. . .

...
b(B1,1, w

nx) · · · b(Bnx,1, w
nx)


u

opt
1
...

uopt
nx

 =

 l(w1)
...

l(wnx)

 , (21)

where (uopt
1 , · · · , uopt

nx
) is the optimal solution in the base of linear B-splines.

This is to fix the LaTeX formatting in front of section 3. This text is hiden using
white color.

Fig. 3: Test functions for different ϵ calculated using RM method.

3 Numerical results

3.1 Efficient numerical solution using artificial neural net and
Petrov-Galerkin method

We recall that our problem is formulated with the Petrov-Galerkin method. We
seek the solution u, but it requires the knowledge of the optimal Vh for each
ϵ ∈ R. In order to automatically obtain the optimal test functions for a given ϵ,
we approximate Vh with the neural networks.
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Fig. 4: Test functions for different ϵ calculated using proposed method using
simple neural net with 3 hidden layers.

We have to design proper data-set for algorithm. For the given predefined
trial Bi,1 and test Bi,2 basis functions we need to create set of pairs (ϵ, (wk

i ))
and (ϵ, (wk)) (mapping from ϵ coefficient into the coefficients wk

i of the optimal
test functions).
– We randomly select ϵ ∈ (0, 1) - representative sample should be denser to-

wards 0 - we can use exponential distribution to do that.
– We use residual minimization method to find the coefficients of the optimal

test functions wk

 g(B1,2, B1,2) · · · g(B1,2, BNx,2)
· · · · · · · · ·

g(BNx,2, B1,2) · · · g(BNx,2, BNx,2)

 w1
1 · · ·wnx

1
· · · · · ·

w1
nx

· · ·wnx
nx

 =

 b(B1,1, B1,2) · · · b(Bnx,1, B1,2)
· · · · · · · · ·

b(B1,1, BNx,2) · · · b(Bnx,1, BNx,2)



In order to enhance the online computation we would use artificial neural
network to select the proper optimal test functions. Neural network is a function:

NN(x) = Anσ (An−1σ(...σ(A1x+B1)...+Bn−1) +Bn = y, (22)

where Ai are the matrices of coefficients Amn
i , Bi are bias vectors with coordi-

nates Bm
i , and σ is the non-linear activation function.

Our aim in first numerical experiment [16] was to check if for given size of
trial and test spaces we can construct a function using artificial neural network
that gives single wk

i coefficient for all wk ∈ V opt
h .

∀ϵ ∈ R+ NNi,k(ϵ) −→ ωk
i ≈ wk

i , wk ≈ [NN1k(ϵ), · · · ,NNnxk(ϵ)] (23)

It would be impossible to test and train NN for every ϵ so we have to choose
a range of ϵ. We make a mapping that takes logarithm of ϵ onto some predefined
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closed interval [−1, 1]. Such scaling makes the input of NN more sensitise to
smaller values of epsilon.

scaling(ϵ) : ∀ϵ ∈ E ⊂ R+ log10 ϵ −→ [−1, 1] (24)

Let ϵmin = inf E and ϵmax = supE then:

for ϵ < ϵmin, scaling(ϵ) > 1 and for ϵ > ϵmax, scaling(ϵ) < −1. (25)

Conclusion from 25 is that we can choose scalled epsilons outside the training
set. If our set E have representative values then it would approximate well all the
epsilons in R+. Well designed set E implies proper working outside the training
set. Small values of ϵ gives more numerically unstable solutions then bigger
values of ϵ. First, we generate the optimal test functions for each ϵ, and we check
if NN can approximate well the coefficients of test function. We experiment
with the optimal number of layer and neurons. We have found that the optimal
approximation is obtained when we construct one neural network for one optimal
test function.

∀ϵ ∈ E NNk(scaling(ϵ)) −→ υk = [ωk
1 , · · · , ωk

nx
], υk ≈ wk ∈ V opt

h (26)

Our equation for computing the optimal solution with the optimal test func-
tions as provided by the artificial neural networks takes the following form: b(B1,1,NN1(ϵ)) · · · b(Bnx,1,NN1(ϵ))

...
. . .

...
b(B1,1,NNnx

(ϵ)) · · · b(Bnx,1,NNnx
(ϵ))

uuu =

 l(NN1(ϵ))
...

l(NNnx
(ϵ))

 . (27)

To keep computations using NN as simple as possible, we propose 3 hidden
layer neural network. At input and output, we use the linear activation function
and ReLU (σ(x) = max{0, x}) in hidden layers. We use the Adam optimizer with
default settings, and we use the loss function defined as the mean square error.
The mean absolute percentage error was also needed in this case as it monitors
overall sensitivity for all values. We use Python language with the TensorFlow
package compiled to use GPU support. The training procedure takes only 4
seconds to perform 1000 epochs on Nvidia GTX 1650Ti. In the [16], we focused
on justification and investigated the aim of using the neural network in coefficient
approximation. One or two layers could approximate one single coefficient but
performed badly when it came to the whole test function. Too many layers also
affect the quality of the coefficients, as neural nets tend to seek patterns. The
4 layer neural network works well in the case of matrix approximation, where
there is plenty of repetition of similar values. In the [19], we discussed such cases
and the procedure to find the optimal neural net setup.
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ϵ

1

2

12

...

1

2

3

16

...

1

2

12

...

ω1

ω2

ωnx

...
scaller(ϵ) −→

NNk

Fig. 5: NN used in computations have 3 hidden dense layers with 12,16 and 12
neurons respectively.

Fig. 6: Learning procedure for all 9 of 11 optimal test functions (for n = 11).
The first and last test functions are skipped due to the 0 boundary condition.

Fig. 7: Interpolation of optimal test functions for a set of epsilons inside the
training range that were not used during training. The test set was designed in
a way that between every two neighboring epsilons from the train set, one was
selected for the test set.
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The algorithm for Petrov-Galerkin method enhanced with neural networks
providing the optimal test functions:

1. Predefine trail Uh and test Vh spaces for solution that satisfies dimUh <
dimVh.

2. Construct set E from representative sample of diffusion parameter ϵ

– for example selection can be done by using exponential distribution from
interval (0, 1).

3. Using residual minimization find V opt
h

– for every ϵ ∈ E we calculate optimal test functions by solving Gw = B

4. Fit scaling(·) for elements from set E.
5. For every ϵ ∈ E construct the data-set consisting set of pairs (scaller(ϵ), wk),

wk ∈ V opt
h

6. fit NNi for every ϵ ∈ E with data set (scaling(ϵ), wi)i=1,...,nx
to generate

coefficients approximating space V opt
h .

7. Simulate equation:
(a) for a given new ϵ̂ generate approximate wopt by using υk = NNk(scaller(ϵ̂)),

k = 1, . . . , nx

(b) calculate u ≈ uopt by solving the equation: b(B1,1, υ
1) · · · b(Bnx,1, υ

1)
...

. . .
...

b(B1,1, υ
nx) · · · b(Bnx,1, υ

nx)

uuu =

 l(υ1)
...

l(υnx)

 . (28)

MAPE Number of epochs
Test function 100 300 1000 3000 10000

2 104.732 26.100 6.229 2.371 0.374
3 110.895 23.452 0.826 0.988 0.224
4 102.360 23.616 4.977 1.811 2.848
5 130.999 15.936 7.905 5.779 0.546
6 11971.054 149.536 14.874 6.198 3.352
7 90.811 37.762 6.205 1.578 2.661
8 98.659 14.200 11.952 1.851 0.034
9 104.788 18.215 10.215 0.561 0.002
10 114.502 25.796 1.870 0.806 0.282

Table 1: The table shows relation between number of epochs and the mean
squared percentage error (MAPE) for n = 11.

We can check what is the minimum number of samples (epsilons) to train
the neural network to solve the equation with satisfactory low error.
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Fig. 8: Trial space linear B-splines, test space quadratic B-splines with C0 sep-
arators, 100 elements, ϵ = 0.1. (Left panel:) Dense matrix from optimal test
functions. (Right panel:) Sparse matrix with low rank terms removed. (Middle
panel:) Solutions from dense matrix and modified sparse matrix.

3.2 Dealing with global optimal test functions.

The optimal test functions are global, and thus they cannot be used directly for
efficient computations, since the Petrov-Galerkin system build with the optimal
test functions is global (see left panel in Figure 8 ).

Given a trial function uh ∈ Uh, the corresponding optimal test function v
realizes the supremum defining V ′-norm of Buh, so it satisfies

v = argmaxw∈V
b(uh, w)

∥w∥V
. (29)

Since b(uh, v) is defined by an integral over the domain Ω of some expression
involving products of uh, v and their gradients, behavior of v outside the sup-
port K of uh is irrelevant to the value of b(uh, v), but does influence ∥v∥V .
Let g = v|∂K be the trace of v on ∂K and consider a function w ∈ H1(Ω \K)
such that w|∂Ω = 0, w|∂K = g. Such w can be extended to w̃ ∈ H1

0 (Ω) = V by

w̃(x) =

{
w(x), x ̸∈ K

v(x), x ∈ K
. (30)

Then w̃|K = v|K , and so b(uh, w̃) = b(uh, v). By the maximization property
of v, ∥w̃∥V ≥ ∥v∥V . As w̃ and v are equal on K, it follows that∫

Ω\K

∥∇v∥2 dx ≤
∫

Ω\K

∥∇w∥2 dx. (31)

and so v restricted to Ω \K has the minimal L2-norm of the gradient among
all the functions satisfying boundary conditions ·|∂Ω = 0 and ·|∂K = g. By
Dirichlet’s principle, v is the solution of the Laplace equation ∆u = 0 on Ω \K
with these boundary conditions. For example, in 1D case where Ω and K are
intervals, solution of such boundary value problem is a linear function, hence
optimal test functions outside the support of the corresponding trial function
decrease linearly until reaching 0 at the boundary.
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Let us illustrate it on the advection-dominated diffusion equations with 100
elements in one dimension. We show on Figure 9 two exemplary basis functions
v20 and v100 and how they change with ϵ.

The basis of all optimal test functions for 100 elements with trial space of
linear B-splines and test space of quadratic B-splines with C0 separators are
presented on left panel in Figure 10. We can replace this basis by a linear combi-
nation, where all except the last two optimal test functions have local supports
(they are equal to a very small number on the other parts of the domain, and
this number results from the differences of slopes of the original functions and it
decreases to zero when we increase the number of elements). Using these basis
functions for Petrov-Galerkin formulation results in a sparse matrix that can be
factorized in a linear cost (see right panel in Figure 8). Most of the off-diagonal
terms are very small, and their contribution is low rank and can be neglected
(neglecting them does not alter the solution, see the middle panel in Figure 8).
This localization of the optimal test functions can be generalized to two and
three dimensions.

Fig. 9: Trial space with linear B-splines, 100 elements, test space with quadratic
B-splines with C0 separators, 100 elements. Two selected optimal test functions
v20 and v100 for different ϵ.

4 Conclusions

We showed that the neural network could learn coefficients of the optimal test
functions for different parameters of the PDE. They allow for the automatic
stabilization of advection-dominated diffusion problems. Moreover, the optimal
test functions can be approximated with the function having local support, thus
making the matrix of the coefficients of the global test functions sparse. We have
verified our methodology using a one-dimensional advection-dominated diffusion
problem. Future work will involve the generalization of the method into higher
dimensions, as well as replacing the solver with the hierarchical matrices [7,18].
Some preliminary results on the hierarchical matrices solver for two-dimensional
problems are discussed in [19].
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Fig. 10: Trial space linear B-splines, test space quadratic B-splines with C0 sep-
arators, 100 elements. (Left panel:) All optimal test functions. (Right panel:)
Optimal test functions replaced by a linear combination (each optimal test func-
tion subtracted from the previous one).
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