
Memory-based Monte Carlo integration for
solving Partial Differential Equations using

Neural Networks

Carlos Uriarte1,2[0000−0002−0155−3091], Jamie M. Taylor4[0000−0002−5423−828X],
David Pardo2,1,3[0000−0002−1101−2248], Oscar A.

Rodríguez1,2[0000−0003−2938−7221], and Patrick Vega5[0000−0001−6047−9074]

1 Basque Center for Applied Mathematics (BCAM), Bilbao, Spain
{curiarte,orodriguez}@bcamath.org

2 University of the Basque Country (UPV/EHU), Leioa, Spain
{carlos.uriarte,david.pardo}@ehu.eus

3 Ikerbasque: Basque Foundation for Science, Bilbao, Spain
4 CUNEF Universidad, Madrid, Spain

jamie.taylor@cunef.edu
5 Pontificia Universidad Católica de Valparaíso (PUCV), Valparaíso, Chile

patrick.vega@pucv.cl

Abstract. Monte Carlo integration is a widely used quadrature rule
to solve Partial Differential Equations with neural networks due to its
ability to guarantee overfitting-free solutions and high-dimensional scal-
ability. However, this stochastic method produces noisy losses and gra-
dients during training, which hinders a proper convergence diagnosis.
Typically, this is overcome using an immense (disproportionate) amount
of integration points, which deteriorates the training performance. This
work proposes a memory-based Monte Carlo integration method that
produces accurate integral approximations without requiring the high
computational costs of processing large samples during training.

Keywords: Neural Networks · Monte Carlo integration · Optimization

1 Introduction

Over the past decade, neural networks have proven to be a powerful tool in the
context of solving Partial Differential Equations (PDEs) [5, 8, 9, 12, 18–20]. In
such cases, the traditional approach is to reformulate the PDE as a minimiza-
tion problem, where the loss function is often described as a definite integral and,
therefore, approximated or discretized by a quadrature rule. Then, the minimiza-
tion is performed according to a gradient-based optimization algorithm [6,16].

Using a deterministic quadrature rule with fixed integration points possibly
leads to misbehavior of the network away from the integration points (an over-
fitting problem) [14], leading to large integration errors and, consequently, poor
solutions. To overcome this, Monte Carlo integration is a popular and suitable
choice of quadrature rule due to the mesh-free and stochastic sampling of the

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_51

https://dx.doi.org/10.1007/978-3-031-36021-3_51
https://dx.doi.org/10.1007/978-3-031-36021-3_51


2 C. Uriarte et al.

integration points during training [2, 4, 7, 10, 13]. However, Monte Carlo inte-
gration converges as O(1/

√
N), where N is the number of integration points.

Thus, in practice, this may require tens or hundreds of thousands of integra-
tion points to obtain an acceptable error per integral approximation —even for
one-dimensional problems, which deteriorates the training speed.

In this work, we propose a memory-based approach that approximates defi-
nite integrals involving neural networks by taking advantage of the information
gained in previous iterations. As long as the expected value of these integrals
does not change significantly, this technique reduces the expected integration
error and lead to better approximations. Moreover, since gradients are also de-
scribed in terms of definite integrals, we apply this approach to the gradient
computations, which leads to a reinterpretation of the well-known momentum
method [11] when we appropriately modify the hyperparameters of the optimizer.

2 Approximation with neural networks

Let us consider a well-posed minimization problem,

u = argmin
v∈V

F(v), (1)

where V denotes the search space of functions with domain Ω, F : V −→ R is
the (exact) loss function governing our minimization problem, and u is the exact
solution.

Let vθ : Ω −→ R denote a neural network architecture parameterized by the
set of trainable parameters θ. We denote the set of all possible realizations of vθ
by

VΘ := {vθ : Ω −→ R}θ∈Θ, (2)

where Θ is the domain of all admissible parameters θ. Then, a neural network
approximation of problem (1) consists in replacing the continuous search space
V with the parameterized space∗ VΘ,

u ≈ arg inf
vθ∈VΘ

F(vθ). (3)

To carry out the minimization, one typically uses a first-order gradient-
descent-based optimization scheme. In the classical case, it is given by the fol-
lowing iterative method:

θt+1 := θt − η
∂F
∂θ

(vθt), (4)

where η > 0 is the learning rate, and θt denotes the trainable parameters at the
tth iteration.

∗In general, VΘ is non-convex and non-closed, possibly preventing the uniqueness
and existence of minimizers (e.g., see Example 2.3 in [1]).

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_51

https://dx.doi.org/10.1007/978-3-031-36021-3_51
https://dx.doi.org/10.1007/978-3-031-36021-3_51


Memory-based Monte Carlo integration for solving PDEs using NNs 3

For F in the form of a definite integral,

F(vθ) =

∫
Ω

I(vθ)(x) dx, (5)

we approximate it by a quadrature rule, producing a discrete loss function L.
Taking Monte Carlo integration as the quadrature rule for the loss, we have

F(vθ) ≈ L(vθ) :=
Vol(Ω)

N

N∑
i=1

I(vθ)(xi), (6)

where {xi}Ni=1 is a set of N integration points sampled from a random uniform
distribution in Ω.

For the gradients, we have

∂F

∂θ
(vθ) ≈ g(vθ) :=

∂L
∂θ

(vθ) =
Vol(Ω)

N

N∑
i=1

∂I(vθ)

∂θ
(xi), (7)

which yields a discretized version of (4),

θt+1 := θt − ηg(vθt), (8)

known as a stochastic gradient-descent (SGD) optimizer [15]. Here, the “stochas-
tic” term means that at different iterations, the set of integration points to
evaluate ∂L/∂θ is random†.

From now on, we write F(θt), ∂F
∂θ (θt), L(θt), and g(θt) as simplified versions

of F(vθt),
∂F
∂θ (vθt), L(vθt), and g(vθt), respectively.

3 Memory-based integration and optimization

If we train the network according to (8), we obtain a noisy and oscillatory be-
havior of the loss and the gradient. This occurs because of the introduced Monte
Carlo integration error at each training iteration. Figure 1 (blue curve) illus-
trates the noisy behavior of Monte Carlo integration in a network with a single
trainable parameter that permits exact calculation of F (black curve).

3.1 Integration

In order to decrease the integration error during training, we replace (6) by the
following recurrence process:

F(θt) ≈ Lt := αtL(θt) + (1− αt)Lt−1, (9a)
†In classical data science, SGD is performed by selecting random (mini-)batches

from a finite dataset. In contrast, we have an infinite database Ω, and we select finite
random samples from Ω at each iteration, implying that points are never reutilized
during training and helping to avoid overfitting.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_51

https://dx.doi.org/10.1007/978-3-031-36021-3_51
https://dx.doi.org/10.1007/978-3-031-36021-3_51


4 C. Uriarte et al.

where L(θt) is the Monte Carlo estimate at iteration t, and {αt}t≥0 is a selected
sequence of coefficients 0 < αt ≤ 1 such that α0 = 1. In expanded form,

Lt =

t∑
l=0

αl

(
t−l∏
s=1

(1− αl+s)

)
L(θl), (9b)

which shows that the approximation Lt of F(θt) is given as a linear combination
of the current and all previous Monte Carlo integration estimates. If αt = 1 for
all t, we recover the usual Monte Carlo integration case without memory.

Figure 1 (red curve) shows the memory-based loss Lt evolution along training
according to ordinary SGD optimization (8) and selecting αt = e−0.001t +0.001.
In the beginning, we integrate with large errors (αt is practically one, and there-
fore, there is hardly any memory in Lt). However, as we progress in training,
we increasingly endow memory to Lt (αt becomes small), and as a consequence,
its integration error decreases. Lt produces more accurate approximations than
L(θt), allowing better convergence monitoring to, for example, establish proper
stopping criteria if desired.

0 2,000 4,000 6,000 8,000 10,000

−2

−1.5

−1

t

lo
ss

L(θt) Lt F(θt) optimal exact value

Fig. 1: Training of a single-trainable-parameter network whose architecture per-
mits exact calculation of F . The training is performed according to (8), and
thus, L(θt) is its associated loss. Lt and F(θt) are computed for monitoring.

3.2 Optimization

While the proposed scheme may be able to improve the approximation of F , we
have that a corresponding SGD scheme using (9) is equivalent to classical SGD
with a different learning rate since ∂Lt

∂θ (θt) = αtg(θt).
However, we can naturally endow the idea of memory-based integration to

the gradients, as g(θt) is also obtained via Monte Carlo integration —recall (7),

∂F
∂θ

(θt) ≈ gt := γtg(θt) + (1− γt)gt−1, (10a)

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_51

https://dx.doi.org/10.1007/978-3-031-36021-3_51
https://dx.doi.org/10.1007/978-3-031-36021-3_51


Memory-based Monte Carlo integration for solving PDEs using NNs 5

where {γt}t≥0 is a selected sequence of coefficients such that 0 < γt ≤ 1 and
γ0 = 1. Then, we obtain a memory-based SGD optimizer employing the gt term
instead of g(θt) —recall (8),

θt+1 := θt − ηgt. (10b)

In the expanded form, we have

gt =

t∑
l=0

γl

(
t−l∏
s=1

(1− γl+s)

)
g(θl). (10c)

Figure 2 shows the gradient evolution during training of the previous single-
trainable-parameter model problem. We select αt = γt for all t, with the same
exponential decay as before. gt produces more accurate approximations of the
exact gradients than g(θt), minimizing the noise.

0 2,000 4,000 6,000 8,000 10,000

−0.6

−0.4

−0.2

0

t

gr
ad

ie
nt

g(θt) gt ∂F
∂θ

(θt) optimal exact value

Fig. 2: Gradient evolution of the single-trainable-parameter model problem in
Figure 1. The optimization is performed according to (8) using g(θt), while gt
and ∂F

∂θ (θt) are computed for monitoring.

Proper tuning of the coefficients αt and γt is critical to maximize integra-
tion performance. Coefficients should be high (low memory) when the involved
integrals vary rapidly (e.g., at the beginning of training). Conversely, when the
approximated solution is near equilibrium and the relevant integrals vary slowly,
the coefficients should be low (high memory). The optimal tuning of these co-
efficients to improve training performance will be analyzed in a more extended
subsequent work.

4 Relation with the momentum method

The SGD optimizer with momentum (SGDM) [11, 17] is commonly introduced
as the following two-step recursive method:

vt+1 := βvt − g(θt), (11a)
θt+1 := θt + ηvt+1, (11b)

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_51

https://dx.doi.org/10.1007/978-3-031-36021-3_51
https://dx.doi.org/10.1007/978-3-031-36021-3_51


6 C. Uriarte et al.

where vt is the momentum accumulator initialized by v0 = 0, and 0 ≤ β < 1 is
the momentum coefficient. If β = 0, we recover the classical SGD optimizer (8).
Rewriting (11) in terms of the scheme θt+1 = θt − ηgt, we obtain

gt = g(θl) + βgt−1 =

t∑
l=0

βt−lg(θl). (11c)

A more sophisticated version of SGDM modifies the momentum coefficient
during training (see, e.g., [3]), namely, defined as in (11) but replacing β with
βt for some conveniently selected sequence {βt}t≥1. Then, the gt term results

gt = g(θl) + βtgt−1 =

t∑
l=0

(
t−l∏
s=1

βl+s

)
g(θl). (12)

Selecting proper hyper-parameters βt during training is challenging, and an in-
adequate selection may lead to poor results. However, by readjusting the learning
rate and momentum coefficient in the SGDM optimizer according to the varia-
tion of γt in (10) for t ≥ 1,

ηt := ηt−1
γt

γt−1
, η0 := η, (13a)

βt := γt−1
1− γt
γt

, (13b)

we recover our memory-based proposal (10).
Both optimizations (10) and (11)-(12) stochastically accumulate gradients to

readjust the trainable parameters. However, while (11)-(12) considers a geomet-
rically weighted average of past gradients without aiming gt resemble ∂F

∂θ (θt),
our recursive convex combination proposal (10) re-scales the current and prior
gradients to gt deliberately imitate ∂F

∂θ (θt) —recall Figure 2.
Equation (13) re-interprets the SGDM as an exact-gradient performer by re-

scaling the learning rate. In contrast, our memory-based proposal provides the
exact-gradient interpretation leaving the learning rate free. In consequence, the
learning rate is an independent hyperparameter of the gradient-based optimizer
and not an auxiliary element to interpret gradients during training. Moreover,
our optimizer is designed to work in parallel with the memory-based loss (9)
that approximates the (typically unavailable) exact loss during training.

5 Conclusions and future work

In the context of solving PDEs using neural networks, this work addresses a
common difficulty when employing Monte Carlo integration: the convergence of
the loss and its gradient is noisy due to the large integration errors committed
at each training iteration.

To improve integration accuracy (without incurring in prohibitive computa-
tional costs), we propose a memory-based iterative method that conveniently

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_51

https://dx.doi.org/10.1007/978-3-031-36021-3_51
https://dx.doi.org/10.1007/978-3-031-36021-3_51


Memory-based Monte Carlo integration for solving PDEs using NNs 7

accumulates integral estimations in previous iterations when the convergence
reaches an equilibrium phase. We show that our resulting method is equivalent
to reinterpreting a modified momentum method.

In future work, we shall study the automatic optimal selection of hyper-
parameters (αt, γt, and η) of our memory-based algorithm to improve conver-
gence speed in different problems.

Acknowledgments

David Pardo has received funding from: the European Union’s Horizon 2020 re-
search and innovation program under the Marie Sklodowska-Curie grant agree-
ment No. 777778 (MATHROCKS); the Spanish Ministry of Science and Inno-
vation projects with references TED2021-132783B-I00, PID2019-108111RB-I00
(FEDER/AEI) and PDC2021-121093-I00 (MCIN / AEI / 10.13039/501100011033
/ Next Generation EU), the “BCAM Severo Ochoa” accreditation of excel-
lence CEX2021-001142-S / MICIN / AEI / 10.13039 / 501100011033; and the
Basque Government through the BERC 2022-2025 program, the three Elkartek
projects 3KIA (KK-2020/00049), EXPERTIA (KK-2021/00048), and SIGZE
(KK-2021/00095), and the Consolidated Research Group MATHMODE (IT1456-
22) given by the Department of Education.

Patrick Vega has received funding from: the Chilean National Research and
Development Agency (ANID) though the grant ANID FONDECYT No. 3220858.

We would also like to thank the undergraduate students Nicolás Zamorano
and Patricio Asenjo, who belong to the Mathematics and Mathematical Civil
Engineering bachelor programs of the Pontificia Universidad Católica de Val-
paraíso and the Universidad de Concepción, respectively, for their concerns and
contributions during the elaboration of this work.

References

1. Brevis, I., Muga, I., van der Zee, K.G.: Neural control of discrete weak formulations:
Galerkin, least squares & minimal-residual methods with quasi-optimal weights.
Computer Methods in Applied Mechanics and Engineering 402, 115716 (2022)

2. Chen, J., Du, R., Li, P., Lyu, L.: Quasi-Monte Carlo sampling for solving partial
differential equations by deep neural networks. Numer. Math. Theory Methods
Appl. 14(2), 377–404 (2021)

3. Chen, J., Wolfe, C., Li, Z., Kyrillidis, A.: Demon: Improved Neural Network Train-
ing with Momentum Decay. In: ICASSP 2022-2022 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). pp. 3958–3962. IEEE (2022)

4. Dick, J., Kuo, F.Y., Sloan, I.H.: High-dimensional integration: the quasi-Monte
Carlo way. Acta Numer. 22, 133–288 (2013)

5. E, W., Yu, B.: The Deep Ritz Method: A Deep Learning-Based Numerical Al-
gorithm for Solving Variational Problems. Communications in Mathematics and
Statistics 6(1), 1–12 (2018)

6. Goodfellow, I., Bengio, Y., Courville, A.: Deep learning. MIT press (2016)

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_51

https://dx.doi.org/10.1007/978-3-031-36021-3_51
https://dx.doi.org/10.1007/978-3-031-36021-3_51


8 C. Uriarte et al.

7. Grohs, P., Jentzen, A., Salimova, D.: Deep neural network approximations for
solutions of PDEs based on Monte Carlo algorithms. Partial Differ. Equ. Appl.
3(4), Paper No. 45, 41 (2022)

8. Kharazmi, E., Zhang, Z., Karniadakis, G.E.: Variational physics-informed neural
networks for solving partial differential equations. arXiv preprint arXiv:1912.00873
(2019)

9. Kharazmi, E., Zhang, Z., Karniadakis, G.E.: hp-VPINNs: Variational physics-
informed neural networks with domain decomposition. Computer Methods in Ap-
plied Mechanics and Engineering 374, 113547 (2021)

10. Leobacher, G., Pillichshammer, F.: Introduction to quasi-Monte Carlo integration
and applications. Springer (2014)

11. Polyak, B.T.: Some methods of speeding up the convergence of iteration methods.
USSR Computational Mathematics and Mathematical Physics 4(5), 1–17 (1964)

12. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving
nonlinear partial differential equations. Journal of Computational Physics 378,
686–707 (2019)

13. Reh, M., Gärttner, M.: Variational Monte Carlo Approach to Partial Differential
Equations with Neural Networks. Machine Learning: Science and Technology 3(4),
04LT02 (2022)

14. Rivera, J.A., Taylor, J.M., Omella, Á.J., Pardo, D.: On quadrature rules for solv-
ing Partial Differential Equations using Neural Networks. Computer Methods in
Applied Mechanics and Engineering 393, 114710 (2022)

15. Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Statistics
22, 400–407 (1951)

16. Ruder, S.: An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747 (2016)

17. Sutskever, I., Martens, J., Dahl, G., Hinton, G.: On the importance of initialization
and momentum in deep learning. In: Proceedings of the 30th International Confer-
ence on Machine Learning - Volume 28. p. III–1139–III–1147. ICML’13, JMLR.org
(2013)

18. Taylor, J.M., Pardo, D., Muga, I.: A Deep Fourier Residual method for solving
PDEs using Neural Networks. Computer Methods in Applied Mechanics and En-
gineering 405, 115850 (2023)

19. Uriarte, C., Pardo, D., Muga, I., Muñoz-Matute, J.: A Deep Double Ritz Method
(D2RM) for solving Partial Differential Equations using Neural Networks. Com-
puter Methods in Applied Mechanics and Engineering 405, 115892 (2023)

20. Uriarte, C., Pardo, D., Omella, Á.J.: A Finite Element based Deep Learning solver
for parametric PDEs. Computer Methods in Applied Mechanics and Engineering
391, 114562 (2022)

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_51

https://dx.doi.org/10.1007/978-3-031-36021-3_51
https://dx.doi.org/10.1007/978-3-031-36021-3_51

