
Chemical Mixing Simulations with Integrated AI
Accelerator

Krzysztof Rojek1[0000−0002−2635−7345], Roman
Wyrzykowski1[0000−0003−1724−1786], and Pawel Gepner2[0000−0003−0004−1729]

1 Institute of Computer and Information Sciences, Częstochowa University of
Technology, Poland

https://pcz.pl
2 Faculty of Mechanical and Industrial Engineering, Warsaw University of

Technology, Poland
https://www.pw.edu.pl

Abstract. In this work, we develop a method for integrating an AI
model with a CFD solver to predict chemical mixing simulations’ out-
put. The proposed AI model is based on a deep neural network with
a variational autoencoder that is managed by our AI supervisor. We
demonstrate that the developed method allows us to accurately accel-
erate the steady-state simulations of chemical reactions performed with
the MixIT solver from Tridiagonal solutions.
In this paper, we investigate the accuracy and performance of AI-accelera-
ted simulations, considering three different scenarios: i) prediction in
cases with the same geometry of mesh as used during training the model,
ii) with a modified geometry of tube in which the ingredients are mixed,
iii) with a modified geometry of impeller used to mix the ingredients.
Our AI model is trained on a dataset containing 1500 samples of simu-
lated scenarios and can accurately predict the process of chemical mix-
ing under various conditions. We demonstrate that the proposed method
achieves accuracy exceeding 90% and reduces the execution time up to
9 times.

Keywords: CFD · chemical mixing · artificial intelligence · machine
learning · DNN · HPC

1 Introduction

Artificial intelligence (AI) and machine learning (ML) are rapidly growing fields
revolutionizing many areas of science and technology [15], including high-perfor-
mance computing (HPC) simulations. HPC simulations involve using supercom-
puters and other advanced computing systems to perform complex calculations
and simulations in physics, engineering, biology, etc. AI techniques can be effi-
ciently used by enabling computing platforms to learn from datasets and make
accurate extrapolations of simulations to reduce the execution time of intensive
solver computations significantly. In particular, machine learning algorithms can
be used to analyze and interpret simulation data, identify patterns and trends,
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and predict outcomes. AI can also be used to optimize simulation parameters and
directly predict the results. By leveraging the power of AI/ML, HPC simulations
can help researchers and scientists gain new insights and make more informed
decisions in a wide range of fields. In this paper, we develop a method for in-
tegrating a proposed AI model with the MixIT tool based on the OpenFOAM
(Open Field Operation and Manipulation) [9] solver to accelerate chemical mix-
ing simulations.

Chemical mixing simulations are computer-based models used to predict
chemical mixtures’ behavior under various conditions [15]. These simulations
can be used in a variety of industries, including pharmaceuticals, petrochemi-
cals, and food and beverages, to help optimize the production of chemical prod-
ucts and reduce the cost and environmental impact of manufacturing. Overall,
chemical mixing simulations are a powerful tool that can help improve chemical
manufacturing processes’ efficiency while reducing the cost and environmental
impact of these processes.

OpenFOAM [9] is a widely used open-source software platform for simulat-
ing and analyzing fluid flow and heat transfer. It has been used in a variety
of industries, including aerospace, automotive, and chemical processing. One
of the main features of OpenFOAM is its highly modular and flexible design,
which allows users to easily customize and extend the software to meet their
specific needs. OpenFOAM includes a range of solvers and libraries for simulat-
ing different types of fluid flow, as well as tools for meshing, visualization, and
post-processing of simulation results.

In this paper, we extend the method proposed in our previous papers [15, 14]
and explore new techniques and models. The previously proposed method has
limitations that restrict its applicability. It can not handle modified geometries
of the simulated phenomenon with the required accuracy, being able to solve
problems within the close family of scenarios used during training. To overcome
this limitation, in this work, we develop new methods which enable us to handle
a broader range of scenarios. The contributions of our paper are outlined below:

– We develop a method for integrating the AI model with the computational
fluid dynamics (CFD) solver that leverages the power of machine learning
to improve the accuracy and efficiency of fluid flow predictions.

– We propose an AI model based on the variational autoencoder (VAE) archi-
tecture to predict key quantities in CFD simulations, including pressure and
velocity, as well as an ML algorithm detecting the steady state and making
a decision to stop the simulation.

– The efficiency of our method is demonstrated through a series of experiments,
comparing the results of our AI-accelerated simulations to those obtained
using traditional CFD methods.

– It is shown that our AI-accelerated simulations can produce accurate results
with different tube and impeller geometries in simulated phenomena.

– The performance and accuracy of the proposed solution are investigated for
3D cases with meshes exceeding 1 million cells.
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2 Related work

A significant amount of research has focused on the use of AI techniques in
CFD simulations in recent years. These techniques can potentially improve the
efficiency and accuracy of CFD simulations and enable the simulation of more
complex and realistic problems [2, 24].

A common approach is to employ machine learning algorithms to model
and predict the behavior of fluids. For example, neural networks were used to
predict the aeroelastic response of the coupled system [20], or approximate com-
putational fluid dynamics for modeling turbulent flows [4].

Other researchers have explored using AI techniques to optimize the param-
eters and settings of CFD simulations [11]. Genetic algorithms and other opti-
mization methods were used to identify the optimal mesh size and solver settings
for a given simulation and to adjust these parameters based on the simulation
results automatically [1].

The use of AI techniques to analyze and interpret the results of CFD sim-
ulations was also a subject of research [27]. For example, clustering algorithms
were exploited to group similar flow patterns [16], and classification algorithms
were used to identify and classify different types of flow.

There are several ways in which AI techniques are incorporated into HPC
simulations. Some common approaches include:

– Machine learning-based models: Machine learning algorithms can be used to
model and predict the behavior of systems being simulated by HPC systems
[14, 2, 26]. These models are trained on large amounts of data and used to
make accurate and efficient predictions [7], which can be incorporated into
HPC simulation.

– Optimization of simulation parameters: AI techniques, such as deep learning
and machine learning, are used to optimize the parameters and settings of
HPC simulations [13, 25]. These techniques can search through a large space
of possible parameter values and identify the optimal configurations for a
given simulation.

– Data analysis and approximation: AI techniques, such as interpolation with
deep learning algorithms, can be used to create generative models able to
accurately approximate the training data set of HPC simulations [3]. These
techniques identify patterns and trends in the data and provide insights that
may not be immediately apparent from the raw data.

– Real-time control: In some cases, AI techniques are used to control HPC
simulations in real-time [5]. For example, an AI system is used to adjust the
parameters of a simulation based on the current state of the system being
simulated.

There has been a growing interest in using AI techniques in weather forecast-
ing simulations in recent years [23]. These techniques can potentially improve
the accuracy and reliability of weather forecasts and enable the simulation of
more complex and realistic weather scenarios. One common approach is to use
machine learning algorithms to model and predict the atmosphere’s behavior.
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Fig. 1: Tube equipped with a single impeller during the simulation of the mag-
nitude of U [m/s].

For example, neural networks were exploited to model and forecast the evolution
of weather systems, such as storms and hurricanes [19]. Other researchers used
machine learning techniques to predict the likelihood of extreme weather events,
such as floods and droughts. AI techniques have also been used to optimize the
parameters and settings of weather forecasting simulations [18]. For example,
genetic algorithms and other optimization methods were employed to identify
the optimal initial conditions and model configurations for a given simulation
[12].

Overall, integrating AI with HPC simulations can greatly improve these sim-
ulations’ efficiency and accuracy and enable them for more complex and realistic
systems.

3 Chemical mixing simulations

One of the main benefits of chemical mixing simulations is that they can be
used to test different scenarios and variables without the need for expensive and
time-consuming physical experiments. This allows researchers and engineers to
quickly evaluate the effects of different factors on the resulting mixture, including
temperature, pressure, and mixing speed.

Our simulations are performed with a MixIT tool [6], which is based on
the OpenFOAM platform. MixIT is the next-generation collaborative mixing
analysis tool designed to facilitate comprehensive stirred tank analysis using
laboratory and plant data, empirical correlations, and advanced 3D CFD models.

The chemical mixing simulations are based on the standard k-epsilon model
[10]. The goal is to compute the converged state of the liquid mixture in a tank
equipped with a single impeller and a set of baffles. Based on different settings
of the input parameters, we simulate a set of quantities, including the velocity
vector field U , pressure scalar field p, turbulent kinetic energy k of the substance,
turbulent dynamic viscosity mut, and turbulent kinetic energy dissipation rate
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ϵ. This paper focuses on predicting the most important quantities, including U
and p. The basic geometry used to train our model is shown in Fig. 1, where we
use a cylindrical tube and a single flat impeller. Here we focus on simulations
with a mesh of size 1 million cells. The traditional CFD simulation used in our
scenario requires 5000 iterations.

4 AI accelerator for CFD simulations

4.1 Basic scheme of AI-accelerated simulations

Fig. 2b presents the basic scheme of the AI-accelerated simulation versus the
conventional non-AI simulation illustrated in Fig. 2a. This scheme includes the
initial iterations computed by the CFD solver and the AI-accelerated prediction
module. The CFD solver produces results sequentially, iteration by iteration. In
the basic scheme, which was used in our previous works [14, 15], the results of
initial iterations computed by the solver are sent as input to the AI module,
which generates the final results of the simulation.

4.2 New method of integrating AI prediction with a CFD solver:
AI supervisor

This work proposes a new method for incorporating AI predictions into CFD
simulations. Besides the conventional CFD solver, this method involves two other
parts. The first one - AI supervisor, is designed to switch between traditional
CFD simulation executed by a CFD solver and AI predictions. The second one is
the AI accelerator module, responsible for AI predictions. It provides an extrap-
olation of the simulation to achieve results faster. The overall idea is presented
in Fig. 2c.

In this scheme, a traditional CFD simulation is first executed for a specified
number of iterations to generate a set of initial data points. These initial data
points are then used by a machine learning model, which can accurately predict
the fluid flow dynamics in subsequent iterations. Once the machine learning
model generates the output, the AI supervisor invokes the traditional CFD solver
to resume the simulation on the predicted data. The supervisor continues to
switch between CFD and AI parts until a convergence state of the simulation is
achieved. The number of iterations required to achieve convergence depends on
the complexity of the simulated flow dynamics and the training data quality.

The AI supervisor recognizes the data pattern in simulation and decides if
the steady state is achieved. It analyses the output of the CFD simulation and
decides whether to invoke the AI accelerator or stop the simulation.

The AI supervisor uses One-Class Support Vector Machine (SVM) [8] model
to detect achieving the converged state. This is a type of machine learning algo-
rithm used for anomaly detection. Anomaly detection is the process of identifying
observations that deviate significantly from most of the data points, which are
considered normal or expected. This algorithm is trained by the data containing
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Fig. 2: Comparison of the traditional workflow of CFD simulation (a), the ba-
sic scheme of AI-accelerated simulation (b), and the proposed method of AI-
accelerated simulation with AI supervisor (c).

the standard deviation of differences between elements of vectors corresponding
to boundary iterations of the last 75 iterations of the CFD simulations. Such
data are assumed to contain normal (expected) samples. The algorithm then at-
tempts to build a boundary around these normal examples so that new, unseen
data points that fall outside the boundary are classified as anomalies.

The supervisor will stop the simulation and return the results if the predicted
output is sufficiently close to the converged state. If the predicted output is not
close enough to the converged state, the supervisor will call the AI accelerator
to make a prediction and then executes 100 more iterations of a CFD solver.
The simulation flow is described by the Algorithm 1.

The proposed method allows us to improve the performance of the simula-
tions compared to the traditional CFD solver while ensuring that the simulation
results are reliable and consistent. Using the converged state as a stopping cri-
terion, we can reduce the number of iterations of the simulations.

4.3 AI model for CFD acceleration

Our AI model for predicting iterations results is based on a variational au-
toencoder (VAE) architecture [17]. It is a powerful and flexible neural network
architecture well-suited for CFD simulations for two main reasons.

Algorithm 1 Managing a CFD simulation by the AI supervisor
Require: 100 iterations of CFD solver
Ensure: iter25, iter50, iter75, iter100

while OneClassSVM(std(iter100 − iter25)) do ▷ True if anomaly detected
iterpred ← model.predict(iter25, iter50, iter75, iter100) ▷ Predict steady-state
iter25, iter50, iter75, iter100 ← CFDSolver(iterpred) ▷ Smooth data with solver

end while
Return iter100
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(a) Encoder (b) Decoder

Fig. 3: Architecture of encoder and decoder models used to create VAE.

First, the VAE architecture is highly efficient and scalable, allowing us to
process large amounts of data quickly and accurately. This is critical in CFD
simulations, where large datasets and complex computations are commonly en-
countered. Second, this architecture allows us to learn the underlying structure
and patterns in the data without explicit supervision, making it a powerful tool
for understanding complex systems.

In our experiments, we use a machine learning pipeline based on the VAE
architecture to predict key quantities in CFD simulations, including pressure
and velocity. Specifically, we take four iterations of the CFD simulation as input
to the model and return a single output. Inputs and outputs are represented by
the quantities corresponding to 1 million cells and are used as a separate row of
the input/output arrays. As a result, we have four input rows (three for a 3D
velocity vector field and one for a scalar pressure field). This approach allows us
to accurately predict the system’s behavior over time while accounting for the
complex and dynamic nature of fluid flows in CFD simulations. Fig. 3 shows our
encoder and decoder, while the full VAE model is presented in Fig. 4.
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Fig. 4: Full VAE model.

4.4 Dataset

In our simulations, a 3D mesh with 1 million cells is utilized. The mesh was
designed to represent the physical characteristics of the system being simulated
accurately and to capture the complex fluid flow dynamics in detail.

To feed our network, we use a dataset consisting of results of 50 CFD simula-
tions, each with a different set of parameters and input data, and each requiring
5000 iterations to achieve a steady state. To train our ML model, we create
30 samples for each simulation, resulting in 1500 samples in the dataset. Each
sample includes four iterations as input and one iteration as output. Samples
generated from a single simulation contain iterations 25 + 100 ∗ i, 50 + 100 ∗ i,
75 + 100 ∗ i, 100 + 100 ∗ i (where i = 0, 1, . . . , 29) as input data, and the final
5000-th iteration as output data. All the simulations have the same geometry
with a single impeller and cylindrical tube. The differences between the simula-
tions are the results of different liquid levels, rotates per minute (RPM) of the
impeller, and viscosity of the mixed substance. The range of RPM varies from
110 to 450, indicating a moderate to the high-speed range. The viscosity range
is from 1 to 5000 centipoise (cP) (millipascal x seconds). Finally, the liquid level
contains 15 different levels that are linearly distributed across the top half of the
tube.

We divided our dataset into two parts for training and validation, with 90%
of the data used for training and 10% for validation. This allows us to train our
model on a large and diverse set of data while still ensuring that the models can
generalize well to new data.

5 Experimental results

5.1 Testing Platform

The testing platform used to evaluate the performance and accuracy of our AI-
accelerated simulations consists of the Intel Xeon Gold 6148 CPU equipped with
the NVIDIA V100 GPU dedicated to training the machine learning algorithms.
The CPU is used for executing a CFD solver and making AI predictions, while
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the GPU is dedicated to training the model. During model training and infer-
encing of the model, the half-precision and single-precision formats are used,
respectively. Such a mixed-precision approach [22] is beneficial in our case since
half-precision reduces memory usage and increases training speed, while single-
precision provides more accurate results during inferencing.

The Intel Xeon Gold 6148 CPU is a server-grade processor that provides
20 cores and 40 threads, with a base clock speed of 2.4 GHz and a turbo fre-
quency of up to 3.7 GHz. The NVIDIA V100 GPU, on the other hand, is a
graphics processing unit designed specifically for machine learning and other
HPC applications. It includes 5120 CUDA cores and 640 Tensor Cores, with
a peak performance of up to 7.8 Tflops for double-precision calculations and
15.7 Tflops for single-precision. It also features 16 GB of HBM2 memory with a
memory bandwidth of up to 900 GB/s.

In our experiments, a significant amount of memory is required to handle the
large dataset and complex computations required for our simulations. Specifi-
cally, 400GB of DRAM memory is used to store and process the data used in
our simulations.

5.2 Accuracy results

Verifying accuracy includes both visualizations and numerical metrics. Visual-
izations such as contour plots provide qualitative verification of the flow field.
We also use statistical metrics [21] such as the root-mean-square error (RMSE)
and Pearson and Spearman coefficients to assess the accuracy of our predictions
quantitatively.

The experiments in this section are based on three newly created cases. First,
we consider the case with the same mesh geometry as used while training the
model. Second, we study the case with a modified geometry of the tube in which
the ingredients are mixed. Finally, a modified geometry of the impeller used to
mix the ingredients is considered.

Fig. 5 shows contour plots of the velocity magnitude (U). In relation to cases
used during training, this case contains the same geometry of tube and impeller
but a different combination of values of RPM, viscosity, and liquid level. For
these experiments, we use the parameters from the middle of their respective
ranges. This means that the RPM is set to 280, while the viscosity is set to
2500 cP. However, for the liquid level, we use a fully filled tube. By using these
parameters, we can expect to see a wide range of fluid properties and accurately
measure their behavior in this controlled environment.

Fig. 6 presents the simulation results when a different-shaped tube is used.
Such a rectangular geometry of the tube was not used during training. The shape
of the tube significantly affects the velocity profile of the fluid.

Next, we examine the pressure (p) field in a rectangular tube with flat agi-
tator blades (Fig. 7), which was used during training, and wider agitator blades
(Fig. 8), which was not used during training. A wider blade configuration pro-
duces a different pressure distribution than a flat blade configuration due to the
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(a) with AI. (b) CFD solver.

Fig. 5: Contour plot of the velocity magnitude (U) in the cylindrical tube.

(a) with AI (b) CFD solver

Fig. 6: Contour plot of the velocity magnitude (U) in the rectangular tube.

(a) with AI (b) CFD solver

Fig. 7: Contour plot of the pressure (p) field in the rectangular tube with flat
agitator blades.
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(a) with AI (b) CFD solver

Fig. 8: Contour plot of the pressure (p) field in the rectangular tube with wider
agitator blades.

Table 1: Accuracy results for different cases
Case No modifications Impeller modif. Tube modif.
Quantity U p U p U p
Pearson coef. 0.918 0.984 0.909 0.975 0.902 0.967
Spearman coef. 0.911 0.966 0.902 0.956 0.895 0.949
RMSE 0.012 0.003 0.012 0.003 0.012 0.003
Histogram equal. [%] 92 95 91 94 91 94

increased surface area of the blade that comes into contact with the fluid. Com-
paring the AI-accelerated CFD results for contour plots we conclude that the
quality of predictions is acceptable.

Table 1 contains the accuracy results for all three cases: (i) with the cylindri-
cal tube and flat agitator blades (no modifications in relation to the case used
for training), (ii) with modified impeller, and finally, (iii) with the modified tube.
The results show a high Pearson correlation, indicating a strong linear relation-
ship between the prediction and accurate results. A high value of the Spearman
correlation indicates a strong monotonic relationship between the two variables,
meaning that as one variable increases, the other tends to increase or decrease
as well. A small RMSE (below 0.02 for all cases) indicates that the predictions
made by the model are very close to the accurate values. Finally, the correlation
between the two histograms exceeds 90%. It shows that the predicted values are
strongly associated with corresponding changes in the accurate values.

5.3 Performance results

The achieved performance results (Table 2) show that AI-accelerated simulations
are generally faster than traditional CFD simulations, although the speedup
depends on the specific case being simulated. It is difficult to predict precisely
the speedup that can be achieved, as it depends on several factors, such as the
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complexity of the flow dynamics, the amount and quality of available training
data, and the performance of the machine learning algorithms. In some cases,
the speedup is up to about 10 times, while in others, it is about 2.4 times. The
number of iterations executed by the CFD solver is reduced by 90% for the case
with no modifications in the geometry of the mesh, by 76% for the case with
the impeller modified, and by 57% for the case with the tube modified. The
differences in performance between various cases are illustrated in Fig. 9.

Fig. 9: Execution time comparison between different cases.

The first case with the same geometry as during training is more accelerated
than others. Changing the geometry has a significant impact on the speedup of
the proposed AI module. This is because the AI model can better learn and make
predictions based on patterns that it has encountered before, so simulations that
are similar to the ones used during training can be more accurately and faster
performed. On the other side, harder-to-predict cases are less accelerated due to
the AI supervisor, which executes more iterations to achieve a converged state
than in the first case.

Table 2: Performance results for different cases
Case CFD solver [s] AI-acc. sim. [s] Speedup Sim. reduction [%]
No modifications 15851 1615 9.81 90
Impeller modified 15634 3692 4.23 76
Tube modified 15984 6713 2.38 57
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6 Conclusion

The proposed machine learning model for predicting chemical mixing simulations
demonstrates the potential for AI techniques to improve the performance and
keep the accuracy of these simulations. The proposed model shows accuracy
exceeding 90% and allows us to achieve a speedup of up to nine times compared
to a traditional CFD solver. The proposed supervised learning techniques used
for the model’s training can accurately predict the evolution of chemical reactions
in the simulations and generalize to new scenarios.

Overall, our AI-accelerated algorithm permits us to significantly reduce the
time required to simulate fluid flow dynamics while maintaining high accuracy.
By combining traditional CFD simulations’ strengths with AI-accelerated simu-
lations’ speed and efficiency, we optimize the design of industrial processes and
improve the efficiency of the whole fluid mixing modeling.

Further research will explore AI’s potential in simulating more complex mix-
ing scenarios and fine-tuning the model’s performance on different hardware
platforms.
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