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Abstract. Efficient solutions of the N -body problem make it possible
to conduct large-scale physical research on the rules governing our uni-
verse. Vast amount of communication needed in order to make each body
acquainted with the information on position of other bodies renders the
accurate solutions very quickly inefficient and unreasonable. Many ap-
proximate approaches have been proposed, and the one introduced in
this paper relies on actor-based concurrency, making the whole design
and implementation significantly easier than using, e.g. MPI. In addition
to presenting three methods, we provide the reader with tangible prelim-
inary results that pave the way for future development of the constructed
simulation system.

Keywords: actor-based concurrency · N-body problem · agent-based
computing and simulation.

1 Introduction

The classical N -body problem consists in determining the motion of N objects,
each with a specific mass, position, and initial velocity, and all interacting with
each other by gravity. The very concept of the N -body problem was presented
by Isaac Newton in his work Philosophiae Naturalis Principia Mathematica, in
which he formulated the laws underlying classical mechanics. However, an an-
alytical solution of the problem is possible only for a two-body system and for
some small systems with appropriately defined initial conditions. A similar prob-
lem to the purely gravitational one can be considered for point electric charges,
provided that magnetic forces and the emission of radiation accompanying the
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moving and accelerated charges can be neglected. The concept of the N -body
problem can be extended to other kinds of interaction, including the interaction
of objects with an external background field. There are also more complicated
effective interactions, such as those assumed between atoms in molecular dynam-
ics simulations. In any case, irrespective of the particular form of interactions
between bodies, for many bodies, a simulation is performed, changing the po-
sition of objects with time step, taking into account their interactions. This
approach is used in many branches of science: astrophysical analyses (e.g. [25],
[15]), validation of models in biophysical simulations (e.g. [5]), etc. The critical
element for an effective simulation is the knowledge of the entire system required
to calculate the force acting on each body.
To date, methods and techniques developed for performing N -body simu-

lations [3] have different advantages and disadvantages, sacrifice accuracy for
efficiency, and utilize very particular solutions (like dedicated hardware). For
us, the concept of easy-to-implement, natural and appropriately accurate design
and implementation of such a system, leveraging the available High Performance
Computing (HPC) infrastructure, is paramount. Therefore, in this paper, we
show the background and derive the base for utilizing the actor model to create
a program that on the example of the classical N -body problem performs a sim-
ulation with limited communication and propagation of information about the
bodies in the system to achieve scalability and maintain the accuracy of the re-
sults. We treat the actor-based approach as very close to the paradigm of agency,
which is an interesting and easy-to-apply idea for modeling and implementation
of complex, interacting systems(see, e.g., [10,18]).
The actor model of concurrency has already been successfully used to im-

plement high-scalability simulations (see, e.g. [21]), and its advantages include
full asynchronicity of message exchange and simplicity of implementation by
focusing on modeling communication and agent algorithm. The Akka tool was
used to implement the solution, providing a lightweight implementation of the
actor with support for efficient handling of a huge number of instances that work
simultaneously.
In this paper we start by giving a proper background; then we describe the

most important aspects of the proposed system (with several variants of the
implementation of the communication) and we provide the reader with sufficient
insight into our experimental result.

2 Existing efficient N -body solutions

The classical N -body problem, as originally stated, aims at determining the
position changes over time of N objects, knowing their masses, initial positions
and velocities. The objects are moving in a three-dimensional space and are not
affected by any external force, except for a mutual gravitational interaction. It is
assumed that the objects can be described as material points in space governed
by Newton’s laws of motion and universal gravitation. The vector of force F⃗i
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exerted on ith body by all other bodies in the system reads

F⃗i = Gmi ·
∑
j ̸=i

mj
r2ij

r⃗ij
rij
, r⃗ij ≡ r⃗j − r⃗i, rij ≡ |r⃗ij |, , i = 1, 2, . . . , N

where r⃗k, k = 1, 2, . . . , N are position vectors (with respective velocity vectors
denoted by r⃗k), mk are masses and G is the gravitational constant. To speed up
the simulation of largely collisionless systems (like galaxies), the forces can be
regularized at short distances. This allows to avoid numerically more demanding
computations of very close encounters of concern only in much smaller colli-
sional systems (celestial mechanics, globular clusters). A possible regularisation
is to replace r2ij with r

2
ij + ϵ

2 in all denominators, where ϵ is a softening length
parameter much smaller than the characteristic mean distance between bodies.
In d = 2, 3 spatial dimensions, the resulting gravitational dynamics is de-

scribed by a system of 2dN first-order equations

dv⃗i
dt
=
∑
j ̸=i

Gmj
r⃗j − r⃗i
|r⃗j − r⃗i|3

,

dr⃗i
dt
= v⃗i,

i = 1, 2, . . . , N (1)

for unknown positions and velocities. Although conceptually simple in origin, this
is a highly nonlinear and chaotic system of differential equations. It is a textbook
problem to find an exact solution for a two-body system (N=2). For more nu-
merous systems (N­3) exact finite-form solutions cannot be found with method
of first integrals, except for systems with high symmetry (e.g, identical masses
constrained at the vertices of a regular polygon, or systems with more compli-
cated periodic orbits offered by N -body choreography strategies [8,22]). There
were attempts to rigorously analyze methods using series expansions [19,1,16,2].
When finding numerical solutions, useful are conserved quantities that can

play the role of control parameters. There are (d + 1)(d + 2)/2 such constants
following from space-time symmetries of the considered system (1) which is iso-
lated as a whole: energy E, d components of linear momentum P⃗ , d(d − 1)/2
of angular momentum L⃗ and d components of the center-of-mass motion K⃗.
Upon setting the initial data, all components of P⃗ and K⃗ can be set to zero by
transforming the initial state to the center of mass frame (this choice of refer-
ence frame prevents unbound increase of position components due to motion of
the system as a whole during the integration process). Furthermore, for d = 3
two components of L⃗ in this frame can be set to zero by performing a suitable
rotation of the system about the center of mass. In this new inertial frame, the
new conserved E and the magnitude J of the new L⃗ will in general be non-zero.
The dimensional constants provide a characteristic length scale J/

√
EM and a

characteristic time scale J/E (the scale of the system’s rotation period), which
together with the total mass M provide a complete set of independent mechani-
cal units characterizing that system. With the help of these or other convenient
triad of reference units, it is computationally advantageous that the system of
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equations be finally rewritten in a rescaled form involving only non-dimensional
quantities.

For a small number of particles, the system of equations (1) can be solved
with a high degree of precision using the Runge-Kutta methods with adaptive
step control [9]. This requires the forces to be computed several times per single
time step of the simulation. For a large number of particles, one of the obvious
difficulties that arise for a gravitational system characterised by long-ranged
forces that cannot be neglected between distant objects is the need to trace
and compute all of the N(N−1)/2 elementary two-body interactions, and this
problem cannot be simply avoided. There are dedicated integration methods for
simulations with large numbers of particles, however, they are plagued with at
least quadratic complexity, rendering them completely useless when 105 or more
bodies are considered. Many algorithms have been created to reduce complexity
while sacrificing accuracy. They very often use dedicated data structures for the
description of the space and bodies located there, where compromises in the data
contained affect the nature of algorithms that compute the influences [3].

On the side of the integration method used, the number of times all forces
have to be recomputed per a single time step of the simulation can be min-
imised at the cost of reducing the accuracy of the integrator. A possible choice
for updating/advancing the phase space data at consecutive time steps is the
Störmer-Verlet mid point method approach [23].

Essential reduction of the computational time, however, can be achieved only
on the side of the algorithm for determining the forces. In the first method ap-
plied in the case of large simulations (N ∼ 105), namely Particle-Mesh method,
the space is described as a mesh and the particles are placed inside, determining
the density of matter over the mesh. Then the discrete Fourier transform is used
to solve the Poisson differential equation for the gravitational potential that de-
picts the influences based on this mesh. Local forces are then determined simply
from local gradients of the potential. This method is easy for parallelization,
however, it may be inaccurate for a smaller number of bodies because it trades
accuracy for efficiency [3].

Efficient reduction of the number of force evaluations is achieved by consid-
ering clusterisation of the system to smaller subsystems of nearby bodies. Then
the force due to the totality of bodies belonging to one subsystem as exerted
onto a body from another subsystem can be approximated by a truncated mul-
tipole expansion if the distance between the subsystems meets some criteria (i.e.
is large enough). An important and widely used method in this respect is the
Barnes-Hut approach [4], which uses a tree structure to describe the space. In
the leaves, the data of the single bodies are contained, where the nodes comprise
information about the lower-level objects. This setting allows the algorithm not
to visit every leave (body), but stop at the nodes that are sufficiently far from
the current object, using information about the center of the mass, for com-
puting the force. This makes the complexity equal to O(n log(n)), which seems
very promising; however, when bodies are distributed among different computing
machines, communication can affect the whole complexity to a large extent. Par-
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ticularly efficient is the Fast Multipole Method, reaching linear complexity for
certain accuracy. The accuracy itself is one of the parameters of the algorithm;
naturally increasing the accuracy, we lose efficiency. The method was proposed
by Greengarg and Rokhlin in 1988 and it divides the space into squares (or cubes
in 3D). Instead of building a dynamic tree, a strict structure is imposed, where
each level divides the squares (cubes) into four (eight) equal parts [7].
There exist other methods, e.g. hybrid ones (putting together accurate and

less accurate methods and balancing the efficiency-accuracy) [3], or the meth-
ods focused on leveraging dedicated hardware [13,14] using specially designed
modules for computing the gravitational influences. Instead of using dedicated
hardware, general purpose one can be adapted, like GPGPU, e.g. one of existing
methods put together MPI, OpenMPI and CUDA reaching good speedup and
efficiency; however, the limited GPU memory turned out to be a major problem
[6]. This project was later developed into [24].
An interesting implementation of the Barnes-Hut algorithm was used in [20],

where the authors used the Haskell functional language based on its ability to
efficiently manage threads. Another very interesting and accurate implementa-
tion of the N -body simulation is [12], which uses the Ruby language and focuses
mainly on assessing the accuracy and error of the simulation; however, it avoids
delving into matters related to parallelization and HPC.
Each of the methods mentioned here uses selected particular tools and tech-

niques for design and implementation of the N -body simulation. To our knowl-
edge, the existing actor model of concurrency has a great potential in the im-
plementation of scalable HPC grade systems [21], and therefore we would like
to focus our proposed approach on this model, providing potential users with
a prototype of scalable and reliable implementation. Moreover, thinking about
implementations in large scale, we also would like to aggregate certain parts of
the bodies (using dedicated, managing agents) and propose first balancing tech-
niques, in order to approach efficient scalability utilizing large, existing HPC
infrastructures.

3 The proposed actor-based models

There are numerous ways to use the actor-based model in the computational
tasks considered. At least three of them are worth discussing, as they provide
significantly different results, efficiency, and scalability. The three approaches
can be briefly characterized as follows:

1. Problem-driven actor model, where each actor represents an entity present in
the modeled system. In our case, an actor will be equated with a single body
in the simulation. The actors will communicate with each other to exchange
information about their state.

2. Computation-driven actor model, where an actor is a computing unit, and
the number of actors is more related to the computation efficiency that the
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model features. Each actor shall be assigned a selected part of the compu-
tational problem, which is a set of modeled bodies. The communication will
be analogous to the previous case.

3. Limited-communication actor model, where the actors will communicate
only with neighbors, other actors responsible for bodies in certain proximity.
The information from distant bodies will be forwarded.

The following model descriptions will omit the implementation details re-
garding initialization, monitoring, and results collection, focusing on the problem
model, its mapping to the actor model, and its update algorithm.

3.1 Problem-driven actor model

The most direct way to apply the actor model to the modeling problem is to
identify autonomous entities in the modeled system and to assign each entity
with a dedicated actor. In the task considered, each body can be represented
by a single actor, which knows its state: mass, location, and velocity values.
The actor is responsible for updating the state, which requires knowledge of
other actors’ state. Knowledge is exchanged between actors using messages sent
directly between all pairs of actors.
The algorithm of a single-body actor is presented in Listing 1.

Algorithm 1 Single-body actor update loop
1: myState = initialState
2: allOtherActors = initialDataWithAddresses
3: while stopCondition == false do
4: for otherActor ∈ allOtherActors do
5: send(otherActor.address,myState)
6: end for
7: for allOtherActors do
8: {senderAddress, senderState} = receive()
9: allOtherActors[senderAddress].state = senderState
10: end for
11: force = 0⃗
12: for otherActor ∈ allOtherActors do
13: force = force+ computeForce(otherActor.state,myState)
14: end for
15: myState = computeState(myState, force,∆t)
16: end while

Initially, each actor has to be provided with the addresses of all the other
actors and with the initial state of the represented body. In each step of the
simulation, an actor sends its state to all other actors, collects states from all
other actors, and computes the resultant force and its state after ∆t. The results
of the algorithm are equivalent to the accurate sequential solution.
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The computational complexity of the processing performed by a single actor
is linearly dependent on the number of all bodies. Additionally, the number of
messages sent and received by each actor depends linearly on the size of the
simulated system. Therefore, the overall complexity in a single simulation step
of a single actor is Θ(b) and the whole actor system is Θ(b2) for b bodies in
the simulation. Running the actor system in parallel, it is possible to achieve
a computation time proportional to (b2)/c for c computing cores. It is clearly
visible that proper scalability cannot be expected in this case.

3.2 Computation-driven actor model

A more efficient and scalable approach to actor-based modeling of the considered
problem is based on the concept of using actors to partition the computation in-
stead of directly representing modeled entities. In the second model, each actor is
responsible for processing a set of bodies. Sets are defined at the beginning of the
simulation using a clustering algorithm (k-means in our implementation). The
communication schema is similar to that before – all actors exchange messages
with all other actors in each simulation step. The messages, however, contain
only information about the location of the center of mass (CoM) and the mass
value of a cluster of bodies. Actors update the state of the assigned bodies using
precise data in case of own bodies and the center of mass for bodies in remote
clusters. This approach is a common optimization used in the N -body prob-
lem, which does not introduce significant errors, provided that the clusters are
distant.
The algorithm of a single actor in this case is presented in Listing 2.
Each body-cluster actor is assigned an initial list of bodies that it has to

simulate. The optimization based on CoM requires each actor to calculate its
CoM at the beginning of each step. The exchange of messages between all pairs
of actors remains unchanged. The computation of the change in the state of
the assigned bodies requires integrating forces from other assigned bodies and
remote clusters CoMs.
In a longer simulation, the initial division of bodies between actors may

become improper, which can result in significant errors caused by the CoM
approximation. If a body approaches another body from a different cluster, its
strong mutual impact shall be reduced due to the distance of CoMs. Therefore,
the bodies migration algorithm has been added to the presented method. It is
executed after a fixed number of steps by each of the actors. The actors search
for the assigned bodies, which are closer to remote CoM than to the own one.
Such bodies are sent to remote actors, which changes their assignment.
In a very long simulation such an approach can lead to imbalance in the num-

ber of assigned bodies. This problem can be detected by each actor separately;
it is sufficient to compare the current and the initial number of assigned bodies.
In such a case, the centralized clustering algorithm has to be executed again.
The total number of actors (a) should be equal to the number of comput-

ing cores used c, c << b. The number of messages exchanged by each actor is
proportional to the total number of actors, a. CoM calculation complexity is
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Algorithm 2 Body-cluster actor update loop
1: myBodiesState = initialBodiesState
2: allOtherActors = initialDataWithAddresses
3: while stopCondition == false do
4: {myCoM,myMass} = calculateCoM(myBodiesState)
5: for otherActor ∈ allOtherActors do
6: send(otherActor.address, {myCoM,myMass})
7: end for
8: for allOtherActors do
9: {senderAddress, {senderCoM, senderMass}} = receive()
10: allOtherActors[senderAddress].state = {senderCoM, senderMass}
11: end for
12: for myBodyState ∈ myBodiesState do
13: force = 0⃗
14: for otherActor ∈ allOtherActors do
15: force = force+ computeForce(otherActor.state,myBodyState)
16: end for
17: for myOtherBodyState ∈ myBodiesState \ {myBodyState} do
18: force = force+ computeForce(myOtherBodyState,myBodyState)
19: end for
20: myBodyState = computeState(myBodyState, force, δt)
21: end for
22: end while

proportional to the number of bodies assigned, which is b/a. Computing the
state changes requires b+ (b/a)2. So, the overall complexity of a single actor is
Θ(a+ b+(b/a)2). The whole actor system can be executed in proportional time
on c cores, assuming a = c. Therefore, it can be expected that the computation-
driven actor model has a better scalability potential than the problem-driven
model. Increasing the size of the simulated system proportionally with the num-
ber of cores shall not increase the (b/a)2 element. However, the size of each
actor’s task grows linearly with the number of actors in the system and the
number of bodies. It is caused by the communication schema, where all pairs of
actors communicate directly with each other, and the need for updating each
assigned body against each remote cluster.

3.3 Limited-communication actor model

In the aforementioned computation-driven actor model, the need to communicate
all pairs of actors is definitely the most significant scalability limiter. To address
this issue, another mechanism has been added in the third actor model: actors
communicate only with “neighbors”, which are the actors managing clusters in
predefined proximity. In order to preserve the model correctness, the information
about the state of non-neighbor clusters has to be forwarded among all actors,
which is done using the same messages. Each message contains the most current
state of all known clusters.
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The algorithm of a single actor in this case is presented in Listing 3.

Algorithm 3 Body-cluster actor update loop
1: myBodiesState = initialBodiesState
2: allOtherActors = initialDataWithAddresses
3: while stopCondition == false do
4: {myCoM,myMass} = calculateCoM(myBodiesState)
5: for otherActor ∈ allOtherActors do
6: if otherActor.isNeighbor then
7: send(otherActor.address, {myCoM,myMass} ∪ allOtherActors)
8: end if
9: end for
10: for neighborsCount do
11: receivedActors = receive()
12: for receivedActor ∈ receivedActors do
13: if receivedActor.time > allOtherActors[receivedActor.id].time then
14: allOtherActors[receivedActor.id] = receivedActor
15: end if
16: end for
17: end for
18: for myBodyState ∈ myBodiesState do
19: / ∗ body state update same as in Algorithm 2 ∗ /
20: end for
21: end while

The list of neighbor actors is prepared at the beginning of the simulation. The
actors can adjust automatically when they detect a change in distance between
the clusters. Each actor sends all available data to all neighbors. After receiving
the data, an actor checks if it contains information that is newer than already
possessed. As a result, the computation of bodies state changes is based on
relatively older information for distant bodies, which is another modification to
the model with a minor impact on final results.
The number of messages is significantly limited in this case. Each actor sends

and receives a constant number of messages, no matter how numerous the actor
system is. Nevertheless, the total volume of the messages is even bigger than
in the previous approach and the theoretical processing complexity remains the
same. However, the messaging layer is less burdened, which typically has a sig-
nificant impact on final efficiency.

4 Experimental evaluation

The expected outcome of applying the actor model for the considered simulation
task is to achieve a significant performance gain compared to the sequential
version. The gain shall result from parallel execution, which is straightforward for
actor-based implementation, and from the applied optimizations to the model,
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which offer better computational complexity. However, optimizations may hinder
the accuracy of the model. Therefore, the evaluation will focus on these two
aspects: the correctness and the performance.
Implementation has been done using the Akka actor framework for the Scala

programming language [17]. All tests were repeated 10 times. In the performance
tests 50-100 steps of the simulation were done to measure an average step time.
The experiments were carried out on the Prometheus computing cluster,

hosted by the ACK Cyfronet AGH 3. Prometheus offers 53604 computing cores
provided by HP Apollo 8000 servers (24 cores each), which are connected with
the 56 Gb/s InfiniBand network. Such resources made it possible to test the
system performance and scalability on hundreds of computing cores.

4.1 Correctness evaluation

One of the most common methods for verifying the correctness of the N -body
simulation is to monitor the total energy in the simulated system of bodies.
With no external forces in the system, the energy should remain constant. In
the experiment carried out, 200 bodies were divided into 20 groups, each having
8-20 bodies. The bodies in each group were located at the edges of a regular
polygon, which is a theoretically stable figure. The distances between the bodies
in groups were significantly smaller than between the groups. The results of the
correctness evaluation are presented in Figure 1.

Fig. 1: Comparison of the total energy change of different models

It was expected that the total energy in the system would not be conserved
over a large number of steps, due to computer arithmetic inaccuracies. The
3 https://www.cyfronet.pl/en/computers/15226,artykul,prometheus.html
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version with individual actors, which is equivalent to a sequential version, shows
an increase in error starting at around 400,000 steps. This is because much more
calculations were performed and the error was accumulated. In the actor systems
that use clustering, the simulation accuracy is better for a longer time. However,
later on the error builds up more rapidly, which may reflect the fact that a small
inaccuracy in one cluster affects all others more significantly. However, the error
size introduced by clustering optimizations is surprisingly small compared to the
classic sequential version, which confirms the usefulness of the proposed models.

4.2 Simulation performance

To estimate the overall performance of the proposed actor-based simulations,
the average time to compute one simulation step has been compared with the
classic sequential version. For versions with body grouping, the number of actors
increased with the number of bodies. All experiments involved 3 computing
nodes of the supercomputer, which provided 48 computing cores. The results
are presented in Table 1.

Table 1: Comparison of simulation step execution time (in milliseconds) for dif-
ferent versions of the system

number of bodies 100 500 1000 5000 10000

Sequential version 1.48 13.6 56.9 1089 3850

Problem-driven actor model 2.40 23.3 55.4 1888 6335

number of clusters 2 5 10 25 50

Computation-driven actor model 1.37 1.52 4.58 7.47 12.2

Limited-communication model 1.19 1.43 4.51 6.73 10.7

The quadratic increase in the time needed to perform the simulation step in
relation to the amount of data for the sequential and problem-driven versions
has been expected. It is worth noticing that for 10,000 objects, each step takes
3.85 and 6.34 seconds, respectively, which makes the approach very inefficient
for larger problems. The overhead of using large numbers of actors is also clearly
visible – intensive context switching and communication burden the efficiency
significantly.
The other two versions, in which the bodies’ groups were processed by the

actors, behave apparently very well. The time of the simulation step for a small
problem reaches about 10ms for both versions and does not change significantly
in relation to the change in the size of the problem. This result shows how
much the optimization related to the division of bodies into groups and the
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parallelization of calculations for each of them affects the simulation execution
time.

4.3 Strong scalability

In the strong scalability testing, the problem remains constant while computa-
tional resources increase. Only the versions with body grouping were tested with
the scenario of 250000 bodies. The bodies were divided into 50 to 1250 groups,
each processed by a dedicated actor. Hardware resources allowed each actor to
work on a separate computing core. The results are presented in Figure ]2.

Fig. 2: Strong scalability test results for 250 000 bodies

The execution time of the simulation step decreases as expected, especially
with fewer actors used. This shows that sharing the bodies among more processes
effectively reduces the time needed to perform the simulation.
For a given size of the problem, the time decreases to about 750 actors.

Further fragmentation of tasks does not improve performance and effectively
leads to waste of resources. Here, the time reduction associated with fewer objects
per actor is less than the time increase associated with having to process more
messages.
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4.4 Weak scalability

The weak scalability tests aim to evaluate the system’s ability to process growing
tasks with growing resources. Typically, the task for each computing core has a
constant size in such tests. The task of 100 bodies was defined and tested for 10
– 2000 actors. The resulting simulation step time is presented in Figure 3.

Fig. 3: Strong scalability test results for 100 bodies per actor

The number of 100 bodies per actor has been deliberately selected to demon-
strate the significant problem with the scalability of the approach. The compu-
tational task performed in each of the actors is constant; however, the number
or volume of the messages sent and received grows with the number of actors in
the system. This highly undesirable situation, which is forced by the simulation
model, is the reason for the growth of the simulation step-time.
The conclusion of the experiments would be to use a proper balance between

the number of actors and the number of bodies assigned to each actor. This
result is consistent with the theoretical analysis of complexity presented earlier.
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5 Conclusion

The proposed method for the simulation of the N -body problem is promising,
as we have obtained good quality results, in particular when the bodies were
clustered. Moreover, acceptance of a certain delay in delivering the data on
the influence of the farther clusters can also be treated as a good direction for
further study. Actually using the actor model for concurrent implementation,
easy generalization into distributed infrastructure and the “desynchronization”
of the communication (cf. [21]) can be treated as the most important aspects of
this paper.
As a visible flaw, the results obtained for large number of actors computing

small tasks (e.g. 100 bodies) did not turn out to be an efficient case, so these
kinds of simulation cannot be sped-up using HPC in such easy way. Further
research in this area is needed, leading towards a scale-invariant actor. Its com-
putational task should be constant or depend linearly on the size of the problem
fraction assigned to the actor. Thus, improvements to communication methods
and perhaps deeper exploration of the desynchronized exchange of messages can
lead us further into this interesting research topic.
In the presented work we tested the actor-based approach on a toy-model

example of a simple gravitational N-body simulation (that is, with long range-
forces). At this stage – as the present work shows – it seems that it will be also
appropriate to use the actor approach in N-body simulations with short-range
forces such as considered, for example, in molecular dynamics simulations [11].
In molecular dynamics, the time-dependent behavior of a system of particles is
simulated at the microscopic level and is widely used in various branches of sci-
ence and technology, especially in biophysics. In some cases molecular interaction
models are used in which inter-atomic or inter-molecular long-range interactions
can be neglected and only short-range potentials like Lennard-Jones force law or
torsional forces describing bonds, etc suffice. We will continue the work in this
promising area, putting together the expertise in-between the IT and physics in
order to reach synergistic and valuable output.
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