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Abstract. Sparse modeling or model selection with categorical data is
challenging even for a moderate number of variables, because roughly
one parameter is needed to encode one category or level. The Group
Lasso is a well known e�cient algorithm for selection of continuous or
categorical variables, but all estimates related to a selected factor usu-
ally di�er. Therefore, a �tted model may not be sparse, which makes the
model interpretation di�cult. To obtain a sparse solution of the Group
Lasso, we propose the following two-step procedure: �rst, we reduce data
dimensionality using the Group Lasso; then, to choose the �nal model,
we use an information criterion on a small family of models prepared by
clustering levels of individual factors. In the consequence, our procedure
reduces dimensionality of the Group Lasso and strongly improves inter-
pretability of the �nal model. What is important, this reduction results
only in the small increase of the prediction error. In the paper we inves-
tigate selection correctness of the algorithm in a sparse high-dimensional
scenario. We also test our method on synthetic as well as the real data
sets and show that it outperforms the state of the art algorithms with
respect to the prediction accuracy, model dimension and execution time.
Our procedure is contained in the R package DMRnet and available in the
CRAN repository.

Keywords: Information criterion · Model reduction · Penalized likeli-
hood · Regression · Sparse prediction

1 Introduction

Data sets containing categorical variables (factors) are common in statistics and
machine learning. Sparse modeling for such data is much more challenging than
for those having only numerical variables. There are two main reasons for that:
(i) a factor with k levels is usually encoded as k − 1 dummy variables, so k − 1
parameters are needed to learn it,
(ii) a reduction of the dimensionality for a factor is much more sophisticated than
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for a numerical predictor (leave or delete), because we can either delete this factor
or merge some of its levels (a number of possibilities grows very quickly with a
number of levels). Let us consider as the example the factor corresponding to a
continent that a person (client, patient etc.) lives on, or a company (university
etc.) is located. This factor has 6 levels (Antarctica is not considered), so there
are 203 possibilities to merge its levels (they are usually called partitions).

It is really di�cult to develop e�cient algorithms for categorical data and
investigate their statistical properties, when a number of factors and/or a total
number of their levels is large. Thus, this topic has not been intensively studied
so far and the corresponding literature has been relatively modest. However,
categorical data are so common that it had to change. We have found many
papers investigating categorical data from the last few years, among others [7],
[15], [17], [18], [19], [21].

In the paper we consider high-dimensional selection and sparse prediction for
categorical data, where a number of active variables is signi�cantly smaller than
a learning sample size n and a number of all variables p signi�cantly exceeds n.
The goal is to develop a procedure, whose outputs have small prediction errors
and easy interpretation. For categorical predictors the latter property means
that all non-active factors should be discarded. What is more, if an active factor
contains equal levels, then they should be merged.

Neural networks or random forests have good predictive properties, but their
outputs are di�cult to interpret. They often fail when n is small and/or p is
larger than n (cf. the experimental results in Section 4). In the paper we focus
on such scenarios and consider penalized likelihood methods as a family of Lasso
algorithms, which are commonly used for sparse prediction. Some of the methods
can discard non-active predictors for high-dimensional data, but they cannot
merge the levels of active factors, which strongly limits their intepretability. For
instance, the Lasso [22] treats dummy variables as separate, binary predictors,
the Group Lasso [25] can only leave or delete a whole factor and the Sparse
Group Lasso [20] additionally removes levels of selected factors. The Fused Lasso
[23] can merge levels, but only in a simpli�ed case when variables are ordered.
These methods signi�cantly reduce a number of parameters, but they do not
realize partition selection, i.e. they cannot choose models consisting of subsets
of numerical variables and partitions of levels of factors.

In the mainstream research on the Lasso-type algorithms, the CAS-ANOVA
method [3] �ts sparse linear models with the fusion of factor levels using the
l1 penalty imposed on the di�erences between the parameters corresponding to
levels of a factor. The implementation of CAS-ANOVA has been provided in
[8] and [14]. An alternative approach is a greedy search algorithm, called DMR,
from [13]. The growing interest in partition selection has been noticed recently. In
[15] a Bayesian method for linear models is introduced based on a prior inducing
fusion of levels. Another approach trying to solve the problem from the Bayesian
perspective is considered in [7]. The frequentist method using the linear mixed
models was presented in [19], where factors were treated as random e�ects. A
partition selection algorithm called SCOPE, which is based on a regularized
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likelihood, can be found in [21]. This procedure uses a minimax concave penalty
on di�erences between consecutive, sorted estimators of coe�cients for levels of
a factor. Finally, tree-based algorithms are applied to categorical data in [18].

Let us note that all the aforementioned partition selection methods are re-
stricted to a classical scenario p < n, except SCOPE and DMR. The new imple-
mentation of the latter is based on variables screened by the Group Lasso [16].
In this paper, we present an improved as well as simpli�ed version of the DMR
algorithm, called PDMR (Plain DMR). Our main contributions are as follows:

1. We propose the following two-step PDMR procedure: �rst, we reduce data
dimensionality using the Group Lasso. Next, a small family of models is con-
structed by clustering levels of individual factors. The �nal model is chosen from
the family using an information criterion. In DMR the Group Lasso model is
re�tted and dissimilarity matrices in clustering are computed by likelihood ratio
statistics. In PDMR we eliminate this step by employing the Group Lasso co-
e�cients, which simpli�es and improves the DMR. The PDMR not only works
better in numerical experiments, but we are able to mathematically con�rm its
properties (Theorem 1).

2. We prove in Theorem 1 that PDMR returns a sparse linear model con-
taining the true model, even if p >> n. The proof is based on a new bound
of a number of partitions by generalized Poisson moments. It is worth to note
that so far there are no theoretical results regarding the correctness of the DMR
selection for high-dimensional data, while for SCOPE a weaker property than
selection consistency was proved in [21]. Our result is also weaker than selection
consistency, but it relates directly to any output of our algorithm, while results
from [21, Theorem 6] concern only one of blockwise optima of their objective
function. We discuss this issue in Section 3.

3. In theoretical considerations, the Lasso-type algorithms are de�ned for one
penalty and return one estimator. However, practical implementations usually
use nets of data-driven penalties and return lists of estimators. Our next con-
tribution is an analogous implementation of PDMR. In numerical experiments
on simulated and real data, we compare PDMR, DMR and SCOPE. We show
that PDMR performs better than SCOPE and DMR with respect to a predic-
tion error and model simplicity/sparsity. Moreover, PDMR is computationally
faster than DMR and several dozen times faster than SCOPE. Our procedure is
contained in the R package DMRnet [16] and available in the CRAN repository.

In the rest of this paper we describe the considered models and the PDMR al-
gorithm. The main theoretical result, which establishes properties of our method,
is given in Section 3. Finally, we compare PDMR to the other methods in nu-
merical experiments. The proof of Theorem 1, auxiliary theoretical results and
additional descriptions of experiments are relegated to the online supplement4.

4 https://github.com/SzymonNowakowski/ICCS-2023
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2 Linear models and the algorithm

We consider independent data (y1, x1.), (y2, x2.), . . . , (yn, xn.), where yi ∈ R is a
response variable and xi. ∈ Rp is a vector of predictors. Every vector of predic-
tors xi. can consist of continuous predictors as well as categorical predictors. We
arrange them in the following way xi. = (xT

i1, x
T
i2, . . . , x

T
ir).

T Suppose that sub-
vector xik corresponds to a categorical predictor (factor) for some k ∈ {1, . . . , r}.
Let a set of levels of this factor be given by {0, 1, 2, . . . , pk}. In that case we usu-
ally use xik ∈ {0, 1}pk , so xik is a dummy vector corresponding to the k-th
predictor of the i-th object in a data set. Notice that we do not include a ref-
erence level (say, the zero level) in xik. The only exception relates to the �rst
factor, whose reference level is contained in xi1. This special level plays a role
of an intercept. If necessary, we can rearrange vectors of predictors to have the
�rst factor with k = 1. If xik corresponds to a continuous predictor, then simply
xik ∈ Rpk and pk = 1. Therefore, a dimension of xi. is p = 1+

∑r
k=1 pk. Finally,

let X = [x1., . . . , xn.]
T be a n×p design matrix and by xj,k we denote its column

corresponding to the j-th level of the k-th factor.

We consider a linear model

yi = xT
i. β̊ + εi for i = 1, 2, . . . , n. (1)

Coordinates of β̊ correspond to coordinates of a vector of predictors, that is
β̊ = (β̊T

1 , β̊
T
2 , . . . , β̊

T
r )

T , where we have β̊1 = (β̊0,1, β̊1,1, . . . , β̊p1,1)
T ∈ Rp1+1 and

β̊k = (β̊1,k, β̊2,k, β̊3,k, . . . , β̊pk,k)
T ∈ Rpk for k = 2, . . . , r. Moreover, we suppose

that noise variables εi have a subgaussian distribution with the same parameter
σ > 0, that is for i = 1, 2, . . . , n and u ∈ R we have

E exp(uεi) ≤ exp(σ2u2/2). (2)

The main examples of subgaussian noise variables are normal variables or those
having bounded supports.

2.1 Notations

For β ∈ Rp and q ≥ 1 let |β|q = (
∑p

j=1 |βj |q)1/q be the ℓq norm of β. The only
exception is the ℓ2 norm, for which we use the special notation ||β||.

A feasible model is de�ned as a sequence M = (P1, P2, . . . , Pr). If the k-th
predictor is a factor, then Pk is a particular partition of its levels. If the k-th
predictor is continuous, then Pk ∈ {∅, {k}}. To make the notation coherent and
concise we arti�cially augment each β ∈ Rp by β0,k = 0, k = 2, . . . , r. Notice that
every β determines a model Mβ : if the k-th predictor is a factor, then partition
Pk is induced by equalities of coe�cients, i.e. βj1,k = βj2,k, j1 ̸= j2 means that
levels j1 and j2 belong to the same cluster of the k-th factor. If the k-th predictor
is continuous, then Pk = {k} when βk ̸= 0 and Pk = ∅ otherwise.
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2.2 The algorithm

To simplify notations (and without losing the generality), we suppose that all

considered predictors are categorical. For estimation of β̊ we consider a quadratic
loss function as in the maximum likelihood estimation:

ℓ(β) =
1

n

n∑
i=1

[(xT
i.β)

2/2− yix
T
i.β]. (3)

We present the PDMR algorithm, which consists of two steps:
(1) Screening: we compute the weighted Group Lasso

β̂ = argmin
β

ℓ(β) + λ

r∑
k=1

||Wkβk||,

whereWk is a diagonal matrix with (Wk)jj = ||xj,k||/
√
n playing roles of weights.

Such a choice of weights was suggested in the seminal paper [25]. It is also
explained in Proposition 1 in the online supplement. Number λ > 0 is a tuning
parameter whose choice is discussed in Section 3;
(2) Selection: this step is divided into three parts:
(2a) construction of the nested family of models M: let Ŝ = {1 ≤ k ≤
r : β̂k ̸= 0} and β̂0,k = 0 for k ∈ Ŝ \ {1}. So, Ŝ is a set of factors which are not

discarded by the Group Lasso. For each k ∈ Ŝ we separately perform complete
linkage hierarchical clustering of levels of those factors. Each clustering starts
with a dissimilarity matrix (Dk)j1,j2 = |β̂j1,k − β̂j2,k|, 0 ≤ j1, j2 ≤ pk. This
matrix is consecutively updated as follows: a distance between two clusters A
and B of levels of the k-th factor is de�ned as maxa∈A,b∈B |β̂a,k − β̂b,k|. Each
clustering begins with disjoint factor's levels and then two most similar clusters
are merged. Finally, we obtain the empty factor with all levels merged. Cutting
heights from this clustering are contained in hT

k . Then we create a vector h,
which consists of elements of a vector (0, hT

1 , h
T
2 , . . . , h

T
Ŝ
)T sorted increasingly.

Next, we construct a family M = {M0 = Ŝ,M1,M2, . . . , {∅}}, where Mj+1 is
Mj with one additional merging of appropriate clusters corresponding to the
(j + 1)-th element in h,
(2b) Generalized Information Criterion

M̂PDMR = arg min
M∈M

ℓ(β̂M ) + λ2/2|M |,

where β̂M is a minimum loss estimator over Rp with constraints determined by a
model M and |M | equals to a number of distinct levels in M . Technical details of
this constrained minimization is given in Section 3 of the online supplementary
materials. We also show there that it can be considered as an unconstrained
minimization over a smaller space.
(2c) Estimation of parameters in the model M̂PDMR:

β̂PDMR = arg min
βM̂PDMR

ℓ(βM̂PDMR
)
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To study data with binary responses we can extend the PDMR algorithm
to logistic regression. From the practical point of view this generalization is
relatively easy. We apply the Group Lasso for logistic regression with ℓ(β) =∑n

i=1[log(1+exp(xT
i.β))−yix

T
i.β]/n. A similar modi�cation should be done when

applying the information criterion step. We have contained it in the R package
DMRnet and apply it in Section 4. This extension is more di�cult from the
theoretical perspective, so the result in Section 3 is restricted to linear models (1).

3 Statistical properties of PDMR

In this section we state the main theoretical result concerning our algorithm.
Assume that Mβ̊ is the true model, i.e. the one which is determined by

the true parameter β̊. In Theorem 1 we establish that our procedure is able to
partially �nd Mβ̊ . It is possible only if Mβ̊ is su�ciently distinguishable from
other models, which is sometimes called identi�ability of Mβ̊ . This issue is quite
involved, so we move its precise description to Section 2 in the online supplement.
Here, the identi�ability of Mβ̊ is expressed by a positive value κ such that the

larger κ is, the model Mβ̊ is easier to identify. Finally, |Mβ̊ | denotes a number
of distinct levels in Mβ̊ .

Theorem 1. Suppose that assumptions (1) and (2) are satis�ed and there exists
0 < a < 1 such that

2a−2σ2 log p

n
≤ λ2 <

κ

16(1 + a)2
. (4)

Then

P (M̂PDMR ⊊ Mβ̊) ≤ 3p exp

(
−a2nλ2

2σ2

)
. (5)

Theorem 1 states that PDMR computes consistent screening, which means
that with high probability it is able to reduce a model returned by the Group
Lasso without losing any active variables. The only parameter of PDMR can be
chosen as λ2 = 2a−2σ2 log p(1 + q)/n for some q > 0. Then the right-hand side
in (5) behaves like 1/pq. So, the larger q is, the faster probability in (5) goes to
0. However, increasing q restricts the usefulness of Theorem 1 only to Mβ̊ having
large κ. Therefore, the reasonable choice of q would be a small value which still
ensures that probability in (5) goes to zero, for instance q → 0 but q log p → ∞.
Notice that it is the same choice of λ as in the Risk In�ation Criterion [5].

PDMR can successfully work in the case that p is large. From (4) we see that
κ has to be larger than log(p)/n, which goes to zero even if p = exp(nα), α < 1
for n → ∞. So, as n increases, Theorem 1 can be applied to data having smaller
value of κ. Notice that there are no similar theoretical results for other partition
selection competitors of PDMR in high-dimensions. Guarantees for DMR from
[13] relates only to the p < n scenario. In [21, Theorem 6] it is shown that the
output of SCOPE and the true model are some blockwise optima of the SCOPE
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objective function. This conclusion is very weak, because there might be plenty
of such blockwise optima. Consider the function f(x, y) = |x−y|+ |x+y|, which
has one global minimum (0, 0). Notice that the point (100, 100) is one of the
blockwise optima of f but it is useless when estimating (0, 0). Therefore, the
output of SCOPE might be very poor estimator of Mβ̊ , while Theorem 1 states
that any output of PDMR computes consistent screening in high-dimensions.

Calculating a value of κ is di�cult. In Section 2.1 of the online supple-
ment we show that for the special case that XTX is an orthogonal matrix,
κ can be determined and condition (4) leads to ∆2 ⪰ σ2 log pmaxk pk/n, where

∆ = min
1≤k≤r

min
0≤j1,j2≤pk:β̊j1,k ̸=β̊j2,k

|β̊j1,k − β̊j2,k|. The value of ∆ states how much

distinct levels belonging to the same factor in Mβ̊ di�er. Therefore, this condi-

tion shows a clear relation between characteristics of the data (i.e. n, p, pk, σ,∆)
that gives the su�cient distinguishability of Mβ̊ .

The proof of Theorem 1 is given in Section 2 in online supplementary mate-
rials. It can be sketched as follows: �rst we establish that the Group Lasso is a
consistent estimator, which implies that the family M, de�ned in the step (2a)
of PDMR, contains the true set Mβ̊ . Then we establish that the probability of
choosing a submodel of Mβ̊ can be expressed as a Touchard polynomial and es-

timated using the recent combinatorial results from [1]. Proving an upper bound
on P (Mβ̊ ⊊ M̂PDMR) still remains an open problem.

4 Experiments

We start with the implementation details of PDMR and competing procedures.
Then simulated and real data sets are investigated.

In the theoretical analysis of Lasso-type estimators one usually considers only
one value of the tuning parameter λ. We have also followed this way in Section 3.
However, the practical implementations can e�ciently return estimators for a
data driven net of λ's, as in the R package glmnet [6]. Similarly, using a net of
λ's, the Group Lasso and the Group MCP algorithms have been implemented
in the R package grpreg [4]. We also propose a net modi�cation of PDMR:

1. For λ belonging to the grid: calculate the Group Lasso estimator β̂(λ) and
then perform complete linkage for each factor and get a nested family of models
M1(λ) ⊂ M2(λ) ⊂ . . .
2. For a �xed model dimension c, select a model Mc from the family (Mc(λ))λ,
which has the minimal prediction loss.
3. Select a �nal model from the sequence (Mc)c using the Risk In�ation Criterion
(RIC), see [5], i.e. using the tuning parameter 2σ2 log(p)/n, which is the same
as suggested in Theorem 1. Obviously, σ is unknown, but it can be quite easily
estimated: as usual we take an appropriately scaled residual sum of squares on
a model returned by the Group Lasso.

The above implementation of PDMR is available in the DMRnet package start-
ing with its 0.3.4 version with algorithm="PDMR" argument.
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In experiments we also evaluate the following methods:
(i) DMR, which re�ts β̂ after the Group Lasso with the maximum likelihood
and computes dissimilarity matrices in the clustering step as the likelihood ratio
statistics. It is also contained in the DMRnet package,
(ii) Group Lasso (gL) with a tuning parameter lambda chosen by cross-validation
as implemented in cv.grpreg from the R package grpreg with penalty="grLasso",
(iii) Group MCP (gMCP) with a tuning parameter lambda chosen by cross-
validation as implemented in cv.grpreg from the R package grpreg with gamma

set as the default and penalty="grMCP",
(iv) SCOPE from the R package CatReg [21]. A tuning parameter gamma is cho-
sen as 8 or 32, which is suggested in that paper. We denote them as S-8, S-32,
respectively. For real data we consider also the case of binary responses and then
gamma is 100 or 250 as in [21]. We denote them S-100 and S-250, respectively,
(v) Random Forest (RF) - we use the randomForest function from the R package
randomForest.

All results presented in this section can be reproduced using our codes, which
are publicly available at https://github.com/SzymonNowakowski/ICCS-2023.

4.1 Simulation study

This section contains the experiments with simulated high-dimensional linear
models. Design matrices X and parameter vectors β̊ are the same as in [21], but
additionally we systematically change the signal to noise ratio (SNR).

In the training data we have n = 500 observations. Every vector of predic-
tors consists of r = 100 factors, each with 24 levels. Thus, after deleting 99
reference levels we obtain p = 2301. A design matrix X is generated as in [21],
namely: �rst, we draw matrix Z, whose rows zi., i = 1, . . . , 500 are independent
100-dimensional vectors having normal distribution N(0, Σ). The o�-diagonal
elements of Σ are chosen such that correlation between Φ(zij) and Φ(zik) equals
0.5 for j ̸= k, where Φ is a cdf of the standard normal distribution. Then we
set xij = ⌈24Φ(zij)⌉. Finally, X is recoded into dummy variables and reference
levels of each factors, except the �rst one, are deleted.

Errors εi are independently distributed from N(0, σ2), where σ is chosen in
such a way to realize distinct SNR values. The performance of the estimators is
measured using the root-mean-square errors (RMSE), which are calculated using
the test data consisting of 105 observations. To work on the universal scale we
divide the RMSE of procedures by the RMSE of the oracle, which knows the true
model in advance, i.e. a maximum likelihood estimator computed for the true
model. Final results are averages over 200 draws of training and testing data. We
consider the following six models, which are the same as in [21, Section 6.1.2].
However, we renumber them with respect to true model dimensions (True MD),
i.e. a number of distinct levels among their consecutive factors in Mβ̊ (recall that

we do not count reference levels of factors, except the �rst one):

Setting 1: β̊k = (0, . . . , 0︸ ︷︷ ︸
7 times

, 2, . . . , 2︸ ︷︷ ︸
8 times

, 4, . . . , 4︸ ︷︷ ︸
8 times

) for k = 2, 3, β̊k = (0, . . . , 0︸ ︷︷ ︸
15 times

, 5, . . . , 5︸ ︷︷ ︸
8 times

)
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for k = 4, 5, 6, β̊1 = (0, β̊2), and β̊k = 0 otherwise. So, True MD=10,

Setting 2: β̊k = (0, . . . , 0︸ ︷︷ ︸
7 times

, 2, . . . , 2︸ ︷︷ ︸
8 times

, 4, . . . , 4︸ ︷︷ ︸
8 times

) for k = 2, 3, and for k = 4, 5, 6 we

have β̊k = (0, . . . , 0︸ ︷︷ ︸
9 times

, 2, . . . , 2︸ ︷︷ ︸
4 times

, 4, . . . , 4︸ ︷︷ ︸
10 times

), β̊1 = (0, β̊2), and β̊k = 0 otherwise. So,

True MD=13,
Setting 3: β̊k = (0, . . . , 0︸ ︷︷ ︸

5 times

, 2, . . . , 2︸ ︷︷ ︸
6 times

, 4, . . . , 4︸ ︷︷ ︸
6 times

, 6, . . . , 6︸ ︷︷ ︸
6 times

) for k = 2, ..., 5, β̊1 = (0, β̊2),

and β̊k = 0 otherwise. So, True MD=16,
Setting 4: β̊k = (0, . . . , 0︸ ︷︷ ︸

4 times

, 1, . . . , 1︸ ︷︷ ︸
5 times

, 2, . . . , 2︸ ︷︷ ︸
4 times

, 3, . . . , 3︸ ︷︷ ︸
5 times

, 4, . . . , 4︸ ︷︷ ︸
5 times

) for k = 2, ..., 5,

β̊1 = (0, β̊2), and β̊k = 0 otherwise. So, True MD=21,

Setting 5: β̊k = (0, . . . , 0︸ ︷︷ ︸
3 times

, 2, . . . , 2︸ ︷︷ ︸
12 times

, 4, . . . , 4︸ ︷︷ ︸
8 times

) for k = 2, . . . , 10, β̊1 = (0, β̊2), and

β̊k = 0 otherwise. So, True MD=21,
Setting 6: β̊k = (0, . . . , 0︸ ︷︷ ︸

15 times

, 5, . . . , 5︸ ︷︷ ︸
8 times

) for k = 2, ..., 25, β̊1 = (0, β̊2), and β̊k = 0

otherwise. So, True MD=26.
In [21, Section 6.1.2] the above Settings 1-6 are numbered as 3, 1, 8, 4, 7 and
5, respectively. In each model we consider distinct SNR values, in particular
Settings 2 and 6 from that paper are also studied.

The results of experiments are presented in Figures 1 and 2. In the former
we present the RMSE of procedures divided by the RMSE of the oracle. On the
x-axis there are SNR values for the interval [1, 5]. In the second �gure we observe
numbers of distinct levels that are recognized by procedures (model dimension,
MD) divided by a number of distinct level in the true model (i.e. True MD).
Recall that the goal is to �nd an easily interpretable model (i.e. MD should
be small), which has also good predictive properties. From Figures 1 and 2 we
observe that PDMR is the clear winner. Notice that MD of PDMR is similar to
SCOPE-8 and smaller than for other competitors. However, RMSE for SCOPE-8
is larger than for PDMR in Figure 1. Besides, predictive properties of PDMR are
the best (Scenario 1-2) or close to the best (Scenario 3-5). The main competitors
of PDMR with respect to prediction are SCOPE-32, Group Lasso and Group
MCP. However, Group Lasso and Group MCP do not return interpretable model.
Their MD is more than 7 times larger than True MD, so they are not presented in
Figure 2 (except Scenario 4). SCOPE-32 has similar prediction errors to PDMR
but it is worse in model interpretation, because its MD is usually 2-3 times larger
than for PDMR. Finally, notice that Random Forests fail in our experiments,
which con�rms the fact that this procedure often works poorly with data having
many unknown parameters and small sample sizes.

In Scenario 6 PDMR works worse than for other settings. It comes from the
fact that Scenario 6 does not satisfy the assumptions required for the Group
Lasso operation, i.e. the true factors have more parameters in total than the
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Fig. 1. Relative prediction errors of the considered methods in six settings. SNR - the
signal to noise ratio, RMSE - the root-mean-square error. The remaining details are
given in the text.
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Fig. 2. Relative model dimensions (MD) of the considered methods in six settings.
SNR - the signal to noise ratio. The remaining details are given in the text.
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number of observations (n = 500). This loss in the prediction quality is observed
not only for PDMR, but also for the other methods.

4.2 Real data study

We investigate �ve real data sets: the �rst two with binary responses and the
next three with continuous responses. Here we present only short descriptions of
these data sets. A full discussion is given in Section 5 in the online supplement.
The preprocessing step is also thoroughly explained there.
1. The Adult data set [11] contains data from the 1994 US census. Preprocessing
results in n = 45, 222 with 2 continuous and 8 categorical variables with p = 93;
2. The Promoter data set [9], [24] contains E. Coli genetic sequences of length
57. The data set consists of 106 observations with 57 categorical variables, each
with 4 levels representing 4 nucleotides, thus with p = 172;
3. The Airbnb data set is available from insideairbnb.com. Preprocessing results
in n = 49, 976 with 765 variables (out of which 3 are categorical) with p = 40668;
4. The Insurance data set [10] contains a response, which is an 8-level ordinal
variable measuring insurance risk of an applicant. We treat as continuous. Pre-
processing results in 59,381 observations with 5 continuous and 108 categorical
variables with p = 823;
5. The Antigua data set [2] is available at the R package DAAG [12]. It consists of
287 observations with 1 continuous and 4 categorical variables with p = 58.

We conduct experiments analogously to the ones described in Section 4.1:
each data set is divided (200 times repeated) into a training, and testing sets.
The training set contains 70% of observations for Promoter and Antigua. To
adapt the remaining data to the case p >> n we take only ni observations to
their training sets in the i-th repetition. We present values of ni's in Table 1.
We also show the values of pi's, which are new parameter space sizes in the i-th
repetition. Notice that pi < p, because predictors constant for a given training set
get dropped. Estimators are computed on the training sets and their prediction
errors (PE) are calculated on testing sets. For continuous responses PE is RMSE
as in Section 4.1, while for binary responses PE is a misclassi�cation error. PE
and MD of methods are given in Figure 3.

The prediction error of PDMR is similar or slightly worse than of gL, gMCP
and RF (for Adult and Promoter), but PDMR is much better in model inter-
pretability. MD of PDMR is at least a few times smaller than for gL and gMCP.
PDMR is de�nitely better than DMR on Insurance and similar on the others.
Comparing to SCOPE, PDMR wins on Adult and Promoter, because its MD
is smaller and more stable, while their PE are similar. On Antigua and Insu-
rance we have a tie: PDMR has smaller PE, but SCOPE has smaller MD. We
did not complete computations for RF on Insurance nor on Airbnb, because
randomForest function cannot handle categorical predictors with more than 53
levels. We did not complete SCOPE computations on Airbnb for any considered
gamma value (we tried 4 values: 8, 32, 100 and 250 for gamma, all with no success).

Finally, in Table 1 we present median values of execution time (in seconds)
for particular procedures. We can observe that PDMR is faster than DMR and
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Fig. 3. The prediction error (PE) and the model dimension (MD) of the considered
methods for �ve real data sets. The remaining details are given in the text.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_47

https://dx.doi.org/10.1007/978-3-031-36021-3_47
https://dx.doi.org/10.1007/978-3-031-36021-3_47


14 S. Nowakowski et al.

Table 1. Median execution time of procedures (in seconds) and ni, pi (real data sets).

Dataset ni pi range PDMR DMR S-8 S-32

Airbnb 999 1410, . . . , 1504 5.19 5.41 N/A N/A
Antigua 200 57, 58 0.16 0.19 1.65 0.69
Insurance 1781 313, . . . , 365 46.1 113.82 27.59 25.48
Adult 452 60, . . . , 78 5.66 10.2 300.53 322.96

Promoter 74 172 3.29 4.7 604.86 3616.55

Setting 1, SNR=3 11.67 15.25 335.6 332.03
Setting 2, SNR=3 11.57 15.56 371.91 353.68
Setting 3, SNR=3 11.47 15.11 352.84 370.06
Setting 4, SNR=3 12.71 16.81 504.25 764.15
Setting 6, SNR=3 12.17 16.49 712.94 1253.64

signi�cantly faster than SCOPE. There is only one data set (Insurance) that
execution time of SCOPE is shorter. For simulated data we present results for
SNR=3, but they look pretty the same for other SNR values, for instance in Sec-
tion 5 of the online supplement we show results for SNR=4. For binary response
data (Adult and Promoter) columns �S-8� and �S-32� in Table 1 correspond to
SCOPE with gamma equal to 100 and 250, respectively.

5 Conclusions

By merging levels of factors the PDMR algorithm can signi�cantly reduce a
dimension of the Group Lasso model with only a small loss of prediction accuracy.
PDMR is better than DMR with respect to the prediction error and model
dimension. PDMR also simpli�es DMR, which enables us to rigorously con�rm
consistency of PDMR in the high-dimensional scenario (Theorem 1). Such results
are not available for DMR nor other partition selection algorithms. Numerical
experiments show that PDMR is several dozen times faster than SCOPE and is
comparable or better with respect to the prediction error and model dimension.

Our paper can be extended in a few directions. The �rst one is to prove an
analogous bound to that in Theorem 1 but concerning supermodels of Mβ̊ . The
second one is to generalize this theorem to GLMs. Finally, we obtain optimal
weights for the Group Lasso, which are di�erent from those recommended by
the authors of this method (cf. Section 2.1 in the supplement). Possibly, the new
weights can improve asymptotics of the Group Lasso in the general scenario (not
necessarily orthogonal) and its practical performance as well.
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