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Abstract. In this contribution, a simple and efficient algorithm for the
closest-pair problem in E1 is described using the preprocessing based
on exponent bucketing and exponent windowing respecting accuracy of
the floating point representation. The preprocessing is of the O(N) com-
plexity. Experiments made for the uniform distribution proved significant
speedup. The proposed approach is applicable for the E2 case.
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1 Introduction

The closest pair problem is a problem of finding two points having minimum
mutual distance in the given data set. Brute force algorithms with O(N2) com-
plexity are used for a small number of points, and for higher number of points
algorithms based on sorting have O(N lgN) complexity. In the case of large data
sets4, the processing time with O(N lgN) complexity might be prohibitive.

In this contribution, a proposed simple preprocessing of the data set based
on the bucketing and exponent windowing is described; similar strategy as in
Skala[13, 12, 14, 15] and Smolik[16]. The extension to the E2 case is straightfor-
ward using already developed algorithms. The closest pair problem was address
in Shamos[11], Kuhller [7], Golin[4] and Mavrommatis[8], Pereira[9], Roumelis[10]
used space subdivision and Bespamyatnikh[1] used a tree representation, Daescu[3,
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4 Data set, where N ≫ 106. Note that 2 147 483 648

.
= 2.147 109 unsigned distinct

values only can be represented in single precision.
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2] and Katajainen[6] used divide & conquer strategy, Kamousi[5] used a stochas-
tic approach.

In the following, basic strategies for finding a minimum distance of points in
E1 are described.
Brute-force algorithm - The naive approach leads to a brute-force algorithm,
which is simple and easy to implement. However, it has O(N2) computational
complexity as it requires N(N − 1)/2 computational steps. This algorithm can-
not be used even for relatively small N due to the algorithm complexity, but
can be also used for a higher dimensional case. The algorithm can be speed-up
a bit, as d can be computed as d := ∥x[i]− x[j]∥2 and d0 set as d0 :=

√
d0 as

the function f(x) = x2 is a monotonically growing function5.
Algorithm with sorting - In the one dimensional case, i.e. the E1 case,
the given values xi might be re-ordered into the ascending order. It leads to
O(N logN) computational complexity. Then the ordered data are searched for
the minimum distance of two consecutive numbers, i.e. xi+1−xi as xi+1 ≥ xi ∀i,
with O(N) complexity. The above-mentioned algorithms are correct and can be
used for computation with ”unlimited precision”.

However, in real implementations, the used floating point representation has
a limited mantissa representation and range of exponents.

Bucket length histogram Speed-up for the interval [0, 1]
(a) (b)

Table 1. Bucket length distribution and speed-up of the proposed algorithm

Algorithm with limited mantissa - The computational complexity of the
algorithm is O(N logN) due to the ordering and finding the minimum distance
is O(N) complexity as all N values have to be tested, as the smallest difference
might be given by the last binary digits in the mantissa.6

5 It actually saves O(N2) computations of the
√
∗ function.

6 Let us consider a sorted sequence 1.01, 1.05, . . . , 10.0001, 10.0005, then the minimum
distance is 0.0004 not 0.04.
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However, in the real data cases, the expected complexity will be smaller,
due to values distribution over several binary exponents. Tab.1.a presents7 a
histogram of values according to their binary exponent; the uniform distribution
[0, 1] is used.
In reality, the IEEE 754 floating point representation or a similar one with
a limited mantissa precision is used. It means, that if d = |xi+1 − xi| is the
currently found minimum distance, i.e. d = [md, Ed], where md is the mantissa
and Ed is the binary exponent of d, then the stopping criterion for searching the
ordered x values is xi > d0 ∗2p+1, where p is the number of bits of the mantissa,
d0 is already found minimum.

It can be seen, that the limited mantissa precision reduces the computational
requirements significantly for the larger range of the binary exponents of values.
Tab.1.a presents an expected number of points having exponents within exponent
buckets for 108 of points, if the uniform distribution is used.

2 Proposed algorithm with Oexp(N) complexity

The bottleneck of the algorithm standard O(N logN) complexity is the ordering
step. However, instead of ”standard” sorting algorithms, e.g. heap sort, shall
sort, quick sort etc., it is possible to use bucketing by the exponent values8 in
stead, which has O(N) complexity, see Fig.1. The data structure is similar to
the standard hashing structure. All values having the same binary exponent are
stored in an array-list or in a similar data structure9, see Fig.1. The values Emin

Fig. 1. Bucketing structure - 32-bits

and Emax are the minimum and maximum binary exponents found. It means,
that all values are sorted according to their binary exponents, but unsorted
within the actual bucket, i.e. unordered, if the exponents are equal. The table
length is 256, resp. 2048 according to the precision used, i.e. 32-bits, resp. 64-bits.

It should be noted, that even for 108 points, the probability for small values
of exponents is extremely low. As the mantissa precision is limited the bucket
length for very low exponents will be zero or very small.

7 Note: 130-120 means exponents interval [-120,...,-111]
8 the binary exponent is shifted, i.2. a value 2−128 has the shifted exponent 0.
9 The array list, i.e. extensible arrays were used in the actual implementation.
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Algorithm 1 Minimum distance with bucketing in E1

1: procedure MinDistBucket(x, N, d0);
2: ▷ given set of N points x, x[i] ≥ 0, distance d0 found
3: Emin := maxint; Emax := minint; ▷ initial setting
4: p := 24; ▷ 32-bits: p = 24; 64-bits: p := 53
5: Erange := 256; ▷ exponent range Erange := 2048, if double precision
6: # preprocessing - buckets construction #
7: for i := 1 to N do
8: Ex := Exponent(x[i]); ▷ binary exponent [0, Erange]
9: Add(x[i],Bucket(Ex)); ▷ add the value to the bucket Bucket(Ex)
10: Emin := min {Emin, Ex};
11: end for ▷ all bucket are constructed
12:
13: d0 := ∞ ; ▷ setting a min. distance estimation
14: temp := −∞; ▷ initial setting
15: i := Emin; ▷ Bucket[Emin] ̸= ∅
16: Emax := Emin + p; ▷ Emax - upper bound for the windowing
17: InWindow := true;
18: PairFound := false;
19: ▷ case if the only one point is inside of the exponent window
20: while (i ≤ Emax or not PairFound) and i ≤ Erange do
21: if (Bucket[i] ̸= ∅) and InWindow then
22: SORT Bucket(i); ▷ sorts values in the i-th Bucket
23: # [d, temp]:=ProcessOneBucket(i,temp); #
24: ▷ finds a minimum distance d of temp and values in the Bucket[i]
25: ▷ temp is last value in the Bucket[i− 1]
26: # find a minimum distance in a {temp,Bucket[∗]}, if exists #
27: for k := 1 to Bucket.length[i] do
28: xx := Bucket[i][k]; ▷ get the current value
29: d := xx− temp; temp := xx;
30: if d0 > d then
31: d0 := d;
32: PairFound := true; ▷ at least one valid pair found
33: end if
34: end for
35: Ex := Exponent(d0); ▷ Windowing the exponent
36: InWindow := Ex+ p < i;
37: ▷ STOP, if the exponent Ex of (d0 + p) ≥ i; the current exponent i
38: ▷ p is the mantissa length+1
39: end if
40: end while
41: end procedure

#SOLVED - A sequence 1023, 0.1 100, 10.001 1023 is handled properly
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Taking above into consideration, the proposed algorithm based on bucket-
ing and exponent windowing is given by the algorithm Alg.1, where sorting of
buckets is made on a request, i.e. when needed.

The function ProcessOneBucket(i, temp) finds a minimum distance within
the sorted Bucket[i], taking temp value as the element before the first element
in the Bucket[i]. It should be noted, that there is a ”window” in the exponent
table long 24 in the case of 32-bits, resp. 53 in the case of 64-bits, in which data
are to be processed due to the mantissa limited precision. It leads to significant
speed-up, especially for large data interval range.

3 Algorithm analysis

Let us consider uniform distribution on the interval [0, 1], e.g. using the standard
random(∗) function. The exponent bucketing is a non-linear space subdivision
as the space of values is split non-linearly, i.e. the interval length grows expo-
nentially. In this case, values have the power distribution 2k, k = −128, . . . ,−1,
or k = −128, . . . , 127, if data generated from the interval [0,∞). It means, that
for small exponent values, fewer elements are stored in a bucket, while for higher
exponent values more values are stored in the relevant bucket.

As all values are generated within the interval [0, 1] and the 32-bits precision
is used, then each sub-interval is of the length 2k. It means that if N points are
generated uniformly within the interval [0,1], then the interval k contains mk

values, see Eq.1, where mk = 2kN , k = −128, . . . ,−1 as:

k=128∑
k=1

2−k =
1

21
+

1

22
+

1

23
+ . . .+

1

2128
.
= 1 (1)

As the distance between small values is smaller, there is higher probability, that
the minimum distance, i.e. the closest pair will be found faster, see Tab.1.a.

However, not the whole range of exponents will be used in a real situation
and the interval of exponents [Emin, Emax] can be expected. As the precision of
the mantissa is limited to 24 bits in the 32-bits case, a window of 24 exponents
is to be processed instead of 128, resp. 256; similarly in the case of 64-bits, the
window of 53 exponents is to be processed instead of 1024, resp. 2048.
It should be noted that for N = 1010 values, the number of values having the
exponent 2−128, i.e. for ξ = 0, is 2.9 10−29 only. The lowest non-empty bucket will
probably have the non-shifted exponent 33 and the shifted exponent Ex = 95 10.
It means that the expected Emax will be Emax = 117, i.e. k = −33 + 24 = −9,
if the single precision used.

Therefore, in the case of the [0, 1] uniform distribution interval, the last 8
shifted (physical) exponents, i.e. Ex = [120, 127], will not be evaluated. Those

10 The value k
.
= 33 is obtained by solving 1010 ∗ 2k = 1, which is k

.
= −33 and the

shifted exponent Ex = 128− 33 = 95.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_40

https://dx.doi.org/10.1007/978-3-031-36021-3_40
https://dx.doi.org/10.1007/978-3-031-36021-3_40


6 V.Skala et al.

buckets contain N0 values, i.e. approx. 99.609% points, see Eq.2.

N0 = N

8∑
i=1

1

2i
N0

N
=

8∑
i=1

1

2i
.
= 99.609375 (2)

where i is the non-shifted exponent. Therefore, efficiency of the proposed al-
gorithm grows with the exponent range in the uniform distribution case. The
proposed algorithm can be modified for the Gaussian distribution easily.

4 Experimental results

The implementation of the algorithm described in Alg.1 is based on some data
profile assumptions. There are two significant factors to be considered:

– the range of data exponents should be higher; if all the data would have the
same binary exponent, only one very long bucket would be created,

– the algorithm is intended for larger data sets, i.e. number of points N > 106.

In the actual implementation an equivalent of the array-list was used, which
is extended to a double length if needed and data are copied to the new posi-
tion11. It might lead the copy-paste extensive use resulting to slow-down. In the
case of the uniform distribution, the initial length of a bucket should be set to
a recommended length N 2−k ∗ 1.2 setting used in the experimental evaluation,
i.e. length.Bucket[k] ≥ N 2−k ∗ 1.2.

Evaluation Uniform distribution of values was used with different intervals
from [0, 1] to [0, 104]. Up to 2 109 points were generated and efficiency of the
proposed algorithm was tested.

Obtained results for the interval [0, 1] are summarized in Tab.1.b, where

ratios of time spent are presented. Notation: Sort− CPP/B = timeSort−CPP

timeBucketing
,

Sort− CPP/B +W = timeSort−CPP

timeBucketing+Windowing
, and

B/B +W =
timeBucketing

timeBucketing+Windowing

The ratio Sort− CPP/B gives reached speed-up using the exponent bucketing
over sort12 used in C++. It can be seen that there is a speed-up over 1.2 for
more than 103 points and grows with the range of generated data.

The ratio Sort− CPP/B +W gives reached speed-up using the exponent
bucketing over sort used in C++ and the speed-up is over 1.4.

11 In the case of 106 values, over 103 bucket extensions were called, but with the 20%
additional memory allocation, the extension was called only 7 times.

12 Sort-CPP - standard Shell sort in C++
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It should be noted, that

– speed-up for 109 points is over 16 times against if the sort method is used.

– ratio B/B +W clearly shows significant influence of the windowing, which
reflects the limited precision of numerical representation.

Notes - As the number of the processed values N is high, there are possible
modifications of the algorithm leading to further efficiency improvements, e.g.:

– finding the Emin and Emax can be done after the buckets construction; it
saves O(N) floating point comparisons, or it can be removed with initial
setting Emin := 0,

– some heuristic strategies can be used, e.g. pick up m values, find the smallest
and its exponent Ex, and the second smallest one and determine a first
minimum distance estimation. Set Emax:= Ex + p (Ex is the exponent of
already minimum found) as a stopping criterion for building buckets (it
eliminated long bucket constructions for higher exponents, which cannot
contribute to the minimum distance13).

5 Conclusions

In this contribution, an efficient improvement of the minimum distance algorithm
E1 case is presented. It takes a limited precision of the floating point represen-
tation into consideration and uses bucketing sort based on exponent’s baskets.
The presented approach is intended for larger data sets with a higher exponent
range. Experiments made proved a significant speed-up of the proposed approach
for the uniform distribution. The proposed approach can be extended to the E2

case using algorithms as proposed in Daescu[3, 2], Golin[4], etc. Extensions of
the proposed approach for the E2 and E3 cases are future work.
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