
Efficiency Analysis for AI applications in HPC
systems. Case study: K-Means

Jose Rivas1[0009−0004−1725−7133], Alvaro Wong1[0000−0002−8394−9478], Remo
Suppi1[0000−0002−0373−8292], Emilio Luque1[0000−0002−2884−3232], and Dolores

Rexachs1[0000−0001−5500−850X]

Universitat Autònoma de Barcelona Barcelona 08193, Spain
{jose.rivas}@autonoma.cat

{alvaro.wong, remo.suppi, emilio.luque, dolores.rexachs}@uab.es

Abstract. Currently, many AI applications require large-scale comput-
ing and memory to solve problems. The combination of AI applications
and HPC sometimes does not efficiently use the available resources. Fur-
thermore, a lot of idle times is caused by communication, resulting in
increased runtime. This paper describes a methodology for AI parallel
applications that analyses the performance and efficiency of these appli-
cations running on HPC resources to make decisions and select the most
appropriate system resources. We validate our proposal by analysing the
efficiency of the K-Means application obtaining an efficiency of 99% on
a target machine.

Keywords: AI applications · HPC performance and efficiency · PAS2P
methodology.

1 Introduction

In recent years, the convergence of High Performance Computing (HPC) and
Artificial Intelligence (AI) has become increasingly relevant as the advanced
HPC technology has enhanced the processing power needed for large-scale AI
applications [1][2]. HPC systems have traditionally been used for scientific sim-
ulations and modelling. Nevertheless, with the rise of AI, these systems can now
be leveraged for complex AI workloads such as deep learning or neural networks.

As these applications become more complex and are used on HPC systems, it
is crusial tu ensure that the AI applications are running efficiently. One problem
that parallel AI applications face is ensuring that they are utilising the full
processing power of HPC systems on which they are executed.

We propose to provide information about these applications’ performance
and identify segments of the program that could be improved. To achieve this
objective, we first evaluate the PAS2P (Parallel Application Signature for Per-
formance Prediction) tool used to predict the performance of a parallel scientific
application as well as to analyse if it is possible to generate a model for AI
applications.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_39

https://dx.doi.org/10.1007/978-3-031-36021-3_39
https://dx.doi.org/10.1007/978-3-031-36021-3_39


2 J. Rivas et al.

The PAS2P methodology[9] is based on characterising the dynamic behaviour
of MPI applications on their execution. PAS2P instruments the application to
analyse the events it has captured and search for repetitive patterns defined as
phases. Each phase is assigned a weight determined by the number of times a
pattern repeats. For the performance prediction, PAS2P generates a signature
that is constituted by phases. When executed, we obtain the execution times of
each phase. By multiplying these times by the weights, we obtain the execution
time prediction.

With the PAS2P tool, we can characterise an application in a reduced set
of phases, which allows us to focus the efficiency analysis on the phases of the
application and later extrapolate this analysis to the entire application. How-
ever, to validate our proposal, it is necessary to analyse the application model
generated by PAS2P for AI applications in order to analyse the efficiency of AI
applications on HPC systems so as to produce a comprehensive report highlight-
ing the areas (phases) in the code that can be improved. In this case, we apply
the efficiency analysis to the K-Means application.

This paper is organised as follows: Section 2 provides an overview of related
works in the realm of AI application performance on HPC systems and previ-
ous PAS2P works to characterise scientific applications in HPC environments.
Section 3 presents how PAS2P models the AI applications, and the proposed
methodology for the efficiency analysis outlines the approach and the three steps
taken in the study. Section 4 presents the efficiency analysis results applied to
a K-Means application. Finally, in the last section, we offer the conclusions and
propose future work.

2 Related works

There are tools related to the performance of AI parallel applications running on
HPC systems. For example, Z. Fink et al. [4], the autors focus on evaluating the
performance of two Python parallel programming models: Charm4Py [5], and
mpi4py [6]. The authors argue that Python is rapidly becoming a common lan-
guage in machine learning and scientific computing, and several frameworks scale
Python across nodes. However, more needs to be known about their strengths
and weaknesses.

N. Alnaasan et al. [7] introduce OMB-Py, a Python micro-benchmark for
evaluating MPI library performance on HPC systems. The authors argue that
Python has become a dominant programming language in emerging areas such
as machine learning, deep learning, and data science. The paper proposes OMB-
Py, Python extensions of the open-source OSU Micro-Benchmark (OMB) suite,
in order to evaluate the communication performance of MPI-based parallel ap-
plications in Python. There are other proposals on the importance of evaluating
and improving the performance of AI applications in HPC environments [3].
However, one of the main difficulties with benchmarks is selecting the bench-
mark most similar to the application you want to evaluate on a specific system.
The difference between these works and ours is that with PAS2P, we obtain the

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_39

https://dx.doi.org/10.1007/978-3-031-36021-3_39
https://dx.doi.org/10.1007/978-3-031-36021-3_39


Efficiency Analysis for AI applications in HPC systems 3

Fig. 1. Overview of PAS2P Methodology.

application’s benchmark (Application Signature) executed in a bounded time
representing the application behaviour.

In previous work on PAS2P[9][10], methodologies were developed which fo-
cused on both applications of SPMD scientific computing and an extension of
PAS2P for applications with irregular behaviour, both for HPC environments.

As shown in Figure 1, PAS2P instruments and runs the application in a tar-
get machine, producing trace logs. The data obtained is used to characterise the
behaviour of computing and communication events that describe the application
behaviour. First, PAS2P assigns a global logical clock to the event to obtain the
application model according to the causal relationships between the communi-
cation events. Then, once PAS2P has the application model, it identifies and
extracts the sequences of the most relevant events defined as phases.

Once we have the phases, PAS2P assigns a weight to each phase, defined as
the number of times the phase occurs during the execution. Finally, the signature
is represented by a set of phases that can be executed to measure the application
performance. For performance prediction, the signature execution in different
target systems allows us to measure the execution time of each phase. Therefore
it calculates the runtime of the entire application in each of those systems. This
is achieved by using equation (1), where the PhaseETi is the estimated time for
each phase i, and Wi is the weight for each phase i.

PET =

n∑
i=1

(PhaseETi)(Wi) (1)

3 Efficiency Analysis Model over Application Phases

With the recent advancements in HPC hardware and the surge in AI, we propose
to extend the contributions of the PAS2P methodology to the field of AI. To eval-
uate the PAS2P application model and propose an efficiency model, we take the

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_39

https://dx.doi.org/10.1007/978-3-031-36021-3_39
https://dx.doi.org/10.1007/978-3-031-36021-3_39


4 J. Rivas et al.

Table 1. Set of executions carried out with a K-Means application.

Exp. Data Centroid Sites per Exp. Data Centroid Sites per
ID seed seed process ID seed seed process

1 31359 5803 522500 7 31359 5803 400250
2 31359 18036 522500 8 31359 18036 400250
3 2450 5803 522500 9 2450 5803 400250
4 2450 18036 522500 10 2450 18036 400250
5 19702 5803 522500 11 19702 5803 400250
6 19702 18036 522500 12 19702 18036 400250

AI application K-Means, an unsupervised classification (clustering) algorithm
that groups objects into k groups based on their characteristics[8]. Clustering
is carried out by minimising the sum of distances between each object and the
centroid of its group or cluster. The quadratic distance is often used.

There is a need to expand the concept of the performance of a parallel applica-
tion beyond simply predicting its execution time. The previous PAS2P method-
ology primarily focuses on predicting execution time as a performance measure.
We then propose an extension to the meaning of efficiency by defining the per-
formance of a phase as the ratio between the computational time and its total
execution time.

As per our proposal, first, we need to evaluate if PAS2P can characterise the
AI application. To validate the characterisation, we instrument and analyse the
execution of the K-Means application using PAS2P and construct the applica-
tion signature. We suppose that this signature accurately predicts the application
execution time with the same dataset and conditions as the application execu-
tion. In that case, we can validate that the PAS2P methodology generates an
application model that represents the application behaviour, in order to prove
experimentally our hypothesis: the application has the same structure (same
phases) for different datasets and different initial conditions, but with different
amounts of repetition (different weights).

We have carried out a set of executions on the K-means application; con-
sidering the data and input parameters (K defined as the number of centroids)
of the K-means application, we vary the dataset size and the initial number of
centroids of each execution. We can control the dataset by changing the random
seed to initialise a pseudorandom number generator of both the dataset and the
initial centroids. The dimensionality of the data points was set to 16 coordinates,
and the algorithm was executed, defining 24 clusters. We conducted our experi-
ments on a 256-process distributed system consisting of 4 compute nodes, each
equipped with 64 cores, as shown in Table 1.

The procedure mentioned in [9] is applied using the PAS2P methodology.
First, the application is analyzed, and its signature is created for each exper-
iment. Then, we use the signature to predict the execution time for a given
machine and a given configuration, according to the values in Table 1. Finally,
when we compare the execution time of the application with the time predicted

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_39

https://dx.doi.org/10.1007/978-3-031-36021-3_39
https://dx.doi.org/10.1007/978-3-031-36021-3_39


Efficiency Analysis for AI applications in HPC systems 5

Table 2. Weight Variation obtained when K-Means is executed with different datasets.

Exp. Phase Weight Number of Exp. Phase Weight Number of
ID Instructions ID Instructions

1 1 291 5306507150 2 1 225 5306813225
1 2 290 463 2 2 224 463
1 3 292 463 2 3 226 463
1 4 291 469 2 4 225 469

3 1 285 5306511267 4 1 232 5306812383
3 2 284 463 4 2 231 463
3 3 286 463 4 3 233 463
3 4 285 469 4 4 232 469

5 1 306 5306506593 6 1 230 5306812411
5 2 305 463 6 2 229 463
5 3 307 463 6 3 231 463
5 4 306 469 6 4 230 469

7 1 284 4064938012 8 1 229 4065170526
7 2 283 463 8 2 228 463
7 3 285 463 8 3 230 463
7 4 284 469 8 4 229 469

9 1 294 4064940486 10 1 234 4065172879
9 2 293 463 10 2 233 463
9 3 295 463 10 3 235 463
9 4 294 469 10 4 234 469

11 1 321 4064938896 12 1 232 4065170309
11 2 320 463 12 2 231 463
11 3 322 463 12 3 233 463
11 4 321 469 12 4 232 469

by PAS2P for each of the experiments, an average prediction error of 4.3% is
obtained.

So, experimentally, we can say that PAS2P performs a correct analysis of the
phases in such a way as to perform a reduction of an application to a signature
of it, with an average reduction of 8.3% in the execution time of the signature
in relation to the total execution time.

For the second part of the experiment, we used the PAS2P tool to obtain
traces and extract information about the program’s structure for each experi-
ment. The analysis of the data, following our hypothesis, is presented in Table
2. The results indicate that the application’s structure remains consistent across
all cases, with four phases identified. However, the weights of each phase, and
the number of times each phase is repeated, vary among the datasets. This ob-
servation can be explained by the fact that the application uses the same steps
for the experiment but with varying repetitions for each phase.

One proposed objective is to evaluate an application’s efficiency on a specific
architecture using the application signature. We define computational time as
when a process executes computational instructions—the communication time,
such as the transmission or reception time of MPI messages, plus the idle time
waiting for communication. Therefore we define Phase Execution Time as the

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_39

https://dx.doi.org/10.1007/978-3-031-36021-3_39
https://dx.doi.org/10.1007/978-3-031-36021-3_39


6 J. Rivas et al.

sum of computing time plus communication time. Consequently, we define efficiencyphase
as seen in the following equation.

efficiencyphase =
computing time

phase execution time
(2)

4 Experimental results

To evaluate efficiency, we have validated by selecting the Experiment 1, as men-
tioned in the previous section (Table 2) with the K-Means application. This
validation is characterised by a phased analysis in order to identify the efficiency
of each phase in relation to the global execution time. The experimentation
methodology runs the K-Means application, analyses it, and extracts signatures
using PAS2P on a system with a specific architecture. The computing system
is composed of 7 compute nodes of 64 cores (AMD Opteron6262 HE processor)
with an interconnection network of 40 Gb/s Infiniband. As shown in Table 3, we
present the efficiency results for each phase based on the results of Experiment
1 according to Equation (2).

After analysing the K-Means application with PAS2P, the application be-
haviour is represented by 4 phases, as is shown in Table 3. The first phase (the
more relevant phase from the computational point of view) had the highest ef-
ficiency, with a value of 99.93%. The second phase had an efficiency of only
11.64%, whilst the third phase had an efficiency of 24.58%. The fourth and fi-
nal phase had the lowest efficiency, at only 7.28%. In addition to the efficiency
results, Table 3 includes the computational time related to the number of in-
structions and total phase execution time (in ns) and the communication volume
for each phase (in MB).

Table 3 shows the efficiency of each phase individually. However, this infor-
mation is still not enough to know the global impact of each of these phases on
the total execution time of the application. Therefore, in order to see the global
effects of each phase, we proceed to carry out the procedure described below,
resulting in Table 3 from Table 4.

To determine the “Global Computing Time” and the “Total Phase Execu-
tion” columns, we multiply the weights of each phase by their respective execu-
tion times. Next, we sum up the “Total Phase Execution” values for each phase
to obtain the overall “Execution Time” (ET) of the application. To calculate

Table 3. Efficiency for each phase (Results of experiment 1)

Phase Computing Phase Execution Efficiency Number of Communication
Time [ns] Time [ns] [%] Instructions Volume

1 1.203028e+12 1.203866e+12 99.930416 5306514959 1536
2 5.770710e+06 4.956300e+07 11.643181 463 0
3 1.239423e+07 5.042100e+07 24.581488 464 1536
4 1.236372e+07 1.697620e+08 7.282971 469 4

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_39

https://dx.doi.org/10.1007/978-3-031-36021-3_39
https://dx.doi.org/10.1007/978-3-031-36021-3_39


Efficiency Analysis for AI applications in HPC systems 7

Table 4. Global efficiency (Results of experiment 1)

Phase Global Comp. Total Phase Global Comp. Max. Comp. Room for
Time [ns] Execution [ns] Time[%] [%] improvement[%]

1 3.500811e+14 3.503249e+14 99.9080 99.9775 0.0695
2 1.673506e+09 1.437327e+10 0.0004 0.0041 0.0036
3 3.619116e+09 1.472293e+10 0.0010 0.0042 0.0031
4 3.597842e+09 4.940074e+10 0.0010 0.0140 0.0130

both “the Percentage Global Computational” time and the “Percentage Max.
Computation” for each phase, we divide the “Global Computational Time” and
the “Total Phase Execution” columns by the total application Execution Time
(ET). Lastly, we subtract the two last columns to obtain the values in the “Room
for improvement” column.

Global Comp. Time denotes the total duration taken to complete a comput-
ing phase, while Total Phase Execution refers to the entire time required for the
phase to run. The forth column shows the percentage of total computing time
utilised by the phase, indicated as “Global Computational Time [%]”. The fifth
column (Max. Comp. [%]) represents the maximum possible percentage that the
phase can achieve if it performs computations for the entire phase duration, and
it can be considered the theoretical limit. Finally, the last column (Room for
improvement) displays the difference (in percentages) between the actual com-
putational time and the theoretical maximum computational time, reflecting the
potential for improvement.

In this scenario, the room for improvement is limited since Phase 1 is al-
ready highly efficient and dramatically influences the overall application time.
Additionally, it can be noted that the impact of the remaining phases is mini-
mal, as evidenced in the “Max. Computation [%]” column. Therefore, enhancing
the efficiency of these less impactful phases may yield few benefits. However, if
any of the values in the last column were considerably high, as administrators,
we would provide the programmer with a report highlighting the corresponding
phase’s substantial impact and recommend efforts to improve its efficiency.

5 Conclusions

This work aims to extend the PAS2P methodology’s contributions to AI by
validating the accuracy of PAS2P in predicting the execution time by taking
the K-Means application as a case study. The primary goal is to analyse the
K-Means clustering algorithm and demonstrate the hypothesis that, although
different datasets or initial conditions may affect the number of repetitions of
the same phases, the phases remain the same.

Furthermore, the study aims to calculate the efficiency of each phase, its
global impact on performance, as well as the improvement margin. Identifying
critical phases and optimising their performance can improve the application’s
efficiency. This work provides a useful report with the efficiency results of each
phase for programmers to take necessary steps toward achieving that goal.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_39

https://dx.doi.org/10.1007/978-3-031-36021-3_39
https://dx.doi.org/10.1007/978-3-031-36021-3_39


8 J. Rivas et al.

For future work, we will consider establishing mapping policies to improve
performance using the methodology presented in this work. As a first approach,
we will select three areas of AI for reviewing current tools and their focus. The
initial areas of AI with which we will be working are classification algorithms,
heuristics, and genetic algorithms.

6 Acknowledgments

This research has been supported by the Agencia Estatal de Investigacion (AEI),
Spain and the Fondo Europeo de Desarrollo Regional (FEDER) UE, under con-
tract PID2020-112496GB-I00 and partially funded by the Fundacion Escuelas
Universitarias Gimbernat (EUG).

References

1. G. Verma et al., “HPCFAIR: Enabling FAIR AI for HPC Applications,”
2021 IEEE/ACM Workshop on Machine Learning in High Performance Com-
puting Environments (MLHPC), St. Louis, MO, USA, 2021, pp. 58-68, doi:
10.1109/MLHPC54614.2021.00011.

2. A. Anandkumar, “Role of HPC in next-generation AI,” 2020 IEEE 27th Interna-
tional Conference on High Performance Computing, Data, and Analytics (HiPC),
Pune, India, 2020, pp. xx-xx, doi: 10.1109/HiPC50609.2020.00010.

3. A. Khan et al., ”Hvac: Removing I/O Bottleneck for Large-Scale Deep Learn-
ing Applications,” 2022 IEEE International Conference on Cluster Comput-
ing (CLUSTER), Heidelberg, Germany, 2022, pp. 324-335, doi: 10.1109/CLUS-
TER51413.2022.00044.

4. Fink, Z., Liu, S., Choi, J., Diener, M., Kale, L. V. (2021, November). Performance
evaluation of Python parallel programming models: Charm4Py and mpi4py. In 2021
IEEE/ACM 6th International Workshop on Extreme Scale Programming Models
and Middleware (ESPM2) (pp. 38-44). IEEE.

5. Charm4py documentation, https://charm4py.readthedocs.io/en/latest/. Last ac-
cessed 10 Feb 2023

6. MPI for Python documentation, https://mpi4py.readthedocs.io/en/stable/. Last ac-
cessed 10 Feb 2023

7. Alnaasan, N., Jain, A., Shafi, A., Subramoni, H., Panda, D. K. (2022, May). OMB-
Py: Python Micro-Benchmarks for Evaluating Performance of MPI Libraries on
HPC Systems. In 2022 IEEE International Parallel and Distributed Processing Sym-
posium Workshops (IPDPSW) (pp. 870-879). IEEE.

8. S. Lloyd, ”Least squares quantization in PCM,” in IEEE Transactions on Informa-
tion Theory, vol. 28, no. 2, pp. 129-137, March 1982, doi: 10.1109/TIT.1982.1056489.

9. Wong, A., Rexachs, D., Luque, E. (2015). Parallel Application Signature for Per-
formance Analysis and Prediction. IEEE Transactions on Parallel and Distributed
Systems, 26(7), 2009-2019.

10. Tirado, F., Wong, A., Rexachs, D., Luque, E. (2021). Improving Analysis in SPMD
Applications for Performance Prediction. In Advances in Parallel Distributed Pro-
cessing, and Applications: Proceedings from PDPTA’20, CSC’20, MSV’20, and
GCC’20 (pp. 387-404). Springer International Publishing.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_39

https://dx.doi.org/10.1007/978-3-031-36021-3_39
https://dx.doi.org/10.1007/978-3-031-36021-3_39

