
Optimization and Comparison of Coordinate- and
Metric-Based Indexes on GPUs for Distance

Similarity Searches?

Michael Gowanlock1[0000−0002−0826−6204], Benoit Gallet1[0000−0001−9716−1502],
and Brian Donnelly1[0000−0002−7484−3778]

Northern Arizona University, Flagstaff, AZ, USA
{michael.gowanlock,benoit.gallet,brian.donnelly}@nau.edu

Abstract. The distance similarity search (DSS) is a fundamental oper-
ation for large-scale data analytics, as it is used to find all points that
are within a search distance of a query point. Given that new scientific
instruments are generating a tremendous amount of data, it is critical
that these searches are highly efficient. Recently, GPU algorithms have
been proposed to parallelize the DSS. While most work shows that GPU
algorithms largely outperform parallel CPU algorithms, there is no single
GPU algorithm that outperforms all other state-of-the-art approaches;
therefore, it is not clear which algorithm should be selected based on a
dataset/workload. We compare two GPU DSS algorithms: one that in-
dexes directly on the data coordinates, and one that indexes using the
distances between data points to a set of reference points. A counterin-
tuitive finding is that the data dimensionality is not a good indicator of
which algorithm should be used on a given dataset. We also find that
the intrinsic dimensionality (ID) which quantifies structure in the data
can be used to parameter tune the algorithms to improve performance
over the baselines reported in prior work. Lastly, we find that combining
the data dimensionality and ID can be used to select between the best
performing GPU algorithm on a dataset.
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1 Introduction

The distance similarity search (DSS) finds objects within a search distance of
points in a dataset. The distance similarity self-join (DSSJ) refers to finding all
objects in a dataset within a distance, ε, of each other. DSS is a building block
of several algorithms, including those used for scientific data analysis [12].

The search-and-refine strategy reduces the computational cost of the DSS,
where an index prunes the search and generates a set of candidate points, which
are then refined using distance calculations to compute the final result set for
? This material is based upon work supported by the National Science Foundation
under Grant No. 2042155.
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each query point. Graphics Processing Units (GPUs) have high computational
throughput due to their massive parallelism and are very effective at performing
distance calculations. Numerous research on the DSS has demonstrated that the
GPU is superior to multi-core CPUs [11,9,3,6,7].

The performance of GPU DSS algorithms is largely a function of data-
dependent properties, such as the data distribution, dimensionality, sparsity,
and variance. Thus, there is not a single GPU algorithm that is better than all
other algorithms, which makes it challenging to select an algorithm to employ
on a given workload. The two major classes of indexes are those that employ
coordinate- and metric-based indexes [10]. The former constructs an index di-
rectly on the coordinates of the data points, whereas the latter uses distances to
a set of reference points instead of indexing on the data coordinates.

This paper compares two state-of-the-art GPU algorithms having a coordinate-
based index (GDS-Join) and a metric-based index (COSS). Because neither
algorithm performs best on all datasets, this paper aims to address the following
questions: (i) What data properties can be used to determine the number of
indexed dimensions (GDS-Join) or number of reference points (COSS) to use
when processing a given dataset? (ii) Which dataset properties can be used to
select whether GDS-Join or COSS should be employed on a dataset?

2 Background: Comparison of GDS-Join and COSS

In this section, we compare GDS-Join [9] to COSS [3]. For more information,
we refer the reader to those papers. GDS-Join uses a coordinate-based index;
in contrast, COSS is a metric-based index which stores points in a grid based on
their distance to a set of reference points. GDS-Join and COSS are similar as
their grid-based indexes are GPU-friendly as they address the drawbacks of the
GPU’s Single Instruction Multiple Thread execution model. Both GDS-Join
and COSS use batching schemes to compute batches of query points such that
GPU global memory is not exceeded and to hide PCIe data transfer latency.

GDS-Join and COSS have a parameter that controls the amount of pruning
they perform, such that a trade-off can be reached between index search overhead
and the number of distance calculations that are computed. In this paper, this
is referred to as k, which is the number of indexed dimensions for GDS-Join or
the number of reference points for COSS. Thus, the two algorithms have similar
GPU kernel designs except that they use coordinate- and metric-based indexing.
As we will show in the evaluation, this distinction yields respective strengths and
weaknesses which are a function of data-dependent properties.

GDS-Join uses two additional optimizations than the preliminary work [9].
We utilize the method by Gowanlock [8] that orders the data points from most
work to least work which reduces load imbalance by assigning query points
with similar amounts of work to a given warp. This is referred to as reorder-
queries. Instruction-level parallelism (ILP) is also used to hide memory access
latency [13]. The DSSJ in high dimensionality performs many distance calcu-
lations in the filtering phase of the algorithm. Since the pairwise components
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of the distance calculation can be computed independently, we exploit ILP by
partially computing parts of the distance calculation and storing these partial
results in registers. We use ILP, where we define r cached elements that are used
to independently compute pair-wise distance calculations. Using these optimiza-
tions, GDS-Join achieves speedups over the preliminary work [9] in the range
1.82–5.51× across all datasets in Section 3.

3 Experimental Evaluation

3.1 Experimental Methodology

All GPU code is written in CUDA. The C/C++ host code is compiled with the
GNU compiler and the O3 optimization flag. Our platform has 2×AMD EPYC
7542 2.9 GHz CPUs (64 total cores), 512 GiB of main memory, equipped with
an Nvidia A100 GPU with 40 GiB of global memory, using CUDA 11 software.

In all experiments we exclude the time to load the dataset from disk. For all
GPU algorithms, we include all other time components, including constructing
the index, executing the DSSJ, storing the result set on the host and other host-
side operations, and perform all pre-processing optimizations. Thus, we make a
fair comparison between approaches. Reported time measurements are averaged
over 3 time trials, and data is stored/processed using 64-bit floating point values.
Throughout the evaluation, we report the speedup of GDS-Join over COSS (or
vice versa), defined as the ratio of two response times, s = TCOSS/TGDS-Join.
Selectivity of the experiments: We perform experiments across datasets and
ε values such that we do not have too few or too many total results. Thus, the
values of ε should represent values that are pragmatically useful. We define the
selectivity of the self-join as SD = (|R| − |D|)/|D|, where |R| is the total result
set size. This yields the average number of points within ε, excluding a point,
pa, finding itself. We select values of SD ∼ 0− 1000 across all datasets, which is
a typical range used in this literature.
Datasets: We use seven real-world datasets that span n = 18− 384 dimensions
(Table 1), allowing us to observe how performance varies as a function of di-
mensionality. We normalize all datasets in the range [0, 1]. All datasets except
BigCross [1] and Tiny5M 1 were obtained from the UCI ML repository2.
Implementation Configurations: All implementations are exact (not approx-
imate) algorithms and are parallelized using the GPU using 64-bit floating point
values. GDS-Join: GPU algorithm that uses a coordinate-based index. It is
configured using 32 threads per block, as we found it to achieve the best per-
formance on our platform. The default configuration for GDS-Join is to use all
optimizations (shortc, reorderdims, reorderqueries, and ILP), index in
k = 6 dimensions, and set r = 8 as the parameter for the ILP optimization.
The source code is publicly available.3 COSS: GPU algorithm that employs a
1 https://www.cse.cuhk.edu.hk/systems/hash/gqr/dataset/tiny5m.tar.gz
2 https://archive.ics.uci.edu/ml/index.php
3 https://github.com/mgowanlock/gpu_self_join/
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Dataset |D| n [εmin, εmax] [Smin
D , Smax

D ] Speedup GDS-Join
over COSS

SuSy 5,000,000 18 [0.01, 0.021] [5.17, 1090.45] 3.28
Higgs 11,000,000 28 [0.01, 0.0555] [0.05, 1009.02] 2.15
WEC 287,999 49 [0.002, 0.007] [39.46, 1006.39] 0.69
BigCross 11,620,300 57 [0.001, 0.02] [2.54, 1044.7] 1.69
Census 2,458,285 68 [0.001, 0.01] [21.64, 1077.6] 1.39
Songs 515,345 90 [0.007, 0.0091] [126.91, 998.19] 0.70
Tiny5M 5,000,000 384 [0.2, 0.44] [9.72, 1019.01] 0.34

Table 1. Datasets used in the evaluation, where |D| is the dataset size, and n is the
dimensionality. εmin and εmax refers to the range of search distances used, and Smin

D

and Smax
D refer to their corresponding selectivity values. The algorithms are configured

as described in Section 3.1. The mean speedup (or slowdown) of GDS-Join compared
to COSS is shown.

metric-based index [3]. In the evaluation, COSS is configured to use 8 threads
per point, and k = 6 reference points.

3.2 Results

Comparison of algorithms: Table 1 compares the performance of GDS-Join
and COSS, where the speedup is computed using the average response times
across five different values of ε as shown in the table. We observe that GDS-Join
achieves the greatest speedup on 4 datasets (SuSy , Higgs, BigCross, and Census)
whereas COSS achieves the greatest speedup on 3 datasets (WEC , Songs, and
Tiny5M ). The two GPU algorithms have their respective niches, as performance
largely depends on data properties. Furthermore, one optimization that must be
selected for GDS-Join and COSS is the number of indexed dimensions and the
number of reference points, respectively. This leads to the following questions:
When should GDS-Join or COSS be employed, how many dimensions (GDS-
Join) or reference points (COSS) should be used, and what properties can we
use to infer the best algorithm to employ?

Index dimensionality reduction: We examine index dimensionality reduc-
tion for GDS-Join and COSS. Figure 1 plots the normalized response time of
all real-world datasets as a function of k for GDS-Join, where a lower time indi-
cates better performance. We normalize to the largest response time (yielding a
value of 1 in each plot), such that we can compare the datasets across the same
scale. Key observations are as follows: (i) Panels (b) and (e) have a parabolic
shape and clearly show the trade-off between index search overhead and the
number of distance calculations performed. (ii) Panels (a), (c), (d), and (f) are
similar to the above, except that the potential overhead of computing a large
number of distance calculations at low values of k is absent. This is because the
data is distributed into a sufficient number of grid cells such that a large number
of distance calculations can be pruned even at low values of k. This illustrates
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Fig. 1. The normalized response time as a function of k for all real-world datasets,
where a lower normalized time is better. GDS-Join is executed using the median
values of ε in Table 1; across (a)–(g) they are as follows: {0.0155, 0.03275, 0.0045,
0.0105, 0.0055, 0.00805, 0.32}. Shaded regions — the range of values of k that have a
response time within 50% of the value of k that yielded the lowest response time.

how the reorderdims optimization combined with indexing k < n dimensions
can exploit the intrinsic dimensionality of the data; e.g., (f) Songs has n = 90
dimensions, but yields good performance when indexed in only k = 3 dimen-
sions. (iii) The shaded regions show values of k that yield a good response time,
where k can be selected in a large range and obtain good performance on most
datasets. With the exception of WEC , k = 6 yields respectable performance on
all datasets. We carried out the same experiment for COSS where k refers to
the number of reference points. The performance behavior between GDS-Join
and COSS is similar so we omit discussing this.

In summary, indexing in k < n dimensions (GDS-Join), or using k < n
reference points (COSS) provides a trade-off between distance comparisons and
index search overhead. Finding 1: There is not a direct correlation between data
dimensionality and the number indexed dimensions (GDS-Join) or reference
points (COSS) that should be used. Another metric for understanding data-
dependent performance is needed.

Using intrinsic dimensionality (ID) to select k: The ID is the number of
dimensions required to approximately represent a dataset. Intuitively, some data
dimensions are correlated, so it is possible to represent the data in fewer than n
dimensions. We propose a heuristic for selecting k as described in Equation 1,
where i ≥ 1 and n ≥ k.

k = 2 + dc · log2ic. (1)

In the equation, the base of the log is 2 — conceptually, increasing k to
k + 1 reduces the number of distance calculations by a factor of two, which
yields diminishing returns when increasing k. We take the log of the intrinsic
dimensionality (i) because the efficiency of pruning is directly related to the
structure of the data, with a low ID being easy to prune with a small k, while
a high ID requires a larger value of k to achieve a similar degree of pruning.
The notation dxc is the rounding function, and c is a coefficient where c =√

|D|
5×106 . The coefficient is used to scale the number of indexed dimensions as

a function of the dataset size |D|. This is needed because while the worst case
time complexity for a sufficiently large ε value is O(|D|2), in practice, an average
query only requires refining a fraction of the total dataset, |D|. Therefore, this
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Dataset n i keqn (Eqn. 1) Ratio GDS-Join Ratio COSS
SuSy 18 9 5 0.952 1.130
Higgs 28 19 8 1.301 0.882
WEC 49 15 3 1.865 1.932
BigCross 57 3 4 0.926 2.217
Census 68 13 5 1.074 1.481
Songs 90 29 4 1.290 1.426
Tiny5M 384 63 8 0.994 1.011

Table 2. The rounded intrinsic dimensionality (i) of each dataset, and keqn which is
the selected value of k using Equation 1. The data dimensionality (n) is shown for
comparison. The time ratio is Tk=6/Teqn.

factor scales with dataset size to limit the number of indexed dimensions when
a small dataset is employed and use more dimensions when processing larger
datasets. Lastly, because indexing in few dimensions is inexpensive, we index in
at least 2 dimensions.

We employ an ID estimator to compute i in Equation 1 that uses local
Principle Component Analysis (PCA) [5,4], where it uses the k-nearest neighbor
graph to estimate ID, and we employed the PCA algorithm from the scikit-
dimension library4. To compute i, we used 100 nearest neighbors on all datasets5.

Table 2 shows the estimated ID from the PCA method, and the value of
k using Equation 1. We find that this heuristic yields a very good value of k
(see Figure 1). All of the values of k yield an execution time for each dataset in
the blue shaded region. Thus, ID is a good tool for determining the number of
dimensions that should be indexed.

As described in Section 3.1, GDS-Join and COSS are configured by indexing
in k = 6 dimensions and using k = 6 reference points, respectively, because those
values were found to yield good performance across all datasets in the paper.
However, k = 6 does not yield the best response time across all datasets. Table 2
shows the ratio of Tk=6 to Teqn, which refers to the response time ratio when
k = 6 compared to that given when using k from Equation 1. For GDS-Join,
we find that there are three cases where Teqn is slower (Tk=6

Teqn
< 1), but the

performance loss is minor. In contrast, there are four cases where Teqn yields a
faster response time (Tk=6

Teqn
> 1) where substantial performance gains are achieved

on Higgs, WEC , and Songs, yielding a ratio between 1.07–1.87×.
Examining the abovementioned ratio for COSS, we find that there is only

one dataset (Higgs) where using keqn yields a slowdown; all other datasets yield
a ratio between 1.01–2.22×. Using ID to estimate k reaches a good trade-off
between index search overhead and the number of distance comparisons. It is
for this reason that other work finds that using k ≈ 6 reference points yields

4 https://scikit-dimension.readthedocs.io/en/latest/
5 Due to excessive execution times, we sampled Higgs and Tiny5M and ensured that
100 neighbors are sufficient across all datasets, and that sampling Higgs and Tiny5M
did not adversely impact ID estimation.

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_37

https://scikit-dimension.readthedocs.io/en/latest/
https://dx.doi.org/10.1007/978-3-031-36021-3_37
https://dx.doi.org/10.1007/978-3-031-36021-3_37


Title Suppressed Due to Excessive Length 7

Dataset Best GPU Alg. (Table 1) n keqn (Eqn. 1) n/keqn
SuSy GDS-Join 18 5 3.60
Higgs GDS-Join 28 8 3.50
WEC COSS 49 3 16.33
Census GDS-Join 68 5 13.60
Songs COSS 90 4 22.50
Tiny5M COSS 384 8 48.00

Table 3. The best GPU algorithm (GDS-Join or COSS) from Table 1 is shown, with
the values of n and keqn from Table 2. The ratio of the n/keqn indicates whether GDS-
Join or COSS should be employed. We excluded BigCross as neither GPU algorithm
outperformed the CPU algorithms on that dataset.

good performance [2]. We also find that our heuristic yields similar values of k.
Finding 2: The ID is a much better indicator of the number of dimensions that
should be indexed than the data dimensionality.

When should GDS-Join or COSS be employed? Both algorithms have
distinct niches, but it is not clear from the results thus far under what circum-
stances GDS-Join or COSS should be employed. By definition, metric-based
indexes (COSS) are more effective than coordinate-based indexes (GDS-Join)
when there is less structure in the data indicating lower ID, and so by indexing
in the metric space, they are able to better prune the search in instances where
coordinate-based indexes cannot.

Table 3 shows the algorithm that achieved the best performance in Table 1.
Also reported is n/keqn, where keqn is a function of the ID. Intuitively, this indi-
cates how much pruning the index can accomplish relative to all n dimensions.
Because COSS outperforms GDS-Join when there is less structure in the data
(lower ID), we find that when n/keqn ≥ 16 COSS should be employed, and
likewise when n/keqn < 16 GDS-Join should be employed, which indicates that
there is more structure in the data, or a higher ID relative to the total number
of data dimensions, n. Consequently, one of the GPU algorithms can be selected
based on n and keqn, which is a function of data-dependent properties. Finding
3: Datasets with greater ID and/or fewer data dimensions are best processed by
coordinate-based indexes (GDS-Join), whereas datasets with lower ID and/or
higher dimensions should be processed by metric-based indexes (COSS).

4 Discussion & Conclusions

This paper examined fundamental data properties that can be used to: (i) im-
prove the performance of GDS-Join and COSS; and, (ii) determine under
which conditions GDS-Join or COSS should be employed. Algorithm selection
allows for computing DSS more robustly, as we are now able to select an algo-
rithm that performs well depending on the characteristics of a dataset. Using the

ICCS Camera Ready Version 2023
To cite this paper please use the final published version:

DOI: 10.1007/978-3-031-36021-3_37

https://dx.doi.org/10.1007/978-3-031-36021-3_37
https://dx.doi.org/10.1007/978-3-031-36021-3_37


8 Michael Gowanlock et al.

proposed heuristics, we find that GDS-Join or COSS can be selected largely
based on the intrinsic dimensionality and the number of data dimensions.
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